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Preface

Technology such as microprocessors, microcontrollers, and digital signal processors have become so
advanced that they have had a dramatic impact on the disciplines of electronics engineering, computer
engineering, and biomedical engineering. Engineers and technologists need to become familiar with
digital signals and systems and basic digital signal processing (DSP) techniques. The objective of this
book is to introduce students to the fundamental principles of these subjects and to provide a working
knowledge such that they can apply DSP in their engineering careers.

The book is suitable for a two-semester course sequence at the senior level in undergraduate
electronics, computer, and biomedical engineering technology programs. Chapters 1 to 8 provide the
topics for a one-semester course, and a second course can complete the rest of the chapters. This
textbook can also be used in an introductory DSP course in an undergraduate electrical engineering
program at traditional colleges. Additionally, the book should be useful as a reference for under-
graduate engineering students, science students, and practicing engineers.

The material has been tested for two consecutive courses in a signal processing sequence at Purdue
University North Central in Indiana. With the background established from this book, students will be
well prepared to move forward to take other upper-level courses that deal with digital signals and
systems for communications and control.

The textbook consists of 14 chapters, organized as follows:

• Chapter 1 introduces concepts of DSP and presents a general DSP block diagram. Application
examples are included.

• Chapter 2 covers the sampling theorem described in the time domain and frequency domain and
also covers signal reconstruction. Some practical considerations for designing analog anti-
aliasing lowpass filters and anti-image lowpass filters are included. The chapter ends with
a section dealing with analog-to-digital conversion (ADC) and digital-to-analog conversion
(DAC), as well as signal quantization and encoding.

• Chapter 3 introduces digital signals, linear time-invariant system concepts, difference equations,
and digital convolutions.

• Chapter 4 introduces the discrete Fourier transform (DFT) and digital signal spectral calculations
using the DFT. Methods for applying the DFT to estimate the spectra of various signals,
including speech, seismic signals, electrocardiography data, and vibration signals, are
demonstrated. The chapter ends with a section dedicated to illustrating fast Fourier transform
(FFT) algorithms.

• Chapter 5 is devoted to the z-transform and difference equations.
• Chapter 6 covers digital filtering using difference equations, transfer functions, system stability,

digital filter frequency responses, and implementation methods such as direct-form I and direct-
form II.

• Chapter 7 deals with various methods of finite impulse response (FIR) filter design, including the
Fourier transform method for calculating FIR filter coefficients, window method, frequency
sampling design, and optimal design. Chapter 7 also includes applications that use FIR filters for
noise reduction and digital crossover system design.

xiii



• Chapter 8 covers various methods of infinite impulse response (IIR) filter design, including the
bilinear transformation (BLT) design, impulse-invariant design, and pole-zero placement design.
Applications using IIR filters include audio equalizer design, biomedical signal enhancement,
dual-tone multifrequency (DTMF) tone generation, and detection with the Goertzel algorithm.

• Chapter 9 introduces DSP architectures, software and hardware, and fixed-point and floating-point
implementations of digital filters.

• Chapter 10 covers adaptive filters with applications such as noise cancellation, system modeling,
line enhancement, cancellation of periodic interferences, echo cancellation, and 60-Hz
interference cancellation in biomedical signals.

• Chapter 11 is devoted to speech quantization and compression, including pulse code modulation
(PCM) coding, mu-law compression, adaptive differential pulse code modulation (ADPCM)
coding, windowed modified discrete cosine transform (W-MDCT) coding, and MPEG audio
format, specifically MP3 (MPEG-1, layer 3).

• Chapter 12 covers topics pertaining to multirate DSP and applications, as well as principles of
oversampling ADC, such as sigma-delta modulation. Undersampling for bandpass signals is also
examined.

• Chapter 13 introduces a subband coding system and its implementation. Perfect reconstruction
conditions for a two-band system are derived. Subband coding with an application of data
compression is demonstrated. Furthermore, the chapter covers the discrete wavelet transform
(DWT) with applications to signal coding and denoising.

• Finally, Chapter 14 covers image enhancement using histogram equalization and filtering methods,
including edge detection. The chapter also explores pseudo-color image generation and detection,
two-dimensional spectra, JPEG compression using DCT, image coding using the DWT, and the
mixing of two images to create a video sequence. Finally, motion compensation of the video
sequence is explored, which is a key element of video compression used in MPEG.

MATLAB programs are listed whenever they are possible. Therefore, a MATLAB tutorial should be
given to students who are new to the MATLAB environment.

• Appendix A serves as a MATLAB tutorial.
• Appendix B reviews key fundamentals of analog signal processing. Topics include Fourier series,

Fourier transform, Laplace transform, and analog system basics.
• Appendixes C, D, and E review Butterworth and Chebyshev filters, sinusoidal steady-state

responses in digital filters, and derivation of the FIR filter design equation via the frequency
sampling method, respectively.

• Appendix F details the derivations of wavelet analysis and synthesis equations.
• Appendix G offers general useful mathematical formulas.

In this new edition, MATLAB projects dealing with practical applications are included in Chapters 2,
4, 6, 7, 8, 10, 12, and 13.

Instructor support, including solutions, can be found at http://textbooks.elsevier.com. MATLAB
programs and exercises for students, plus Real-time C programs can be found at booksite.elsevier.com/
9780124158931.

Thanks to all the faculty and staff at Purdue University North Central in Westville, Indiana, for their
encouragement. In particular, the authors wish to thank Professors Thomas F. Brady, Larryl Matthews,

xiv Preface
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Christopher J. Smith, Alain Togbe, Edward Vavrek, Nuri Zeytinoglu, and Shengyong Zhang for their
support and suggestions. We are also indebted to all former students in our DSP classes at Purdue
University North Central for their feedback over the years, which helped refine this edition.

Special thanks go to Joseph P. Hayton (Publisher), Chelsea Johnston (Editorial Project Manager),
and Renata Corbani (Project Manager) at Elsevier for their encouragement and guidance in developing
the second edition.

The book has benefited from many constructive comments and suggestions from the following
reviewers and anonymous reviewers. The authors take this opportunity to thank them for their
significant contributions. We would like to thank the following reviewers for the second edition:

Professor Oktay Alkin, Southern Illinois University Edwardsville
Professor Rabah Aoufi, DeVry University-Irving, TX
Dr. Janko Calic, University of Surrey, UK
Professor Erik Cheever, Swarthmore College
Professor Samir Chettri, University of Maryland Baltimore County
Professor Nurgun Erdol, Florida Atlantic University
Professor Richard L Henderson, DeVry University, Kansas City, MO
Professor JeongHee Kim, San Jose State University
Professor Sudarshan R. Nelatury, Penn State University, Erie, PA
Professor Javad Shakib, DeVry University in Pomona, California
Dr.ir. Herbert Wormeester, University of Twente, The Netherlands
Professor Yongpeng Zhang, Prairie View A&M University

In addition we would like to repeat our thanks to the reviewers for the first edition: Professor Mateo
Aboy, Oregon Institute of Technology; Professor Jean Andrian, Florida International University;
Professor Rabah Aoufi, DeVry University; Professor Larry Bland, John Brown University; Professor
Phillip L. De Leon, New Mexico State University; Professor Mohammed Feknous, New Jersey
Institute of Technology; Professor Richard L. Henderson, DeVry University; Professor Ling Hou, St.
Cloud State University; Professor Robert C. (Rob) Maher, Montana State University; Professor
Abdulmagid Omar, DeVry University; Professor Ravi P. Ramachandran, Rowan University; Professor
William (Bill) Routt, Wake Technical Community College; Professor Samuel D. Stearns, University of
New Mexico; Professor Les Thede, Ohio Northern University; Professor Igor Tsukerman, University
of Akron; Professor Vijay Vaidyanathan, University of North Texas; and Professor David Waldo,
Oklahoma Christian University.

Li Tan
Jean Jiang
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Introduction to Digital Signal
Processing 1
CHAPTER OUTLINE
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1.2 Basic Digital Signal Processing Examples in Block Diagrams...............................................................3
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OBJECTIVES:

This chapter introduces concepts of digital signal processing (DSP) and reviews an overall picture of its
applications. Illustrative application examples include digital noise filtering, signal frequency analysis,
speech and audio compression, biomedical signal processing such as interference cancellation in elec-
trocardiography, compact-disc recording, and image enhancement.

1.1 BASIC CONCEPTS OF DIGITAL SIGNAL PROCESSING
Digital signal processing (DSP) technology and its advancements have dramatically impacted our
modern society everywhere. Without DSP, we would not have digital/Internet audio and video; digital
recording; CD, DVD, and MP3 players; iPhone and iPad; digital cameras; digital and cellular tele-
phones; digital satellite and TV; or wired and wireless networks. Medical instruments would be less
efficient or unable to provide useful information for precise diagnoses if there were no digital elec-
trocardiography (ECG) analyzers, digital X-rays, and medical image systems. We would also live in
many less efficient ways, since we would not be equipped with voice recognition systems, speech
synthesis systems, and image and video editing systems. Without DSP, scientists, engineers, and
technologists would have no powerful tools to analyze and visualize the data necessary for their
designs, and so on.

CHAPTER
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The basic concept of DSP is illustrated by the simplified block diagram in Figure 1.1, which
consists of an analog filter, an analog-to-digital conversion (ADC) unit, a digital signal (DS) processor,
a digital-to-analog conversion (DAC) unit, and a reconstruction (anti-image) filter.

As shown in the diagram, the analog input signal, which is continuous in time and amplitude, is
generally encountered in the world around us. Examples of such analog signals include current,
voltage, temperature, pressure, and light intensity. Usually a transducer (sensor) is used to convert the
nonelectrical signal to the analog electrical signal (voltage). This analog signal is fed to an analog
filter, which is applied to limit the frequency range of analog signals prior to the sampling process. The
purpose of filtering is to significantly attenuate aliasing distortion, which will be explained in the next
chapter. The band-limited signal at the output of the analog filter is then sampled and converted via the
ADC unit into the digital signal, which is discrete both in time and in amplitude. The DS processor
then accepts the digital signal and processes the digital data according to DSP rules such as lowpass,
highpass, and bandpass digital filtering, or other algorithms for different applications. Notice that the
DS processor unit is a special type of digital computer and can be a general-purpose digital computer,
a microprocessor, or an advanced microcontroller; furthermore, DSP rules can be implemented using
software in general.

With the DS processor and corresponding software, a processed digital output signal is gener-
ated. This signal behaves in a manner according to the specific algorithm used. The next block in
Figure 1.1, the DAC unit, converts the processed digital signal to an analog output signal. As shown,
the signal is continuous in time and discrete in amplitude (usually a sample-and-hold signal, to be
discussed in Chapter 2). The final block in Figure 1.1 is designated as a function to smooth the DAC
output voltage levels back to the analog signal via a reconstruction (anti-image) filter for real-world
applications.

In general, the analog signal process does not require software, an algorithm, ADC, and DAC. The
processing relies wholly on the electrical and electronic devices such as resistors, capacitors, tran-
sistors, operational amplifiers, and integrated circuits (ICs).

DSP systems, on the other hand, use software, digital processing, and algorithms; thus they have
a great deal of flexibility, less noise interference, and no signal distortion in various applications.
However, as shown in Figure 1.1, DSP systems still require minimum analog processing such as the
anti-aliasing and reconstruction filters, which are musts for converting real-world information into
digital form and digital signals back into real-world information.

Note that there are many real-world DSP applications that do not require DAC, such as data
acquisition and digital information display, speech recognition, data encoding, and so on. Similarly,
DSP applications that need no ADC include CD players, text-to-speech synthesis, and digital tone
generators, among others. We will review some of them in the following sections.
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FIGURE 1.1

A digital signal processing scheme.
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1.2 BASIC DIGITAL SIGNAL PROCESSING EXAMPLES IN BLOCK DIAGRAMS
We first look at digital noise filtering and signal frequency analysis, using block diagrams.

1.2.1 Digital Filtering

Let us consider the situation shown in Figure 1.2, depicting a digitized noisy signal obtained from
digitizing analog voltages (sensor output) containing a useful low-frequency signal and noise that
occupies all of the frequency range. After ADC, the digitized noisy signal xðnÞ, where n is the sample
number, can be enhanced using digital filtering.

Since our useful signal contains the low-frequency component, the high-frequency components
above that of our useful signal are considered noise, which can be removed by using a digital lowpass
filter. We set up the DSP block in Figure 1.2 to operate as a simple digital lowpass filter. After pro-
cessing the digitized noisy signal xðnÞ, the digital lowpass filter produces a clean digital signal yðnÞ.
We can apply the cleaned signal yðnÞ to another DSP algorithm for a different application or convert it
to the analog signal via DAC and the reconstruction filter.

The digitized noisy signal and clean digital signal, respectively, are plotted in Figure 1.3, where the
top plot shows the digitized noisy signal, while the bottom plot demonstrates the clean digital signal
obtained by applying the digital lowpass filter. Typical applications of noise filtering include acqui-
sition of clean digital audio and biomedical signals and enhancement of speech recording, among
others (Embree, 1995; Rabinar and Schafer, 1978; Webster, 1998).

1.2.2 Signal Frequency (Spectrum) Analysis

As shown in Figure 1.4, certain DSP applications often require that time domain information and
the frequency content of the signal be analyzed. Figure 1.5 shows a digitized audio signal and its
calculated signal spectrum (frequency content), that is, the signal amplitude versus its corre-
sponding frequency for the time being, obtained from a DSP algorithm, called the fast Fourier
transform (FFT), which will be studied in Chapter 4. The plot in Figure 1.5(a) is a time domain
display of the recorded audio signal with a frequency of 1,000 Hz sampled at 16,000 samples per
second, while the frequency content display of plot (b) displays the calculated signal spectrum
versus frequency, in which the peak amplitude is clearly located at 1,000 Hz. Plot (c) shows a time
domain display of an audio signal consisting of one signal of 1,000 Hz and another of 3,000 Hz
sampled at 16,000 samples per second. The frequency content display shown in plot (d) gives two
locations (1,000 Hz and 3,000 Hz) where the peak amplitudes reside, hence the frequency content
display presents clear frequency information of the recorded audio signal.

DSP
Digital filtering

( )x n ( )y n

Digitized noisy input Clean digital signal

FIGURE 1.2

The simple digital filtering block.
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As another practical example, we often perform spectral estimation of a digitally recorded speech
or audio (music) waveform using the FFTalgorithm in order to investigate spectral frequency details of
speech information. Figure 1.6 shows a speech signal produced by a human in the time domain and
frequency content displays. The top plot shows the digital speech waveform versus its digitized sample
number, while the bottom plot shows the frequency content information of speech for a range from 0 to
4,000 Hz. We can observe that there are about ten spectral peaks, called speech formants, in the range
between 0 and 1,500 Hz. Those identified speech formants can be used for applications such as speech
modeling, speech coding, speech feature extraction for speech synthesis and recognition, and so on
(Deller et al., 1993).
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FIGURE 1.4

Signal spectral analysis.
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(Top) Digitized noisy signal. (Bottom) Clean digital signal using the digital lowpass filter.
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1.3 OVERVIEW OF TYPICAL DIGITAL SIGNAL PROCESSING IN REAL-WORLD
APPLICATIONS

1.3.1 Digital Crossover Audio System

An audio system is required to operate in an entire audible range of frequencies, which may be beyond
the capability of any single speaker driver. Several drivers, such as the speaker cones and horns, each
covering a different frequency range, are used to cover the full audio frequency range.

Figure 1.7 shows a typical two-band digital crossover system consisting of two speaker drivers:
a woofer and a tweeter. The woofer responds to low frequencies, while the tweeter responds to high
frequencies. The incoming digital audio signal is split into two bands by using a digital lowpass filter
and a digital highpass filter in parallel. Then the separated audio signals are amplified. Finally, they are
sent to their corresponding speaker drivers. Although the traditional crossover systems are designed
using the analog circuits, the digital crossover system offers a cost-effective solution with program-
mability, flexibility, and high quality. This topic is taken up in Chapter 7.

1.3.2 Interference Cancellation in Electrocardiography

In ECG recording, there often is unwanted 60-Hz interference in the recorded data (Webster, 1998).
The analysis shows that the interference comes from the power line and includes magnetic induction,
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Audio signals and their spectrums.
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displacement currents in leads or in the body of the patient, effects from equipment interconnections,
and other imperfections. Although using proper grounding or twisted pairs minimizes such 60-Hz
effects, another effective choice can be use of a digital notch filter, which eliminates the 60-Hz
interference while keeping all the other useful information. Figure 1.8 illustrates a 60-Hz interference
eliminator using a digital notch filter. With such enhanced ECG recording, doctors in clinics could give
accurate diagnoses for patients.
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This technique can also be applied to remove 60-Hz interference in audio systems. This topic is
explored in depth in Chapter 8.

1.3.3 Speech Coding and Compression

One of the speech coding methods, called waveform coding, is depicted in Figure 1.9A, describing the
encoding process, while Figure 1.9B shows the decoding processing. As shown in Figure 1.9A, the
analog signal is first sent through an analog lowpass filter to remove high frequency noise components
and is then passed through the ADC unit, where the digital values at sampling instants are captured by
the DS processor. Next, the captured data are compressed using data compression rules to reduce the
storage requirements. Finally, the compressed digital information is sent to storage media.
The compressed digital information can also be transmitted efficiently, since compression reduces the
original data rate. Digital voice recorders, digital audio recorders, and MP3 players are products that
use compression techniques (Deller et al., 1993; Li and Drew, 2004; Pan 1985).

To retrieve the information, the reverse process is applied. As shown in Figure 1.9B, the DS
processor decompresses the data from the storage media and sends the recovered digital data to DAC.
The analog output is acquired by filtering the DAC output via the reconstruction filter.

1.3.4 Compact-Disc Recording System

A compact-disc (CD) recording system is described in Figure 1.10A. The analog audio signal is sensed
from each microphone and then fed to the anti-aliasing lowpass filter. Each filtered audio signal is
sampled at the industry standard rate of 44.1 kilo-samples per second, quantized, and coded to 16 bits for
each digital sample in each channel. The two channels are further multiplexed and encoded, and extra
bits are added to provide information such as playing time and track number for the listener. The encoded
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FIGURE 1.8

Elimination of 60-Hz interference in electrocardiography (ECG).

1.3 Overview of Typical Digital Signal Processing in Real-World Applications 7



Analog
filter ADC DSP

compressor

Analog
input Storage

media

FIGURE 1.9A

Simplified data compressor.

DSP
decompressor DAC Reconstruction

filter

Analog
output

Storage
media

FIGURE 1.9B

Simplified data expander (decompressor).

Left mic

Right mic

Anti-aliasing
LP filter

Anti-aliasing
LP filter

16-bit
ADC

16-bit
ADC

Multiplex
Encoding

Modulation
Synchronization

Optics and
Recording

FIGURE 1.10A

Simplified encoder of the CD recording system.
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data bits are modulated for storage, and more synchronized bits are added for subsequent recovery of
sampling frequency. The modulated signal is then applied to control a laser beam that illuminates the
photosensitive layer of a rotating glass disc. When the laser turns on and off, the digital information is
etched on the photosensitive layer as a pattern of pits and lands in a spiral track. This master disc forms
the basis for mass production of the commercial CD from the thermoplastic material.

During playback, as illustrated in Figure 1.10B, a laser optically scans the tracks on a CD to
produce a digital signal. The digital signal is then demodulated. The demodulated signal is further
oversampled by a factor of 4 to acquire a sampling rate of 176.4 kHz for each channel and is then
passed to the 14-bit DAC unit. For the time being, we can consider the oversampling process as
interpolation, that is, adding three samples between every two original samples in this case, as we shall
see in Chapter 12. After DAC, the analog signal is sent to the anti-image analog filter, which is
a lowpass filter to smooth the voltage steps from the DAC unit. The output from each anti-image filter
is fed to its amplifier and loudspeaker. The purpose of the oversampling is to relieve the higher-filter-
order requirement for the anti-image lowpass filter, making the circuit design much easier and
economical (Ambardar, 1999).

Software audio players installed on computer systems that play music from CDs, such as Windows
Media Player and RealPlayer, are examples of DSP applications. These audio players often have many
advanced features, such as graphical equalizers, which allow users to change audio through techniques
such as boosting low-frequency content or emphasizing high-frequency content (Ambardar, 1999;
Embree, 1995; Ifeachor and Jervis, 2002).

1.3.5 Vibration Signature Analysis for Defective Gear Teeth

Gearboxes are widely used in industry and vehicles. During their extended service lifetimes, the gear
teeth will inevitably be worn, chipped, or go missing. Hence, with DSP techniques, effective diag-
nostic methods can be developed to detect and monitor the defective gear teeth in order to enhance the
reliability of the entire machine before any unexpected catastrophic events occur. Figure 1.11(a)
shows the gearbox; two straight bevel gears with a transmission ratio of 1.5:1 inside the gearbox are
shown in Figure 1.11(b). The number of teeth on the pinion is 18. The gearbox input shaft is connected
a sheave and driven by a “V” belt drive. The vibration data can be collected by a triaxial accelerometer
installed on the top of the gearbox, as shown in Figure 1.11(c). The data acquisition system uses a
sampling rate of 12.8 kHz. Figure 1.11(d) shows that a pinion has a missing tooth. During the test,
the motor speed is set to 1,000 RPM (revolutions per minute) so the meshing frequency is determined as
fm ¼ 1000ðRPMÞ � 18=60 ¼ 300 Hz and input shaft frequency is fi ¼ 1000ðRPMÞ=60 ¼ 16:17 Hz.
The baseline signal and spectrum (excellent condition) from the x-direction of the accelerometer
are displayed in Figure 1.12, where we can see that the spectrum contains the meshing frequency
component of 300 Hz and a sideband frequency component of 283.33 (300 � 16.67) Hz.
Figure 1.13 shows the vibration signature for the damaged pinion in Figure 1.11(d). For the
damaged pinion, the sidebands (fm � fi, fm � 2fi . ) become dominant. Hence, the vibration failure
signature is identified. More details can be found in Randall (2011).

1.3.6 Digital Photo Image Enhancement

Digital image enhancement is another example of signal processing in two dimensions. Figure 1.14(a)
shows a picture of an outdoor scene taken by a digital camera on a cloudy day. Due to the weather
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FIGURE 1.11

Vibration signature analysis of the gearbox.

(Courtesy of SpectaQuest, Inc.)
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conditions, the image was improperly exposed in natural light and came out dark. The image pro-
cessing technique called histogram equalization (Gozalez and Wintz, 1987) can stretch the light
intensity of an image using the digital information (pixels) to increase image contrast so that detailed
information in the image can easily be seen, as we can see in Figure 1.14(b). We will study this
technique in Chapter 14.

1.4 DIGITAL SIGNAL PROCESSING APPLICATIONS
Applications of DSP are increasing in many areas where analog electronics are being replaced by DSP
chips, and new applications are depending on DSP techniques. With the cost of DS processors
decreasing and their performance increasing, DSP will continue to affect engineering design in our
modern daily life. Some application examples using DSP are listed in Table 1.1.

FIGURE 1.14

Image enhancement.

Table 1.1 Applications of Digital Signal Processing

Digital audio and speech Digital audio coding such as CD players and MP3 players, digital crossover,
digital audio equalizers, digital stereo and surround sound, noise reduction
systems, speech coding, data compression and encryption, speech synthesis
and speech recognition

Digital telephone Speech recognition, high-speed modems, echo cancellation, speech
synthesizers, DTMF (dual-tone multifrequency) generation and detection,
answering machines

Automobile industry Active noise control systems, active suspension systems, digital audio and radio,
digital controls, vibration signal analysis

Electronic
communications

Cellular phones, digital telecommunications, wireless LAN (local area
networking), satellite communications

Medical imaging
equipment

ECG analyzers, cardiac monitoring, medical imaging and image recognition,
digital X-rays and image processing

Multimedia Internet phones, audio and video, hard disk drive electronics, iPhone, iPad,
digital pictures, digital cameras, text-to-voice and voice-to-text technologies
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However, the list in the table by no means covers all DSP applications. Engineers and scientists are
exploring many new potential applications. DSP techniques will continue to have a profound impact
and improve our lives.

1.5 SUMMARY
1. An analog signal is continuous in both time and amplitude. Analog signals in the real world include

current, voltage, temperature, pressure, light intensity, and so on. The digital signal contains the
digital values converted from the analog signal at the specified time instants.

2. Analog-to-digital signal conversion requires an ADC unit (hardware) and a lowpass filter attached
ahead of the ADC unit to block the high-frequency components that ADC cannot handle.

3. The digital signal can be manipulated using arithmetic. The manipulations may include digital
filtering, calculation of signal frequency content, and so on.

4. The digital signal can be converted back to an analog signal by sending the digital values to DAC to
produce the corresponding voltage levels and applying a smooth filter (reconstruction filter) to the
DAC voltage steps.

5. Digital signal processing finds many applications in the areas of digital speech and audio, digital
and cellular telephones, automobile controls, vibration signal analysis, communications,
biomedical imaging, image/video processing, and multimedia.
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OBJECTIVES:

This chapter investigates the sampling process, sampling theory, and the signal reconstruction
process. It also includes practical considerations for anti-aliasing and anti-image filters and signal
quantization.

2.1 SAMPLING OF CONTINUOUS SIGNAL
As discussed in Chapter 1, Figure 2.1 describes a simplified block diagram of a digital signal
processing (DSP) system. The analog filter processes the analog input to obtain the band-limited
signal, which is sent to the analog-to-digital conversion (ADC) unit. The ADC unit samples the
analog signal, quantizes the sampled signal, and encodes the quantized signal level to the digital
signal.

Here we first develop concepts of sampling processing in the time domain. Figure 2.2 shows an
analog (continuous-time) signal (solid line) defined at every point over the time axis (horizontal line)
and amplitude axis (vertical line). Hence, the analog signal contains an infinite number of points.

It is impossible to digitize an infinite number of points. The infinite points cannot be processed by
the digital signal (DS) processor or computer, since they require an infinite amount of memory and
infinite amount of processing power for computations. Sampling can solve such a problem by taking
samples at a fixed time interval as shown in Figure 2.2 and Figure 2.3, where the time T represents the
sampling interval or sampling period in seconds.

As shown in Figure 2.3, each sample maintains its voltage level during the sampling interval T to
give the ADC enough time to convert it. This process is called sample and hold. Since there exits one
amplitude level for each sampling interval, we can sketch each sample amplitude level at its corre-
sponding sampling time instant shown in Figure 2.2, where 14 samples at their sampling time instants
are plotted, each using a vertical bar with a solid circle at its top.
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For a given sampling interval T , which is defined as the time span between two sample points, the
sampling rate is therefore given by

fs ¼ 1

T
samples per second ðHzÞ

For example, if a sampling period is T ¼ 125 microseconds, the sampling rate is fs ¼ 1=125ms ¼
8; 000 samples per second (Hz).
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After obtaining the sampled signal whose amplitude values are taken at the sampling instants, the
processor is able to process the sample points. Next, we have to ensure that samples are collected at
a rate high enough that the original analog signal can be reconstructed or recovered later. In other
words, we are looking for a minimum sampling rate to acquire a complete reconstruction of the analog
signal from its sampled version. If an analog signal is not appropriately sampled, aliasing will occur,
which causes unwanted signals in the desired frequency band.

The sampling theorem guarantees that an analog signal can be in theory perfectly recovered as long
as the sampling rate is at least twice as large as the highest-frequency component of the analog signal
to be sampled. The condition is described as

fs � 2fmax

where fmax is the maximum-frequency component of the analog signal to be sampled. For example, to
sample a speech signal containing frequencies up to 4 kHz, the minimum sampling rate is chosen to be
at least 8 kHz, or 8,000 samples per second; to sample an audio signal possessing frequencies up to
20 kHz, at least 40,000 samples per second, or 40 kHz, of the audio signal are required.

Figure 2.4 illustrates sampling of two sinusoids, where the sampling interval between sample points
is T ¼ 0:01 second, and the sampling rate is thus fs ¼ 100 Hz. The first plot in the figure displays
a sine wave with a frequency of 40 Hz and its sampled amplitudes. The sampling theorem condition is
satisfied since 2fmax ¼ 80 < fs. The sampled amplitudes are labeled using the circles shown in the first
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plot. We notice that the 40-Hz signal is adequately sampled, since the sampled values clearly come from
the analog version of the 40-Hz sine wave. However, as shown in the second plot, the sine wave with
a frequency of 90 Hz is sampled at 100 Hz. Since the sampling rate of 100 Hz is relatively low compared
with the 90-Hz sine wave, the signal is undersampled due to 2fmax ¼ 180 > fs. Hence, the condition of
the sampling theorem is not satisfied. Based on the sample amplitudes labeled with the circles in the
second plot, we cannot tell whether the sampled signal comes from sampling a 90-Hz sine wave (plotted
using the solid line) or from sampling a 10-Hz sine wave (plotted using the dot-dash line). They are not
distinguishable. Thus they are aliases of each other. We call the 10-Hz sine wave the aliasing noise in
this case, since the sampled amplitudes actually come from sampling the 90-Hz sine wave.

Now let us develop the sampling theorem in frequency domain, that is, the minimum sampling rate
requirement for sampling an analog signal. As we shall see, in practice this can help us design the anti-
aliasing filter (a lowpass filter that will reject high frequencies that cause aliasing) that will be applied
before sampling, and the anti-image filter (a reconstruction lowpass filter that will smooth the
recovered sample-and-hold voltage levels to an analog signal) that will be applied after the digital-to-
analog conversion (DAC).

Figure 2.5 depicts the sampled signal xsðtÞ obtained by sampling the continuous signal xðtÞ at
a sampling rate of fs samples per second.

Mathematically, this process can be written as the product of the continuous signal and the
sampling pulses (pulse train):

xsðtÞ ¼ xðtÞpðtÞ (2.1)

where pðtÞ is the pulse train with a period T ¼ 1=fs. From spectral analysis, the original spectrum
(frequency components) Xðf Þ and the sampled signal spectrum Xsðf Þ in terms of Hz are related as

Xsðf Þ ¼ 1

T

XN
n¼�N

Xðf � nfsÞ (2.2)
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The simplified sampling process.
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where Xðf Þ is assumed to be the original baseband spectrum while Xsðf Þ is its sampled signal spec-
trum, consisting of the original baseband spectrum Xðf Þ and its replicas Xðf � nfsÞ. Since Equation
(2.2) is a well-known formula, the derivation is omitted here and can be found in well-known texts
(Ahmed and Nataranjan, 1983; Ambardar, 1999; Alkin, 1993; Oppenheim and Schafer, 1975; Proakis
and Manolakis, 1996).

Expanding Equation (2.2) leads to the sampled signal spectrum in Equation (2.3):

Xsðf Þ ¼ /þ 1

T
Xðf þ fsÞ þ 1

T
Xðf Þ þ 1

T
Xðf � fsÞ þ/ (2.3)

Equation (2.3) indicates that the sampled signal spectrum is the sum of the scaled original spectrum and
copies of its shifted versions, called replicas. Three possible sketches based on Equation (2.3) can be
obtained. Given the original signal spectrum Xðf Þ plotted in Figure 2.6(a), the sampled signal
spectrum according to Equation (2.3) is plotted in Figure 2.6(b), where the replicas 1

TXðf Þ, 1TXðf � fsÞ,
1
TXðf þ fsÞ, ., have separations between them. Figure 2.6(c) shows that the baseband spectrum and its
replicas, 1TXðf Þ, 1TXðf � fsÞ, 1TXðf þ fsÞ, ., are just connected, and finally, in Figure 2.6(d), the original
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Plots of the sampled signal spectrum.
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spectrum 1
TXðf Þ and its replicas 1

TXðf � fsÞ, 1
TXðf þ fsÞ, ., are overlapped; that is, there are many

overlapping portions in the sampled signal spectrum.
From Figure 2.6, it is clear that the sampled signal spectrum consists of the scaled baseband

spectrum centered at the origin, and its replicas centered at the frequencies of �nfs (multiples of the
sampling rate) for each of n ¼ 1; 2; 3;..

If applying a lowpass reconstruction filter to obtain exact reconstruction of the original signal
spectrum, the following condition must be satisfied:

fs � fmax � fmax (2.4)

Solving Equation (2.4) gives

fs � 2fmax (2.5)

In terms of frequency in radians per second, Equation (2.5) is equivalent to

us � 2umax (2.6)

This fundamental conclusion is well known as the Shannon sampling theorem, which is formally
described below:

We summarize two key points here.

1. The sampling theorem establishes a minimum sampling rate for a given band-limited analog signal
with highest-frequency component fmax. If the sampling rate satisfies Equation (2.5), then the
analog signal can be recovered via its sampled values using the lowpass filter, as described in
Figure 2.6(b).

2. Half of the sampling frequency fs=2 is usually called the Nyquist frequency (Nyquist limit) or
folding frequency. The sampling theorem indicates that a DSP system with a sampling rate of fs
can ideally sample an analog signal with a maximum frequency that is up to half of the
sampling rate without introducing spectral overlap (aliasing). Hence, the analog signal can be
perfectly recovered from its sampled version.

Let us study the following example.

EXAMPLE 2.1
Suppose that an analog signal is given as

xðtÞ ¼ 5cosð2p$1;000tÞ; for t � 0

and is sampled at the rate 8,000 Hz.

a. Sketch the spectrum for the original signal.
b. Sketch the spectrum for the sampled signal from 0 to 20 kHz.

For a uniformly sampled DSP system, an analog signal can be perfectly recovered as long as the sampling rate is at

least twice as large as the highest-frequency component of the analog signal to be sampled.
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Solution:
a. Since the analog signal is sinusoid with a peak value of 5 and frequency of 1,000 Hz, we can write the sine wave
using Euler’s identity:

5cosð2p� 1;000tÞ ¼ 5$ðe
j2p�1;000t þ e�j2p�1;000t

2
Þ ¼ 2:5ej2p�1;000t þ 2:5e�j2p�1;000t

which is aFourier series expansion for a continuousperiodic signal in termsof the exponential form (seeAppendixB).We
can identify the Fourier series coefficients as

c1 ¼ 2:5 and c�1 ¼ 2:5

Using the magnitudes of the coefficients, we then plot the two-side spectrum as shown in Figure 2.7A.
b. After the analog signal is sampled at the rate of 8,000 Hz, the sampled signal spectrum and its replicas centered
at the frequencies �nfs , each with a scaled amplitude of 2:5=T , are as shown in Figure 2.7B:

Notice that the spectrum of the sampled signal shown in Figure 2.7B contains the images of the original
spectrum shown in Figure 2.7A; that the images repeat at multiples of the sampling frequency fs (for our example,
8 kHz, 16kHz, 24kHz, .); and that all images must be removed, since they convey no additional information.

2.2 SIGNAL RECONSTRUCTION
In this section, we investigate the recovery of analog signal from its sampled signal version. Two
simplified steps are involved, as described in Figure 2.8. First, the digitally processed data yðnÞ are
converted to the ideal impulse train ysðtÞ, in which each impulse has amplitude proportional to digital
output yðnÞ, and two consecutive impulses are separated by a sampling period of T ; second, the analog

f kHz
1−1

X f( )

2 5.

FIGURE 2.7A

Spectrum of the analog signal in Example 2.1.
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FIGURE 2.7B

Spectrum of the sampled signal in Example 2.1.
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reconstruction filter is applied to the ideally recovered sampled signal ysðtÞ to obtain the recovered
analog signal.

To study the signal reconstruction, we let yðnÞ ¼ xðnÞ for the case of no DSP, so that the recon-
structed sampled signal and the input sampled signal are ensured to be the same; that is, ysðtÞ ¼ xsðtÞ.
Hence, the spectrum of the sampled signal ysðtÞ contains the same spectral content of the original
spectrum Xðf Þ, that is, Yðf Þ ¼ Xðf Þ, with a bandwidth of fmax ¼ B Hz (described in Figure 2.8d)
and the images of the original spectrum (scaled and shifted versions). The following three cases are
discussed for recovery of the original signal spectrum Xðf Þ.

Case 1: fs ¼ 2fmax

As shown in Figure 2.9, where the Nyquist frequency is equal to the maximum frequency of the
analog signal xðtÞ, an ideal lowpass reconstruction filter is required to recover the analog signal
spectrum. This is an impractical case.
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Signal notations at the reconstruction stage.
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Spectrum of the sampled signal when fs ¼ 2fmax.
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Case 2: fs > 2fmax

In this case, as shown in Figure 2.10, there is a separation between the highest-frequency edge of
the baseband spectrum and the lower edge of the first replica. Therefore, a practical lowpass recon-
struction (anti-image) filter can be designed to reject all the images and achieve the original signal
spectrum.

Case 3: fs < 2fmax

Case 3 violates the condition of the Shannon sampling theorem. As we can see, Figure 2.11 depicts
the spectral overlapping between the original baseband spectrum and the spectrum of the first replica
and so on. Even when we apply an ideal lowpass filter to remove these images, in the baseband there
are still some foldover frequency components from the adjacent replica. This is aliasing, where the
recovered baseband spectrum suffers spectral distortion, that is, it contains an aliasing noise spectrum;
in the time domain, the recovered analog signal may consist of the aliasing noise frequency or
frequencies. Hence, the recovered analog signal is incurably distorted.

Note that if an analog signal with a frequency f is undersampled, the aliasing frequency component
falias in the baseband is simply given by the following expression:

falias ¼ fs � f

The following examples give a spectrum analysis of the signal recovery.

EXAMPLE 2.2
Assume that an analog signal is given by

xðtÞ ¼ 5cosð2p$2;000tÞ þ 3cosð2p$3;000tÞ; for t � 0

f
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FIGURE 2.10

Spectrum of the sampled signal when fs > 2fmax.
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Spectrum of the sampled signal when fs < 2fmax.
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and is sampled at the rate of 8,000 Hz.

a. Sketch the spectrum of the sampled signal up to 20 kHz.
b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of 4 kHz is used to

filter the sampled signal (yðnÞ ¼ xðnÞ in this case) to recover the original signal.

Solution:
a. Using Euler’s identity, we get

xðtÞ ¼ 3

2
e�j2p$3;000t þ 5

2
e�j2p$2;000t þ 5

2
ej2p$2;000t þ 3

2
ej2p$3;000t

The two-sided amplitude spectrum for the sinusoid is displayed in Figure 2.12:

b. Based on the spectrum in (a), the sampling theorem condition is satisfied; hence, we can recover the original
spectrum using a reconstruction lowpass filter. The recovered spectrum is shown in Figure 2.13.

EXAMPLE 2.3
Assume an analog signal is given by

xðtÞ ¼ 5cosð2p� 2;000tÞ þ 1cosð2p� 5;000tÞ; for t � 0

and is sampled at a rate of 8,000 Hz.

a. Sketch the spectrum of the sampled signal up to 20 kHz.
b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff frequency of 4 kHz is used to

recover the original signal (yðnÞ ¼ xðnÞ in this case).
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FIGURE 2.12

Spectrum of the sampled signal in Example 2.2.
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FIGURE 2.13

Spectrum of the recovered signal in Example 2.2.
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Solution:
a. The spectrum for the sampled signal is sketched in Figure 2.14.
b. Since the maximum frequency of the analog signal is larger than that of the Nyquist frequencydthat is, twice
the maximum frequency of the analog signal is larger than the sampling ratedthe sampling theorem condition is
violated. The recovered spectrum is shown in Figure 2.15, where we see that aliasing noise occurs at 3 kHz.

2.2.1 Practical Considerations for Signal Sampling: Anti-Aliasing Filtering

In practice, the analog signal to be digitized may contain other frequency components in addition to the
folding frequency, such as high-frequency noise. To satisfy the sampling theorem condition, we apply
an anti-aliasing filter to limit the input analog signal, so that all the frequency components are less than
the folding frequency (half of the sampling rate). Considering the worst case, where the analog signal
to be sampled has a flat frequency spectrum, the band limited spectrum Xðf Þ and sampled spectrum
Xsðf Þ are depicted in Figure 2.16, where the shape of each replica in the sampled signal spectrum is the
same as that of the anti-aliasing filter magnitude frequency response.

Due to nonzero attenuation of the magnitude frequency response of the anti-aliasing lowpass filter,
the aliasing noise from the adjacent replica still appears in the baseband. However, the amount of
aliasing noise is greatly reduced. We can also control the aliasing noise by either using a higher-order
lowpass filter or increasing the sampling rate. For illustrative purpose, we use a Butterworth filter. The
method can also be extended to other filter types such as the Chebyshev filter. The Butterworth
magnitude frequency response with an order of n is given by

jHðf Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
f

fc

�2n
s (2.7)
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FIGURE 2.14

Spectrum of the sampled signal in Example 2.3.
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FIGURE 2.15

Spectrum of the recovered signal in Example 2.3.
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For a second-order Butterworth lowpass filter with unit gain, the transfer function (which will be
discussed in Chapter 8) and its magnitude frequency response are given by

HðsÞ ¼ ð2pfcÞ2
s2 þ 1:4141� ð2pfcÞsþ ð2pfcÞ2

(2.8)

jHðf Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
f

fc

�4
s (2.9)

A unit gain second-order lowpass filter using a Sallen-Key topology is shown in Figure 2.17. Matching
the coefficients of the circuit transfer function to that of the second-order Butterworth lowpass transfer
function in Equation (2.10) gives the design formulas shown in Figure 2.17, where for a given cutoff
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Spectrum of the sampled analog signal with a practical anti-aliasing filter.
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Second-order unit gain Sallen-Key lowpass filter.
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frequency of fc in Hz, and a capacitor value of C2, we can determine the other elements using the
formulas listed in the figure.

1

R1R2C1C2

s2 þ
�

1

R1C2
þ 1

R2C2

�
sþ 1

R1R2C1C2

¼ ð2pfcÞ2
s2 þ 1:4141 � ð2pfcÞsþ ð2pfcÞ2

(2.10)

As an example, for a cutoff frequency of 3,400 Hz, and by selecting C2 ¼ 0:01 microfarad (mF),
we get

R1 ¼ R2 ¼ 6; 620 U; and C1 ¼ 0:005 mF

Figure 2.18 shows the magnitude frequency response, where the absolute gain of the filter is
plotted. As we can see, the absolute attenuation begins at the level of 0.7 at 3,400 Hz and reduces
to 0.3 at 6,000 Hz. Ideally, we want the gain attenuation to be zero after 4,000 Hz if our sampling
rate is 8,000 Hz. Practically speaking, aliasing will occur anyway with some degree. We will study
achieving the higher-order analog filter via Butterworth and Chebyshev prototype function tables
in Chapter 8. More details of the circuit realization for the analog filter can be found in Chen
(1986).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Frequency (Hz)

M
ag

ni
tu

de
 re

sp
on

se

fc=3400 Hz

FIGURE 2.18

Magnitude frequency response of the second-order Butterworth lowpass filter.
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According to Figure 2.16, we can derive the aliasing level percentage using the symmetry of the
Butterworth magnitude function and its first replica. It follows that

aliasing level % ¼ Xa

Xðf Þjf¼fa

¼ jHðf Þjf¼fs�fa

jHðf Þjf¼fa

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
fa
fc

�2n
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
fs � fa
fc

�2n
s for 0 � f � fc (2.11)

With Equation (2.11), we can estimate the aliasing noise percentage, or choose a higher-order anti-
aliasing filter to satisfy the requirement for the aliasing level percentage.

EXAMPLE 2.4
Given the DSP system shown in Figures 2.16 to 2.18, where a sampling rate of 8,000 Hz is used and the anti-
aliasing filter is a second-order Butterworth lowpass filter with a cutoff frequency of 3.4 kHz, determine

a. the percentage of aliasing level at the cutoff frequency;
b. the percentage of aliasing level at a frequency of 1,000 Hz.

Solution:

fs ¼ 8;000; fc ¼ 3;400; and n ¼ 2

a. Since fa ¼ fc ¼ 3;400 Hz, we compute

aliasing level % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
3:4

3:4

�2�2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
8� 3:4

3:4

�2�2
s ¼ 1:4142

2:0858
¼ 67:8%

b. With fa ¼ 1;000 Hz, we have

aliasing level % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1

3:4

�2�2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
8� 1

3:4

�2�2
s ¼ 1:03007

4:3551
¼ 23:05%

Let us examine another example with an increased sampling rate.

EXAMPLE 2.5
Given the DSP system shown in Figures 2.16 to 2.18, where a sampling rate of 16,000 Hz is used and the anti-
aliasing filter is a second-order Butterworth lowpass filter with a cutoff frequency of 3.4 kHz, determine the
percentage of aliasing level at the cutoff frequency.
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Solution:

fs ¼ 16;000; fc ¼ 3;400; and n ¼ 2

Since fa ¼ fc ¼ 3;400 Hz, we have

aliasing level % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
3:4

3:4

�2�2
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
16� 3:4

3:4

�2�2
s ¼ 1:4142

13:7699
¼ 10:26%

In comparison with the result in Example 2.4, increasing the sampling rate can reduce the aliasing level.

The following example shows how to choose the order of the anti-aliasing filter.

EXAMPLE 2.6
Given the DSP system shown in Figure 2.16, where a sampling rate of 40,000 Hz is used, the anti-aliasing filter is
the Butterworth lowpass filter with a cutoff frequency 8 kHz, and the percentage of aliasing level at the cutoff
frequency is required to be less than 1%, determine the order of the anti-aliasing lowpass filter.

Solution:
Using fs ¼ 40;000, fc ¼ 8;000, and fa ¼ 8;000 Hz, we start at order 1 and increase the filter order until the
requirement is met.

n ¼ 1; aliasing level % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
8

8

�2�1
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
40� 8

8

�2�1
s ¼ 1:4142ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4Þ2
q ¼ 34:30%

n ¼ 2; aliasing level % ¼ 1:4142ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4Þ4

q ¼ 8:82%

n ¼ 3; aliasing level % ¼ 1:4142ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4Þ6

q ¼ 2:21%

n ¼ 4; aliasing level % ¼ 1:4142ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4Þ8

q ¼ 0:55% < 1%

To satisfy the 1% aliasing level requirement, we choose n ¼ 4.
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2.2.2 Practical Considerations for Signal Reconstruction: Anti-Image Filter
and Equalizer

The analog signal recovery for a practical DSP system is illustrated in Figure 2.19.
As shown in Figure 2.19, the DAC unit converts the processed digital signal yðnÞ to a sampled

signal ysðtÞ, and then the hold circuit produces the sample-and-hold voltage yHðtÞ. The transfer
function of the hold circuit can be derived as

HhðsÞ ¼ 1� e�sT

sT
(2.12)

We can obtain the frequency response of the DAC with the hold circuit by substituting s ¼ ju in
Equation (2.12). It follows that

HhðuÞ ¼ e�juT=2sinðuT=2Þ
uT=2

(2.13)

The magnitude and phase responses are given by

jHhðuÞj ¼
����sinðuT=2ÞuT=2

���� ¼
����sinðxÞx

���� (2.14)

:HhðuÞ ¼ �uT=2 (2.15)

where x ¼ uT=2. In terms of Hz, we have

jHhðf Þj ¼
����sinðpfTÞpfT

���� (2.16)
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FIGURE 2.19

Signal notations at the practical reconstruction stage. (a) Processed digital signal. (b) Recovered ideal sampled

signal. (c) Recovered sample-and-hold voltage. (d) Recovered analog signal.
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:Hhðf Þ ¼ �pfT (2.17)

The plot of the magnitude effect is shown in Figure 2.20.
The magnitude frequency response acts like lowpass filtering and shapes the sampled signal

spectrum of Ysðf Þ. This shaping effect distorts the sampled signal spectrum Ysðf Þ in the desired
frequency band, as illustrated in Figure 2.21. On the other hand, the spectral images are attenuated

-20 -15 -10 -5 0 5 10 15 20
-0.5

0

0.5

1

x

si
n(

x)
/x

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Radians

|H
h(

w
)|

FIGURE 2.20

Sample-and-hold lowpass filtering effect.
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Sample-and-hold effect and distortion.
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due to the lowpass effect of sinðxÞ=x. This sample-and-hold effect can help us design the anti-image
filter.

As shown in Figure 2.21, the percentage of distortion in the desired frequency band is given by

distortion % ¼ ð1� jHhðf ÞjÞ � 100%

¼
�
1�

����sinðpfTÞpfT

����
�
� 100%

(2.18)

EXAMPLE 2.7
Given a DSP system with a sampling rate of 8,000 Hz and a hold circuit used after DAC, determine

a. the percentage of distortion at a frequency of 3,400 Hz;
b. the percentage of distortion at a frequency of 1,000 Hz.

Solution:
a. Since fT ¼ 3;400� 1=8;000 ¼ 0:425;

distortion % ¼
�
1�

����sinð0:425pÞ0:425p

����
�
� 100% ¼ 27:17%

b. Since fT ¼ 1;000� 1=8;000 ¼ 0:125;

distortion % ¼
�
1�

����sinð0:125pÞ0:125p

����
�
� 100% ¼ 2:55%

To overcome the sample-and-hold effect, the following methods can be applied.

1. We can compensate the sample-and-hold shaping effect using an equalizer whose magnitude
response is opposite to the shape of the hold circuit magnitude frequency response, which is
shown as the solid line in Figure 2.22.

2. We can increase the sampling rate using oversampling and interpolation methods when a higher
sampling rate is available at the DAC. Using the interpolation will increase the sampling rate
without affecting the signal bandwidth, so that the baseband spectrum and its images are
separated further apart and a lower-order anti-aliasing filter can be used. This subject will be
discussed in Chapter 12.

3. We can change the DAC configuration and perform digital pre-equalization using a flexible digital
filter whose magnitude frequency response is against the spectral shape effect due to the hold
circuit. Figure 2.23 shows a possible implementation. In this way, the spectral shape effect can
be balanced before the sampled signal passes through the hold circuit. Finally, the anti-image
filter will remove the rest of images and recover the desired analog signal.

The following practical example will illustrate the design of an anti-image filter using a higher
sampling rate while making use of the sample-and-hold effect.

32 CHAPTER 2 Signal Sampling and Quantization



EXAMPLE 2.8
Determine the cutoff frequency and the order for the anti-image filter given a DSP system with a sampling rate of
16,000 Hz and specifications for the anti-image filter as shown in Figure 2.24.

Design requirements:

• Maximum allowable gain variation from 0 to 3,000 Hz ¼ 2 dB
• 33 dB rejection at a frequency of 13,000 Hz
• Butterworth filter is assumed for the anti-image filter.

Solution:
We first determine the spectral shaping effects at f ¼ 3;000 Hz and f ¼ 13;000 Hz; that is,
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FIGURE 2.23

Possible implementation using a digital equalizer.
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Ideal equalizer magnitude frequency response to overcome the distortion introduced by the sample-and-hold

process.

2.2 Signal Reconstruction 33



f ¼ 3;000 Hz; fT ¼ 3;000� 1=16;000 ¼ 0:1785

gain ¼
����sinð0:1875pÞ0:1875p

���� ¼ 0:9484 ¼ �0:46 dB

and

f ¼ 13;000 Hz; fT ¼ 13;000� 1=16;000 ¼ 0:8125

gain ¼
����sinð0:8125pÞ0:8125p

���� ¼ 0:2177z �13 dB

This gain would help the attenuation requirement.
Hence, the design requirements for the anti-image filter are

• Butterworth lowpass filter
• Maximum allowable gain variation from 0 to 3,000 Hz ¼ 2�0.46 ¼ 1.54 dB
• 33�13 ¼ 20 dB rejection at frequency 13,000 Hz.

We set up equations using log operations of the Butterworth magnitude function as

20 logð1þ ð3;000=fcÞ2nÞ1=2 � 1:54

20 logð1þ ð13;000=fcÞ2nÞ1=2 � 20
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DSP recover system for Example 2.8.
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Spectral shaping by the sample-and-hold effect in Example 2.8.
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From these two equations, we have to satisfy

ð3;000=fcÞ2n ¼ 100:154 � 1

ð13;000=fcÞ2n ¼ 102 � 1

Taking the ratio of these two equations yields�
13;000

3;000

�2n

¼ 102 � 1

100:154 � 1

Then

n ¼ 1

2
logðð102 � 1Þ=ð100:154 � 1ÞÞ=logð13;000=3;000Þ ¼ 1:86z2

Finally, the cutoff frequency can be computed as

fc ¼ 13;000

ð102 � 1Þ1=ð2nÞ
¼ 13;000

ð102 � 1Þ1=4
¼ 4;121:30 Hz

fc ¼ 3;000

ð100:154 � 1Þ1=ð2nÞ
¼ 3;000

ð100:154 � 1Þ1=4
¼ 3;714:23 Hz

We choose the smaller one, that is,

fc ¼ 3;714:23 Hz

With the filter order and cutoff frequency, we can realize the anti-image (reconstruction) filter using the second-
order unit gain Sallen-Key lowpass filter described in Figure 2.17.

Note that the specifications for anti-aliasing filter designs are similar to anti-image (reconstruction)
filters, except for their stopband edges. The anti-aliasing filter is designed to block the frequency
components beyond the folding frequency before the ADC operation, while the reconstruction filter
is designed to block the frequency components beginning at the lower edge of the first image after
the DAC.

2.3 ANALOG-TO-DIGITAL CONVERSION, DIGITAL-TO-ANALOG CONVERSION,
AND QUANTIZATION
During the ADC process, amplitudes of the analog signal to be converted have infinite precision. The
continuous amplitude must be converted to digital data with finite precision, which is called quanti-
zation. Figure 2.26 shows quantization as a part of ADC.

There are several ways to implement ADC. The most common ones are

• Flash ADC
• Successive approximation ADC
• Sigma-delta ADC.
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In this chapter, we will focus on a simple 2-bit flash ADC unit, described in Figure 2.27, for illustrative
purposes. Sigma-delta ADC will be studied in Chapter 12.

As shown in Figure 2.27, the 2-bit flash ADC unit consists of a serial reference voltage created by
the equal value resistors, a set of comparators, and logic units. As an example, the reference voltages in
the figure are 1.25 volts, 2.5 volts, 3.75 volts, and 5 volts, respectively. If an analog sample-and-hold
voltage is Vin ¼ 3 volts, then the lower two comparators will each output logic 1. Through the logic
units, only the line labeled 10 is actively high, and the rest of lines are actively low. Hence, the
encoding logic circuit outputs a 2-bit binary code of 10.

Flash ADC offers the advantage of high conversion speed, since all bits are acquired at the same
time. Figure 2.28 illustrates a simple 2-bit DAC unit using an R-2R ladder. The DAC contains the R-2R
ladder circuit, a set of single-throw switches, an adder, and a phase shifter. If a bit is logic 0, the switch
connects a 2R resistor to ground. If a bit is logic 1, the corresponding 2R resistor is connected to the
branch to the input of the operational amplifier (adder). When the operational amplifier operates in
a linear range, the negative input is virtually equal to the positive input. The adder adds all the currents
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An example of a 2-bit flash ADC.
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from all branches. The feedback resistor R in the adder provides overall amplification. The ladder
network is equivalent to two 2R resistors in parallel. The entire network has a total current of

I ¼ VR

R

using Ohm’s law, where VR is the reference voltage, chosen to be 5 volts for our example.
Hence, half of the total current flows into the b1 branch, while the other half flows into the rest of the
network. The halving process repeats for each branch successively to the lower bit branches to get lower
bit weights. The second operational amplifier acts like a phase shifter to cancel the negative sign of the
adder output. Using the basic electric circuit principle, we can determine the DAC output voltage as

V0 ¼ VR

�
1

21
b1 þ 1

22
b0

�

where b1 and b0 are bits in the 2-bit binary code, with b0 as the least significant bit (LSB).
In Figure 2.28, where we set VR ¼ 5 and b1b0 ¼ 10, the ADC output is expected to be

V0 ¼ 5�
�
1

21
� 1þ 1

22
� 0

�
¼ 2:5 volts

As we can see, the recovered voltage of V0 ¼ 2:5 volts introduces voltage error as compared with
Vin ¼ 3 volts, discussed in the ADC stage. This is due to the fact that in the flash ADC unit, we use
only four (i.e., finite) voltage levels to represent continuous (infinitely possible) analog voltage values.
This is called quantization error, obtained by subtracting the original analog voltage from the
recovered analog voltage. For our example, the quantization error is

V0 � Vin ¼ 2:5� 3 ¼ �0:5 volts

Next, we focus on quantization development. The process of converting analog voltage with infinite
precision to finite precision is called the quantization process. For example, if the digital processor has
only a 3-bit word, the amplitudes can be converted into eight different levels.
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A unipolar quantizer deals with analog signals ranging from 0 volt to a positive reference voltage,
and a bipolar quantizer deals with analog signals ranging from a negative reference to a positive
reference. The notations and general rules for quantization are as follows:

D ¼ ðxmax � xminÞ
L

(2.19)

L ¼ 2m (2.20)

i ¼ round

�
x� xmin

D

�
(2.21)

xq ¼ xmin þ iD i ¼ 0; 1;/; L� 1 (2.22)

where xmax and xmin are the maximum value and minimum values, respectively, of the analog input
signal x. The symbol L denotes the number of quantization levels, which is determined by Equation
(2.20), wherem is the number of bits used in ADC. The symbol D is the step size of the quantizer or the
ADC resolution. Finally, xq indicates the quantization level, and i is an index corresponding to the
binary code.

Figure 2.29 depicts a 3-bit unipolar quantizer and corresponding binary codes. From Figure 2.29,
we see that xmin ¼ 0, xmax ¼ 8D, and m ¼ 3. Applying Equation (2.22) gives each quantization
level as follows: xq ¼ 0þ iD, i ¼ 0; 1;/; L� 1, where L ¼ 23 ¼ 8 and i is the integer corre-
sponding to the 3-bit binary code. Table 2.1 details quantization for each input signal subrange.

Similarly, a 3-bit bipolar quantizer and binary codes are shown in Figure 2.30, where we have
xmin ¼ �4D, xmax ¼ 4D, and m ¼ 3. The corresponding quantization table is given in Table 2.2.
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Characteristics of the unipolar quantizer.
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EXAMPLE 2.9
Assuming that a 3-bit ADC channel accepts analog input ranging from 0 to 5 volts, determine

a. the number of quantization levels;
b. the step size of the quantizer or resolution;
c. the quantization level when the analog voltage is 3.2 volts;
d. the binary code produced by the ADC.

Solution:
Since the range is from 0 to 5 volts and a 3-bit ADC is used, we have

xmin ¼ 0 volt; xmax ¼ 5 volts; and m ¼ 3 bits

Table 2.1 Quantization Table for the 3-Bit Unipolar Quantizer (step size ¼ D ¼ ðxmax�
xminÞ=23, xmax ¼ maximum voltage, and xmin ¼ 0)

Binary Code Quantization Level xq (V) Input Signal Subrange (V)

0 0 0 0 0 � x < 0:5D

0 0 1 D 0:5D � x < 1:5D

0 1 0 2D 1:5D � x < 2:5D

0 1 1 3D 2:5D � x < 3:5D

1 0 0 4D 3:5D � x < 4:5D

1 0 1 5D 4:5D � x < 5:5D

1 1 0 6D 5:5D � x < 6:5D

1 1 1 7D 6:5D � x < 7:5D
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Characteristics for the bipolar quantizer.
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a. Using Equation (2.20), we get the number of quantization levels as

L ¼ 2m ¼ 23 ¼ 8

b. Applying Equation (2.19) yields

D ¼ 5� 0

8
¼ 0:625 volt

c. When x ¼ 3:2
D

0:625
¼ 5:12D, from Equation (2.21) we get

i ¼ round

�
x � xmin

D

�
¼ roundð5:12Þ ¼ 5

From Equation (2.22), we determine the quantization level as

xq ¼ 0þ 5D ¼ 5� 0:625 ¼ 3:125 volts

d. The binary code is determined as 101, either from Figure 2.29 or Table 2.1.

After quantizing the input signal x, the ADC produces binary codes, as illustrated in Figure 2.31.
The DAC process is shown in Figure 2.32. As shown in the figure, the DAC unit takes the binary

codes from the DS processor. Then it converts the binary code using the zero-order hold circuit to
reproduce the sample-and-hold signal. Assuming that the spectrum distortion due to sample-and-hold
effect can be ignored for our illustration, the recovered sample-and-hold signal is further processed
using the anti-image filter. Finally, the analog signal is produced.

When the DAC outputs the analog amplitude xq with finite precision, it introduces quantization
error defined as

eq ¼ xq � x (2.23)

Table 2.2 Quantization Table for the 3-Bit Bipolar Quantizer (step size¼ D ¼ ðxmax� xminÞ=23,
xmax ¼ maximum voltage, and xmin ¼ �xmax)

Binary Code Quantization Level xq (V) Input Signal Subrange (V)

0 0 0 �4D �4D � x < �3:5D

0 0 1 �3D �3:5D � x < �2:5D

0 1 0 �2D �2:5D � x < �1:5D

0 1 1 �D �1:5 � x < �0:5D

1 0 0 0 �0:5D � x < 0:5D

1 0 1 D 0:5D � x < 1:5D

1 1 0 2D 1:5D � x < 2:5D

1 1 1 3D 2:5D � x < 3:5D
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The quantization error as shown in Figure 2.29 is bounded by half of the step size, that is,

� D

2
� eq � D

2
(2.24)

where D is the quantization step size, or the ADC resolution. We also refer to D as Vmin (minimum
detectable voltage) or the LSB value of the ADC.
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EXAMPLE 2.10
Using Example 2.9, determine the quantization error when the analog input is 3.2 volts.

Solution:
Using Equation (2.23), we obtain

eq ¼ xq � x ¼ 3:125� 3:2 ¼ �0:075 volt

Note that the quantization error is less than the half of the step size, that is,��eq�� ¼ 0:075 < D=2 ¼ 0:3125 volt

In practice, we can empirically confirm that the quantization error appears in uniform distribution
when the step size is much smaller than the dynamic range of the signal samples and we have
a sufficiently large number of samples. Based on the theory of probability and random variables, the
power of quantization noise is related to the quantization step and given by

Eðe2qÞ ¼ D2

12
(2.25)

where EðÞ is the expectation operator, which actually averages the squared values of the quantization
error (the reader can get more information from the texts by Roddy and Coolen (1997); Tomasi (2004);
and Stearns and Hush (1990)). The ratio of signal power to quantization noise power (SNR) can be
expressed as

SNR ¼ Eðx2Þ
Eðe2qÞ

(2.26)

If we express the SNR in terms of decibels (dB), we have

SNRdB ¼ 10$log10ðSNRÞ dB (2.27)

Substituting Equation (2.25) and Eðx2Þ ¼ x2rms into Equation (2.27), we achieve

SNRdB ¼ 10:79þ 20$log10

�xrms
D

�
(2.28)

where xrms is the RMS (root mean squared) value of the signal to be quantized x.
Practically, the SNR can be calculated using the following formula:

SNR ¼
1

N

XN�1

n¼0
x2ðnÞ

1

N

XN�1

n¼0
e2qðnÞ

¼
PN�1

n¼ 0 x
2ðnÞPN�1

n¼ 0 e
2
qðnÞ

(2.29)

where xðnÞ is the nth sample amplitude and eqðnÞ the quantization error from quantizing xðnÞ.
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EXAMPLE 2.11
If the analog signal to be quantized is a sinusoidal waveform, that is,

xðtÞ ¼ Asinð2p� 1;000tÞ

and if the bipolar quantizer uses m bits, determine the SNR in terms of m bits.

Solution:
Since xrms ¼ 0:707A and D ¼ 2A=2m, substituting xrms and D into Equation (2.28) leads to

SNRdB ¼ 10:79þ 20$log10

�
0:707A

2A=2m

�
¼ 10:79þ 20$log10 ð0:707=2Þ þ 20m$log102

After simplifying the numerical values, we get

SNRdB ¼ 1:76þ 6:02m dB (2.30)

EXAMPLE 2.12
For a speech signal, if a ratio of the RMS value over the absolute maximum value of the analog signal (Roddy and

Coolen, 1997) is given, that is,

�
xrms

jxjmax

�
, and the ADC quantizer uses m bits, determine the SNR in terms of m

bits.

Solution:
Since

D ¼ xmax � xmin

L
¼ 2jx jmax

2m

substituting D in Equation (2.28) achieves

SNRdB ¼ 10:79þ 20$log10

�
xrms

2jx jmax=2
m

�

¼ 10:79þ 20$log10

�
xrms

jxjmax

�
þ 20mlog102� 20log102

Thus, after numerical simplification, we have

SNRdB ¼ 4:77þ 20$log10

�
xrms

jx jmax

�
þ 6:02m (2.31)

From Examples 2.11 and 2.12, we observed that increasing 1 bit of the ADC quantizer can improve
SNR due to quantization by 6 dB.

2.3 Analog Conversion and Quantization 43



EXAMPLE 2.13
Given a sinusoidal waveform with a frequency of 100 Hz,

xðtÞ ¼ 4:5$sinð2p� 100tÞ

sampled at 8,000 Hz,

a. write a MATLAB program to quantize xðtÞ using 4 bits to obtain and plot the quantized signal xq, assuming the
signal range is between �5 and 5 volts;

b. calculate the SNR due to quantization.

Solution:
a. Program 2.1. MATLAB program for Example 2.13.

%Example 2.13
clear all; close all
disp(’Generate 0.02-second sine wave of 100 Hz and Vp¼5’);
fs¼8000; % Sampling rate
T¼1/fs; % Sampling interval
t¼0:T:0.02; % Duration of 0.02 second
sig ¼ 4.5*sin(2*pi*100*t); % Generate sinusoids
bits ¼ input(’input number of bits ¼>’);
lg ¼ length(sig); % Length of signal vector sig
for x¼1:lg
[Index(x) pq] ¼ biquant(bits, -5,5, sig(x)); % Output quantized index
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Comparison of the quantized signal and the original signal.
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end
% transmitted
% received
for x¼1:lg
qsig(x) ¼ biqtdec(bits, -5,5, Index(x)); % Recover the quantized value

end
qerr ¼ qsig-sig; % Calculate quantized error

stairs(t,qsig); hold % Plot signal in staircase style
plot(t,sig); grid; % Plot signal
xlabel(’Time (sec.)’); ylabel(’Quantized x(n)’)
disp(’Signal to noise ratio due to quantization noise’)
snr(sig,qsig);

b. Theoretically, applying Equation (2.30) gives

SNRdB ¼ 1:76þ 6:02$4 ¼ 25:84 dB

Practically, using Equation (2.29), the simulated result is obtained as

SNRdB ¼ 25:78 dB

It is clear from this example that the ratios of signal power to noise power due to quantization achieved
from theory and from simulation are very close. Next, we look at an example for quantizing a speech
signal.

EXAMPLE 2.14
Given the speech signal sampled at 8,000 Hz in the file we.dat,

a. write a MATLAB program to quantize xðtÞ using 4-bit quantizers to obtain the quantized signal xq, assuming
the signal range is from -5 to 5 volts;

b. plot the original speech, quantized speech, and quantization error, respectively;
c. calculate the SNR due to quantization using the MATLAB program.

Solution:
a. Program 2.2 MATLAB program for Example 2.14.

%Example 2.14
clear all; close all
disp(’load speech: We’);
load we.dat % Load speech data at the current folder
sig ¼ we; % Provided by the instructor
fs¼8000; % Sampling rate
lg¼length(sig); % Length of signal vector
T¼1/fs; % Sampling period
t¼[0:1:lg-1]*T; % Time instants in seconds
sig¼4.5*sig/max(abs(sig)); % Normalizes speech in the range from -4.5 to 4.5
Xmax ¼ max(abs(sig)); % Maximum amplitude
Xrms ¼ sqrt( sum(sig .*
sig) / length(sig)) % RMS value
disp(’Xrms/Xmax’)
k¼Xrms/Xmax
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disp(’20*log10(k)¼>’);
k ¼ 20*log10(k)
bits ¼ input(’input number of bits ¼>’);
lg ¼ length(sig);
for x¼1:lg

[Index(x) pq] ¼ biquant(bits, -5,5, sig(x)); % Output quantized index
end
% transmitted
% received
for x¼1:lg
qsig(x) ¼ biqtdec(bits, -5,5, Index(x)); % Recover the quantized value

end
qerr ¼ sig-qsig; % Calculate the quantized error

subplot(3,1,1);plot(t,sig);
ylabel(’Original speech’);title(’we.dat: we’);
subplot(3,1,2);stairs(t, qsig);grid
ylabel(’Quantized speech’)
subplot(3,1,3);stairs(t, qerr);grid
ylabel(’Quantized error’)
xlabel(’Time (sec.)’);axis([0 0.25 -1 1]);
disp(’signal to noise ratio due to quantization noise’)
snr(sig,qsig); % Signal to ratio in dB:
sig ¼ original signal vector,

% qsig ¼quantized signal vector
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Original speech, quantized speech using the 4-bit bipolar quantizer, and quantization error.
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b. In Figure 2.34, the top plot shows the speech wave to be quantized, while the middle plot displays the quantized
speech signal using 4 bits. The bottom plot shows the quantization error. It also shows that the absolute value of
quantization error is uniformly distributed in a range between �0.3125 and 0.3125.

c. From the MATLAB program, we have
xrms

jx jmax

¼ 0:203. Theoretically, from Equation (2.31), it follows that

SNRdB ¼ 4:77þ 20log10

�
xrms

jx jmax

�
þ 6:02$4

¼ 4:77þ 20log10ð0:203Þ þ 6:02$4 ¼ 15dB

On the other hand, the simulated result using Equation (2.29) gives

SNRdB ¼ 15:01 dB

Results for SNRs from Equations (2.31) and (2.29) are very close in this example.

2.4 SUMMARY
1. Analog signal is sampled at a fixed time interval so the ADC will convert the sampled voltage level

to the digital value; this is called the sampling process.
2. Thefixed time interval between twosamples is the samplingperiod, and the reciprocalof the sampling

period is the sampling rate. Half of the sampling rate is the folding frequency (Nyquist limit).
3. The sampling theorem condition that the sampling rate must be larger than twice the highest

frequency of the sampled analog signal must be met in order for the analog signal to be
recovered.

4. The sampled spectrum is explained using the following well-known formula:

Xsðf Þ ¼ /þ 1

T
Xðf þ fsÞ þ 1

T
Xðf Þ þ 1

T
Xðf � fsÞ þ/

That is, the sampled signal spectrum is a scaled and shifted version of its analog signal spectrum
and its replicas centered at the frequencies that are multiples of the sampling rate.

5. The analog anti-aliasing lowpass filter is used before ADC to remove frequency components higher
than the folding frequency to avoid aliasing.

6. The reconstruction (analog lowpass) filter is adopted after DAC to remove the spectral images that
exist in the sample-and-hold signal and obtain the smoothed analog signal. The sample-and-hold
DAC effect may distort the baseband spectrum, but it also reduces image spectrum.

7. Quantization occurs when the ADC unit converts the analog signal amplitude with infinite
precision to digital data with finite precision (a finite number of codes).

8. When the DAC unit converts a digital code to a voltage level, quantization error occurs. The
quantization error is bounded by half of the quantization step size (ADC resolution), which is
a ratio of the full range of the signal over the number of quantization levels (number of codes).

9. The performance of the quantizer in terms of the signal to quantization noise ratio (SNR), in dB, is
related to the number of bits in ADC. Increasing each ADC code by 1 bit will improve SNR by 6 dB
due to quantization.
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2.5 MATLAB PROGRAMS
Program 2.3. MATLAB function for uniform quantization encoding.

function [ I, pq]¼ biquant(NoBits,Xmin,Xmax,value)
% function pq ¼ biquant(NoBits, Xmin, Xmax, value)
% This routine is created for simulation of the uniform quantizer.
%
% NoBits: number of bits used in quantization
% Xmax: overload value
% Xmin: minimum value
% value: input to be quantized
% pq: output of quantized value
% I: coded integer index
L¼2^NoBits;
delta¼(Xmax-Xmin)/L;
I¼round((value-Xmin)/delta);
if ( I¼¼L)
I¼I-1;

end
if I<0
I¼0;

end
pq¼XminþI*delta;

Program 2.4. MATLAB function for uniform quantization decoding.

function pq ¼ biqtdec(NoBits,Xmin,Xmax,I)
% function pq ¼ biqtdec(NoBits,Xmin, Xmax, I)
% This routine recovers the quantized value.
%
% NoBits: number of bits used in quantization
% Xmax: overload value
% Xmin: minimum value
% pq: output of quantized value
% I: coded integer index
L¼2^NoBits;
delta¼(Xmax-Xmin)/L;
pq¼XminþI*delta;

Program 2.5. MATLAB function for calculation of signal to quantization noise ratio.

function snr ¼ calcsnr(speech, qspeech)
% function snr ¼ calcsnr(speech, qspeech)
% This routine was created to calculate SNR.
%
% speech: original speech waveform
% qspeech: quantized speech
% snr: output SNR in dB
%
qerr ¼ speech-qspeech;
snr ¼ 10*log10(sum(speech.*speech)/sum(qerr.*qerr))
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2.6 PROBLEMS

2.1. Given an analog signal

xðtÞ ¼ 5cosð2p$1; 500tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the original signal;

b. sketch the spectrum of the sampled signal from 0 kHz up to 20 kHz.

2.2. Given an analog signal

xðtÞ ¼ 5cosð2p$2; 500tÞ þ 2cosð2p$3; 200tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal.

2.3. Given an analog signal

xðtÞ ¼ 3cosð2p$1; 500tÞ þ 2cosð2p$2; 200tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal.

2.4. Given an analog signal

xðtÞ ¼ 3cosð2p$1; 500tÞ þ 2cosð2p$4; 200tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal.

2.5. Given an analog signal

xðtÞ ¼ 5cosð2p$2; 500tÞ þ 2cosð2p$4; 500tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal;

c. determine the frequency/frequencies of aliasing noise.
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2.6. Assuming a continuous signal is given as

xðtÞ ¼ 10cosð2p$5; 500tÞ þ 5sinð2p$7; 500tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal;

c. determine the frequency/frequencies of aliasing noise.

2.7. Assuming a continuous signal is given as

xðtÞ ¼ 8cosð2p$5; 000tÞ þ 5sinð2p$7; 000tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal;

c. determine the frequency/frequencies of aliasing noise.

2.8. Assuming a continuous signal is given as

xðtÞ ¼ 10cosð2p$5; 000tÞ þ 5sinð2p$7; 500tÞ; for t � 0

sampled at a rate of 8,000 Hz,

a. sketch the spectrum of the sampled signal up to 20 kHz;

b. sketch the recovered analog signal spectrum if an ideal lowpass filter with a cutoff
frequency of 4 kHz is used to filter the sampled signal in order to recover the original signal;

c. determine the frequency/frequencies of aliasing noise.

2.9. Given a Butterworth type second-order anti-aliasing lowpass filter (Figure 2.35), determine
the values of circuit elements if we want the filter to have a cutoff frequency of 1,000 Hz.
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FIGURE 2.35

Filter circuit in Problem 2.9.
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2.10. From Problem 2.9, determine the percentage of aliasing level at the frequency of 500 Hz,
assuming that the sampling rate is 4,000 Hz.

2.11. Given a Butterworth type second-order anti-aliasing lowpass filter (Figure 2.36), determine
the values of circuit elements if we want the filter to have a cutoff frequency of 800 Hz.

2.12. From Problem 2.11, determine the percentage of aliasing level at the frequency of 400 Hz,
assuming that the sampling rate is 4,000 Hz.

2.13. Given a DSP system in which a sampling rate of 8,000 Hz is used and the anti-aliasing
filter is a second-order Butterworth lowpass filter with a cutoff frequency of 3.2 kHz,
determine

a. the percentage of aliasing level at the cutoff frequency;

b. the percentage of aliasing level at the frequency of 1,000 Hz.

2.14. Given a DSP system in which a sampling rate of 8,000 Hz is used and the anti-aliasing filter
is a Butterworth lowpass filter with a cutoff frequency 3.2 kHz, determine the order of the
Butterworth lowpass filter required to make the percentage of aliasing level at the cutoff
frequency less than 10%.

2.15. Given a DSP system in which a sampling rate of 8,000 Hz is used and the anti-aliasing filter
is a second-order Butterworth lowpass filter with a cutoff frequency of 3.1 kHz, determine

a. the percentage of aliasing level at the cutoff frequency;

b. the percentage of aliasing level at a frequency of 900 Hz.

2.16. Given a DSP system in which a sampling rate of 8,000 Hz is used and the anti-aliasing filter
is a Butterworth lowpass filter with a cutoff frequency 3.1 kHz, determine the order of the
Butterworth lowpass filter required to make the percentage of aliasing level at the cutoff
frequency less than 10%.
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Filter circuit in Problem 2.11.
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2.17. Given a DSP system with a sampling rate of 8,000 Hz and assuming that the hold circuit is
used after DAC, determine

a. the percentage of distortion at a frequency of 3,200 Hz;

b. the percentage of distortion at a frequency of 1,500 Hz.

2.18. A DSP system (Figure 2.37) is given with the following specifications:

Design requirements:

• Sampling rate 20,000 Hz

• Maximum allowable gain variation from 0 to 4,000 Hz ¼ 2 dB

• 40 dB rejection at a frequency of 16,000 Hz

• Butterworth filter.

Determine the cutoff frequency and order for the anti-image filter.

2.19. Given a DSP system with a sampling rate of 8,000 Hz and assuming that the hold circuit is
used after DAC, determine

a. the percentage of distortion at a frequency of 3,000 Hz;

b. the percentage of distortion at a frequency of 1,600 Hz.

2.20. A DSP system (Figure 2.38) is given with the following specifications:

Design requirements:

• Sampling rate 22,000 Hz

• Maximum allowable gain variation from 0 to 4,000 Hz ¼ 2 dB

DACDigital signal
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FIGURE 2.37

Analog signal reconstruction in Problem 2.18.
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FIGURE 2.38

Analog signal reconstruction in Problem 2.20.
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• 40 dB rejection at the frequency of 18,000 Hz

• Butterworth filter.

Determine the cutoff frequency and order for the anti-image filter.

2.21. Given the 2-bit flash ADC unit with an analog sample-and-hold voltage of 2 volts shown in
Figure 2.39, determine the output bits.

2.22. Given the R-2R DAC unit with a 2-bit value defined as b1b0 ¼ 01 shown in Figure 2.40,
determine the converted voltage.
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2-bit flash ADC in Problem 2.21.
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2.23. Given the 2-bit flash ADC unit with an analog sample-and-hold voltage of 3.5 volts shown in
Figure 2.39, determine the output bits.

2.24. Given the R-2R DAC unit with 2-bit values defined as b1b0 ¼ 11 and b1b0 ¼ 10 and shown in
Figure 2.40, determine the converted voltages.

2.25. Assuming that a 4-bit ADC channel accepts analog input ranging from 0 to 5 volts, determine
the following:

a. number of quantization levels;

b. step size of the quantizer or resolution;

c. quantization level when the analog voltage is 3.2 volts;

d. binary code produced by the ADC;

e. quantization error.

2.26. Assuming that a 5-bit ADC channel accepts analog input ranging from 0 to 4 volts, determine
the following:

a. number of quantization levels;

b. step size of the quantizer or resolution;

c. quantization level when the analog voltage is 1.2 volts;

d. binary code produced by the ADC;

e. quantization error.

2.27. Assuming that a 3-bit ADC channel accepts analog input ranging from �2.5 to 2.5 volts,
determine the following:

a. number of quantization levels;

b. step size of the quantizer or resolution;

c. quantization level when the analog voltage is �1.2 volts;

d. binary code produced by the ADC;

e. quantization error.

2.28. Assuming that a 8-bit ADC channel accepts analog input ranging from �2.5 to 2.5 volts,
determine the following:

a. number of quantization levels;

b. step size of the quantizer or resolution;

c. quantization level when the analog voltage is 1.5 volts;

d. binary code produced by the ADC;

e. quantization error.

2.29. If the analog signal to be quantized is a sinusoidal waveform, that is,

xðtÞ ¼ 9:5sinð2; 000� ptÞ
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and if the bipolar quantizer uses 6 bits, determine

a. the number of quantization levels;

b. the quantization step size or resolution, D, assuming the signal range is from �10 to
10 volts;

c. the signal power to quantization noise power ratio.

2.30. For a speech signal, if the ratio of the RMS value over the absolute maximum value of the

signal is given, that is,

�
xrms
jxjmax

�
¼ 0:25, and the ADC bipolar quantizer uses 6 bits,

determine
a. the number of quantization levels;

b. the quantization step size or resolution, D, if the signal range is 5 volts;

c. the signal power to quantization noise power ratio.

2.6.1 Computer Problems with MATLAB

Use the MATLAB programs in Section 2.5 to solve the following problems.

2.31. Given a sinusoidal waveform of 100 Hz,

xðtÞ ¼ 4:5sinð2p� 100tÞ
sample it at 8,000 samples per second and

a. write a MATLAB program to quantize xðtÞ using a 6-bit bipolar quantizer to obtain the
quantized signal xq, assuming that the signal range is from �5 to 5 volts;

b. plot the original signal and quantized signal;

c. calculate the SNR due to quantization using the MATLAB program.

2.32. Given a signal waveform,

xðtÞ ¼ 3:25sinð2p� 50tÞ þ 1:25cosð2p� 100t þ p=4Þ
sample it at 8,000 samples per second and

a. write a MATLAB program to quantize xðtÞ using a 6-bit bipolar quantizer to obtain the
quantized signal xq, assuming that the signal range is from �5 to 5 volts;

b. plot the original signal and quantized signal;

c. calculate the SNR due to quantization using the MATLAB program.

2.33. Given a speech signal sampled at 8,000 Hz, as shown in Example 2.14,

a. write a MATLAB program to quantize xðtÞ using a 6-bit bipolar quantizer to obtain the
quantized signal xq, assuming that the signal range is from �5 to 5 volts;

b. plot the original speech waveform, quantized speech, and quantization error;

c. calculate the SNR due to quantization using the MATLAB program.
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2.6.2 MATLAB Projects

2.34. Performance evaluation of speech quantization:

Given an original speech segment “speech.dat” sampled at 8,000 Hz with each sample encoded
in 16 bits, use Programs 2.3 to 2.5 and modify Program 2.2 to quantize the speech segment using
3 to 15 bits, respectively. The SNR in dB must be measured for each quantization. The MATLAB
function: “sound(x/max(abs(x)),fs)” can be used to evaluate sound quality, where “x” is the
speech segment while “fs” is the sampling rate of 8,000 Hz. In this project, create a plot of the
measured SNR (dB) versus the number of bits and discuss the effect on the sound quality. For
comparisons, plot the original speech and the quantized one using 3 bits, 8 bits, and 15 bits.

2.35. Performance evaluation of seismic data quantization:

The seismic signal, a measurement of the acceleration of ground motion, is required for
applications in the study of geophysics. The seismic signal (“seismic.dat” provided by the US
Geological Survey, Albuquerque Seismological Laboratory) has a sampling rate of 15 Hz with
6,700 data samples, and each sample is encoded using 32 bits. Quantizing each 32-bit sample
down to the lower number of bits per sample can reduce the memory storage requirement with
the trade-off of reduced signal quality. Use Programs 2.3 to 2.5 and modify Program 2.2 to
quantize the seismic data using 13, 15, 17,., 31 bits. The SNR in dB must be measured for each
quantization. Create a plot of the measured SNR (dB) versus the number of bits. For comparison,
plot the seismic data and the quantized one using 13 bits, 18 bits, 25 bits, and 31 bits.
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OBJECTIVES:

This chapter introduces notations for digital signals and special digital sequences that are widely used in
this book. The chapter continues to study some properties of linear systems such as time invariance, BIBO
(bounded-in and bounded-out) stability, causality, impulse response, difference equations, and digital
convolution.

3.1 DIGITAL SIGNALS
In our daily lives, analog signals appear in forms such as speech, audio, seismic, biomedical, and
communications signals. To process an analog signal using a digital signal processor, the analog signal
must be converted in to a digital signal, that is, analog-to-digital conversion (ADC) must take place, as
discussed in Chapter 2. Then the digital signal is processed via digital signal processing (DSP)
algorithm(s).

A typical digital signal xðnÞ is shown in Figure 3.1, where both the time and the amplitude of the
digital signal are discrete. Notice that the amplitudes of the digital signal samples are given and
sketched only at their corresponding time indices, where xðnÞ represents the amplitude of the nth
sample and n is the time index or sample number. From Figure 3.1, we learn that

xð0Þ: zeroth sample amplitude at sample number n ¼ 0,
xð1Þ: first sample amplitude at sample number n ¼ 1,
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xð2Þ: second sample amplitude at sample number n ¼ 2,
xð3Þ: third sample amplitude at sample number n ¼ 3, and so on.

Furthermore, Figure 3.2 illustrates the digital samples whose amplitudes are the discrete encoded
values represented in the digital signal (DS) processor. Precision of the data is based on the number of
bits used in the DSP system. The encoded data format can be either an integer if a fixed-point DS
processor is used or a floating-point number if a floating-point DP processor is used. As shown in
Figure 3.2 for the floating-point DS processor, we can identify the first five sample amplitudes at their
time indices as follows:

xð0Þ ¼ 2:25
xð1Þ ¼ 2:0
xð2Þ ¼ 1:0
xð3Þ ¼ �1:0
xð4Þ ¼ 0:0
..

Again, note that each sample amplitude is plotted using a vertical bar with a solid dot. This notation is
well accepted in DSP literature.

3.1.1 Common Digital Sequences

Let us study some special digital sequences that are widely used. We define and plot each of them as
follows:

Unit-impulse sequence (digital unit-impulse function):

dðnÞ ¼
(
1 n ¼ 0

0 ns0
(3.1)

n

x(n)

0 1 2
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4

x(0) x(1)
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FIGURE 3.1

Digital signal notation.
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FIGURE 3.2

Plot of the digital signal samples.
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The plot of the unit-impulse function is given in Figure 3.3. The unit-impulse function has unit
amplitude at only n ¼ 0 and zero amplitude at other time indices.

Unit-step sequence (digital unit-step function):

uðnÞ ¼
(
1 n � 0

0 n < 0
(3.2)

The plot is given in Figure 3.4. The unit-step function has unit amplitude at n ¼ 0 and at all the
positive time indices, and zero amplitude at all negative time indices.

The shifted unit-impulse and unit-step sequences are displayed in Figure 3.5. As shown in the
figure, the shifted unit-impulse function dðn� 2Þ is obtained by shifting the unit-impulse function dðnÞ
to the right by two samples, and the shifted unit-step function uðn� 2Þ is achieved by shifting the unit-
step function uðnÞ to the right by two samples; similarly, dðnþ 2Þ and uðnþ 2Þ are acquired by
shifting dðnÞ and uðnÞ two samples to the left, respectively.

n
0 1–1–2 2 43

δ(n)
1

FIGURE 3.3

Unit-impulse sequence.

n
0 1 2 43

u n( )

1

–1–2

FIGURE 3.4

Unit-step sequence.
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1 1

n n

1 1

δ(n – 2) u(n – 2)

u(n + 2)δ(n + 2)

FIGURE 3.5

Shifted unit-impulse and unit-step sequences.
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Sinusoidal and exponential sequences are depicted in Figures 3.6 and 3.7, respectively. For the
sinusoidal sequence xðnÞ ¼ Acosð0:125pnÞuðnÞ, and A ¼ 10, we can calculate the digital values for
the first eight samples and list their values in Table 3.1.

For the exponential sequence xðnÞ ¼ Að0:75ÞnuðnÞ, the calculated digital values for the first eight
samples with A ¼ 10 are listed in Table 3.2.

n

x n( )

A

FIGURE 3.6

Plot of samples of the sinusoidal function.

n

x(n)

FIGURE 3.7

Plot of samples of the exponential function.

Table 3.1 Sample Values Calculated from the
Sinusoidal Function

n xðnÞ[10cosð0:125pnÞuðnÞ

0 10:0000

1 9:2388

2 7:0711

3 3:8628

4 0:0000

5 �3:8628

6 �7:0711

7 �9:2388
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EXAMPLE 3.1
Sketch the following sequence

xðnÞ ¼ dðn þ 1Þ þ 0:5dðn � 1Þ þ 2dðn � 2Þ

Solution:
According to the shift operation, dðn þ 1Þ is obtained by shifting dðnÞ to the left by one sample, while dðn � 1Þ and
dðn � 2Þ are yielded by shifting dðnÞ to right by one sample and two samples, respectively. Using the amplitude of
each impulse function, we obtain the sketch in Figure 3.8.

3.1.2 Generation of Digital Signals

Given the sampling rate of a DSP system to sample the analytical function of an analog signal, the
corresponding digital function or digital sequence (assuming its sampled amplitudes are encoded to
have finite precision) can be found. The digital sequence is often used to

1. Calculate the encoded sample amplitude for a given sample number n.
2. Generate the sampled sequence for simulation.

Table 3.2 Sample Values Calculated from the
Exponential Function

n 10ð0:75ÞnuðnÞ

0 10:0000

1 7:5000

2 5:6250

3 4:2188

4 3:1641

5 2:3730

6 1:7798

7 1:3348

x(n)

0 1 2 3123

1

2

n

2

1

0 5.

FIGURE 3.8

Plot of digital sequence in Example 3.1.
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The procedure to develop the digital sequence from its analog signal function is as follows. Assuming
that an analog signal xðtÞ is uniformly sampled at the time interval of Dt ¼ T , where T is the sampling
period, the corresponding digital function (sequence) xðnÞ gives the instant encoded values of
the analog signal xðtÞ at all the time instants t ¼ nDt ¼ nT and can be achieved by substituting time
t ¼ nT into the analog signal xðtÞ, that is,

xðnÞ ¼ xðtÞjt¼nT ¼ xðnTÞ (3.3)

Also notice that for sampling the unit-step function uðtÞ, we have

uðtÞjt¼nT ¼ uðnTÞ ¼ uðnÞ (3.4)

The following example will demonstrate the use of Equations (3.3) and (3.4).

EXAMPLE 3.2
Assume we have a DSP system with a sampling time interval of 125 microseconds.

a. Convert each of following analog signals xðtÞ to a digital signal xðnÞ :
1. xðtÞ ¼ 10e�5;000t uðtÞ
2. xðtÞ ¼ 10 sinð2;000ptÞuðtÞ

b. Determine and plot the sample values from each obtained digital function.

Solution:
a. Since T ¼ 0:000125 seconds in Equation (3.3), substituting t ¼ nT ¼ n � 0:000125 ¼ 0:000125n into
the analog signal xðtÞ expressed in (1) leads to the digital sequence

1: xðnÞ ¼ xðnT Þ ¼ 10e�5;000�0:000125nuðnT Þ ¼ 10e�0:625nuðnÞ

Similarly, the digital sequence for (2) is achieved as follows:

2: xðnÞ ¼ xðnT Þ ¼ 10 sinð2;000p� 0:000125nÞuðnT Þ ¼ 10 sinð0:25pnÞuðnÞ

b. The first five sample values for (1) are calculated and plotted in Figure 3.9.

xð0Þ ¼ 10e�0:625�0uð0Þ ¼ 10:0
xð1Þ ¼ 10e�0:625�1uð1Þ ¼ 5:3526

0 1 2 3 4 5
n

5

10

x(n)
10

5.3526

2.8650
1.5335 0.8208

Sample index

t Microseconds (μsec.)
0 125 250 375 500 625

125T

t nT

FIGURE 3.9

Plot of the digital sequence for (1) in Example 3.2.
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xð2Þ ¼ 10e�0:625�2uð2Þ ¼ 2:8650
xð3Þ ¼ 10e�0:625�3uð3Þ ¼ 1:5335
xð4Þ ¼ 10e�0:625�4uð4Þ ¼ 0:8208

The first eight amplitudes for (2) are computed and sketched in Figure 3.10.

xð0Þ ¼ 10 sinð0:25p� 0Þuð0Þ ¼ 0
xð1Þ ¼ 10 sinð0:25p� 1Þuð1Þ ¼ 7:0711
xð2Þ ¼ 10 sinð0:25p� 2Þuð2Þ ¼ 10:0
xð3Þ ¼ 10 sinð0:25p� 3Þuð3Þ ¼ 7:0711
xð4Þ ¼ 10 sinð0:25p� 4Þuð4Þ ¼ 0:0
xð5Þ ¼ 10sinð0:25p� 5Þuð5Þ ¼ �7:0711
xð6Þ ¼ 10 sinð0:25p� 6Þuð6Þ ¼ �10:0
xð7Þ ¼ 10 sinð0:25p� 7Þuð7Þ ¼ �7:0711

3.2 LINEAR TIME-INVARIANT, CAUSAL SYSTEMS
In this section, we study linear time-invariant causal systems and focus on properties such as linearity,
time-invariance, and causality.

3.2.1 Linearity

A linear system is illustrated in Figure 3.11, where y1ðnÞ is the system output using an input x1ðnÞ, and
y2ðnÞ the system output with an input x2ðnÞ.

Figure 3.11 illustrates that the systemoutput due to theweighted sum inputsax1ðnÞ þ bx2ðnÞ is equal
to the same weighted sum of the individual outputs obtained from their corresponding inputs, that is,

yðnÞ ¼ ay1ðnÞ þ by2ðnÞ (3.5)

where a and b are constants.
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FIGURE 3.10

Plot of the digital sequence for (2) in Example 3.2.
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For example, assuming a digital amplifier is represented by yðnÞ ¼ 10xðnÞ, the input is
multiplied by 10 to generate the output. The inputs x1ðnÞ ¼ uðnÞ and x2ðnÞ ¼ dðnÞ generate the
outputs

y1ðnÞ ¼ 10uðnÞ, and y2ðnÞ ¼ 10dðnÞ, respectively

If, as described in Figure 3.11, we apply the combined input xðnÞ to the system, where the first input
multiplied by a constant 2 while the second input multiplied by a constant 4,

xðnÞ ¼ 2x1ðnÞ þ 4x2ðnÞ ¼ 2uðnÞ þ 4dðnÞ

then the system output due to the combined input is obtained as

yðnÞ ¼ 10xðnÞ ¼ 10ð2uðnÞ þ 4dðnÞÞ ¼ 20uðnÞ þ 40dðnÞ (3.6)

If we verify the weighted sum of the individual outputs, we see that

2y1ðnÞ þ 4y2ðnÞ ¼ 20uðnÞ þ 40dðnÞ (3.7)

Comparing Equations (3.6) and (3.7) verifies that

yðnÞ ¼ 2y1ðnÞ þ 4y2ðnÞ (3.8)

Hence, the system yðnÞ ¼ 10xðnÞ is a linear system. The linearity means that the system obeys the
superposition principle, as shown in Equation (3.8). Let us verify a system whose output is a square of
its input,

yðnÞ ¼ x2ðnÞ

Applying the inputs x1ðnÞ ¼ uðnÞ and x2ðnÞ ¼ dðnÞ to the system leads to

y1ðnÞ ¼ u2ðnÞ ¼ uðnÞ; and y2ðnÞ ¼ d2ðnÞ ¼ dðnÞ

It is very easy to verify that u2ðnÞ ¼ uðnÞ and d2ðnÞ ¼ dðnÞ.

System
x n1( ) y n1( )

System
x n2 ( ) y n2 ( )

System
x n x n1 2( ) ( ) y n y n1 2( ) ( )

FIGURE 3.11

Digital linear system.
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We can determine the system output using a combined input, which is the weighed sum of the
individual inputs with constants 2 and 4, respectively. Using algebra, we see that

yðnÞ ¼ x2ðnÞ ¼ ð4x1ðnÞ þ 2x2ðnÞÞ2

¼ ð4uðnÞ þ 2dðnÞÞ2 ¼ 16u2ðnÞ þ 16uðnÞdðnÞ þ 4d2ðnÞ
¼ 16uðnÞ þ 20dðnÞ

(3.9)

Note that we use the fact that uðnÞdðnÞ ¼ dðnÞ, which can be easily verified.
Again, we express the weighted sum of the two individual outputs with the same constants 2

and 4 as

4y1ðnÞ þ 2y2ðnÞ ¼ 4uðnÞ þ 2dðnÞ (3.10)

It is obvious that

yðnÞs4y1ðnÞ þ 2y2ðnÞ (3.11)

Hence, the system is a nonlinear system, since the linear property, superposition, does not hold, as
shown in Equation (3.11).

3.2.2 Time Invariance

A time-invariant system is illustrated in Figure 3.12, where y1ðnÞ is the system output for the input
x1ðnÞ. Let x2ðnÞ ¼ x1ðn� n0Þ be the shifted version of x1ðnÞ by n0 samples. The output y2ðnÞ
obtained with the shifted input x2ðnÞ ¼ x1ðn� n0Þ is equivalent to the output y2ðnÞ acquired by
shifting y1ðnÞ by n0 samples, y2ðnÞ ¼ y1ðn� n0Þ.

This can simply be viewed as the following:

System

x (n)1 1( )y n

x n x n n2 1 0( ) ( ) y n y n n2 1 0( ) ( )

0n 0nshifted by n samples0
shifted by n samples0

n n

nn

FIGURE 3.12

Illustration of the linear time-invariant digital system.

If the system is time invariant and y1ðnÞ is the system output due to the input x1ðnÞ, then the shifted system input
x1ðn � n0Þ will produce a shifted system output y1ðn � n0Þ by the same amount of time n0.
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EXAMPLE 3.3
Determine whether the linear systems

a. yðnÞ ¼ 2xðn � 5Þ
b. yðnÞ ¼ 2xð3nÞ
are time invariant.

Solution:
a. Let the input and output be x1ðnÞ and y1ðnÞ, respectively; then the system output is y1ðnÞ ¼ 2x1ðn � 5Þ. Again,
let x2ðnÞ ¼ x1ðn � n0Þ be the shifted input and y2ðnÞ be the output due to the shifted input. We determine the
system output using the shifted input as

y2ðnÞ ¼ 2x2ðn � 5Þ ¼ 2x1ðn � n0 � 5Þ
Meanwhile, shifting y1ðnÞ ¼ 2x1ðn � 5Þ by n0 samples leads to

y1ðn � n0Þ ¼ 2x1ðn � 5� n0Þ
We can verify that y2ðnÞ ¼ y1ðn � n0Þ. Thus the shifted input of n0 samples causes the system output to be
shifted by the same n0 samples. The system is thus time invariant.
b. Let the input and output be x1ðnÞ and y1ðnÞ, respectively; then the system output is y1ðnÞ ¼ 2x1ð3nÞ. Again, let
the input and output be x2ðnÞ and y2ðnÞ, where x2ðnÞ ¼ x1ðn � n0Þ, a shifted version, and the corresponding output
is y2ðnÞ. We get the output due to the shifted input x2ðnÞ ¼ x1ðn � n0Þ and note that x2ð3nÞ ¼ x1ð3n � n0Þ:

y2ðnÞ ¼ 2x2ð3nÞ ¼ 2x1ð3n � n0Þ
On the other hand, if we shift y1ðnÞ by n0 samples, and replace n in y1ðnÞ ¼ 2x1ð3nÞ by n � n0, we obtain

y1ðn � n0Þ ¼ 2x1ð3ðn � n0ÞÞ ¼ 2x1ð3n � 3n0Þ
Clearly, we know that y2ðnÞsy1ðn � n0Þ. Since the system output y2ðnÞ using the input shifted by n0 samples is
not equal to the system output y1ðnÞ shifted by the same n0 samples, the system is not time invariant.

3.2.3 Causality

A causal system is the one in which the output yðnÞ at time n depends only on the current input xðnÞ at
time n, and its past input sample values such as xðn� 1Þ, xðn� 2Þ,.. Otherwise, if a system output
depends on future input values such as xðnþ 1Þ, xðnþ 2Þ,., the system is noncausal. The noncausal
system cannot be realized in real time.

EXAMPLE 3.4
Determine whether the systems

a. yðnÞ ¼ 0:5xðnÞ þ 2:5xðn � 2Þ, for n � 0
b. yðnÞ ¼ 0:25xðn � 1Þ þ 0:5xðn þ 1Þ � 0:4yðn � 1Þ, for n � 0

are causal.

Solution:
a. Since for n � 0, the output yðnÞ depends on the current input xðnÞ and its past value xðn � 2Þ, the system is
causal.
b. Since for n � 0, the output yðnÞ depends on the current input xðnÞ and its future value xðn þ 1Þ, the system is
noncausal.
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3.3 DIFFERENCE EQUATIONS AND IMPULSE RESPONSES
Now we study the difference equation and its impulse response.

3.3.1 Format of the Difference Equation

A causal, linear, time-invariant system can be described by a difference equation having the following
general form:

yðnÞ þ a1yðn� 1Þ þ/þ aNyðn� NÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ (3.12)

where a1,., aN , and b0, b1,., bM are the coefficients of the difference equation. Equation (3.12) can
also be written as

yðnÞ ¼ �a1yðn� 1Þ �/� aNyðn� NÞ þ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ (3.13)

or

yðnÞ ¼ �
XN
i¼ 1

aiyðn� iÞ þ
XM
j¼ 0

bjxðn� jÞ (3.14)

Notice that yðnÞ is the current output, which depends on the past output samples yðn� 1Þ,., yðn� NÞ,
the current input sample xðnÞ, and the past input samples, xðn� 1Þ,., xðn� NÞ.

We will examine the specific difference equations in the following examples.

EXAMPLE 3.5
Given the difference equation

yðnÞ ¼ 0:25yðn � 1Þ þ xðnÞ
identify the nonzero system coefficients.

Solution:
Comparison with Equation (3.13) leads to

b0 ¼ 1

� a1 ¼ 0:25; that is; a1 ¼ �0:25

EXAMPLE 3.6
Given a linear system described by the difference equation

yðnÞ ¼ xðnÞ þ 0:5xðn � 1Þ
determine the nonzero system coefficients.

Solution:
By comparing Equation (3.13), we have

b0 ¼ 1 and b1 ¼ 0:5

3.3 Difference Equations and Impulse Responses 67



3.3.2 System Representation Using Its Impulse Response

A linear time-invariant system can be completely described by its unit-impulse response, which is
defined as the system response due to the impulse input dðnÞ with zero initial conditions, depicted in
Figure 3.13.

With the obtained unit-impulse response hðnÞ, we can represent the linear time-invariant system as
shown in Figure 3.14.

EXAMPLE 3.7
Assume we have a linear time-invariant system

yðnÞ ¼ 0:5xðnÞ þ 0:25xðn � 1Þ

with an initial condition xð�1Þ ¼ 0.

a. Determine the unit-impulse response hðnÞ.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.

Solution:

a. According to Figure 3.13, let xðnÞ ¼ dðnÞ, then
hðnÞ ¼ yðnÞ ¼ 0:5xðnÞ þ 0:25xðn � 1Þ ¼ 0:5dðnÞ þ 0:25dðn � 1Þ

Thus, for this particular linear system, we have

hðnÞ ¼

8><
>:

0:5 n ¼ 0

0:25 n ¼ 1

0 elsewhere

Linear time-invariant system
h n( )( )n

FIGURE 3.13

Unit-impulse response of a linear time-invariant system.

y(n)x(n)
h(n)

FIGURE 3.14

Representation of a linear time-invariant system using the impulse response.
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b. The block diagram of the linear time-invariant system is shown in Figure 3.15.
c. The system output can be rewritten as

yðnÞ ¼ hð0ÞxðnÞ þ hð1Þxðn � 1Þ

From the result Example 3.7, it is noted that the difference equation does not have the past output
terms, yðn� 1Þ,., yðn� NÞ, that is, the corresponding coefficients a1,.,aN , are zeros, and the impulse
response hðnÞ has a finite number of terms.We call this system a finite impulse response (FIR) system. In
general, Equation (3.12) contains the past output terms and the resulting impulse response h(n) has an
infinite number of terms. We can express the output sequence of a linear time-invariant system using its
impulse response and inputs as

yðnÞ ¼ /þ hð�1Þxðnþ 1Þ þ hð0ÞxðnÞ þ hð1Þxðn� 1Þ þ hð2Þxðn� 2Þ þ/ (3.15)

Equation (3.15) is called the digital convolution sum, which will be explored in a later section. We can
verify Equation (3.15) by substituting the impulse sequence xðnÞ ¼ dðnÞ to get the impulse response

hðnÞ ¼ /þ hð�1Þdðnþ 1Þ þ hð0ÞdðnÞ þ hð1Þdðn� 1Þ þ hð2Þdðn� 2Þ þ/

where . hð�1Þ, hð0Þ , hð1Þ, hð2Þ . are the amplitudes of the impulse response at the corresponding
time indices. Now let us look at another example.

EXAMPLE 3.8
Consider the difference equation

yðnÞ ¼ 0:25yðn � 1Þ þ xðnÞ for n � 0 and yð�1Þ ¼ 0

a. Determine the unit-impulse response hðnÞ.
b. Draw the system block diagram.
c. Write the output using the obtained impulse response.
d. For a step input xðnÞ ¼ uðnÞ, verify and compare the output responses for the first three output samples using

the difference equation and digital convolution sum (Equation (3.15)).

Solution:

a. Let xðnÞ ¼ dðnÞ, then
hðnÞ ¼ 0:25hðn � 1Þ þ dðnÞ

To solve for hðnÞ, we evaluate

hð0Þ ¼ 0:25hð�1Þ þ dð0Þ ¼ 0:25� 0þ 1 ¼ 1
hð1Þ ¼ 0:25hð0Þ þ dð1Þ ¼ 0:25� 1þ 0 ¼ 0:25

( )y n( )x n
( ) 0.5 ( ) 0.25 ( 1)h n n n

FIGURE 3.15

The system block diagram for Example 3.7.
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hð2Þ ¼ 0:25hð1Þ þ dð2Þ ¼ 0:25� 0:5þ 0 ¼ 0:0625
..

With the calculated results, we can predict the impulse response as

hðnÞ ¼ ð0:25ÞnuðnÞ ¼ dðnÞ þ 0:25dðn � 1Þ þ 0:0625dðn � 2Þ þ/

b. The system block diagram is given in Figure 3.16.
c. The output sequence is a sum of infinite terms expressed as

yðnÞ ¼ hð0ÞxðnÞ þ hð1Þxðn � 1Þ þ hð2Þxðn � 2Þ þ/

¼ xðnÞ þ 0:25xðn � 1Þ þ 0:0625xðn � 2Þ þ/

d. From the difference equation and using the zero initial condition, we have

yðnÞ ¼ 0:25yðn � 1Þ þ xðnÞ for n � 0 and yð�1Þ ¼ 0
n ¼ 0, yð0Þ ¼ 0:25yð�1Þ þ xð0Þ ¼ uð0Þ ¼ 1
n ¼ 1, yð1Þ ¼ 0:25yð0Þ þ xð1Þ ¼ 0:25� uð0Þ þ uð1Þ ¼ 1:25
n ¼ 2, yð2Þ ¼ 0:25yð1Þ þ xð2Þ ¼ 0:25� 1:25þ uð2Þ ¼ 1:3125
..

Applying the convolution sum in Equation (3.15) yields

yðnÞ ¼ xðnÞ þ 0:25xðn � 1Þ þ 0:0625xðn � 2Þ þ/

n ¼ 0;
yð0Þ ¼ xð0Þ þ 0:25xð�1Þ þ 0:0625xð�2Þ þ/

¼ uð0Þ þ 0:25� uð�1Þ þ 0:125� uð�2Þ þ/ ¼ 1

n ¼ 1;
yð1Þ ¼ xð1Þ þ 0:25xð0Þ þ 0:0625xð�1Þ þ/

¼ uð1Þ þ 0:25� uð0Þ þ 0:125� uð�1Þ þ/ ¼ 1:25

n ¼ 2;
yð2Þ ¼ xð2Þ þ 0:25xð1Þ þ 0:0625xð0Þ þ/

¼ uð2Þ þ 0:25� uð1Þ þ 0:0625� uð0Þ þ/ ¼ 1:3125

.

Comparing the results, we verify that a linear time-invariant system can be represented by the convolution sum
using its impulse response and input sequence. Note that we verify only the causal system for simplicity, and
the principle works for both causal and noncausal systems.

( )y n( )x n
( ) ( ) 0.25 ( 1)h n n n ...

FIGURE 3.16

The system block diagram for Example 3.8.
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Notice that this impulse response hðnÞ contains an infinite number of terms in its duration due to the
past output term yðn� 1Þ. Such a system as described in the preceding example is called an infinite
impulse response (IIR) system, which will be studied in later chapters.

3.4 BOUNDED-IN AND BOUNDED-OUT STABILITY
We are interested in designing and implementing stable linear systems. A stable system is one for
which every bounded input produces a bounded output (BIBO). There are many other stability defi-
nitions. To find the stability criterion, consider the linear time-invariant representation with all the
inputs reaching the maximum value M for the worst case. Equation (3.15) becomes

yðnÞ ¼ Mð/þ hð�1Þ þ hð0Þ þ hð1Þ þ hð2Þ þ/Þ (3.16)

Using the absolute values of the impulse response leads to

yðnÞ < Mð/þ jhð�1Þj þ jhð0Þj þ jhð1Þj þ jhð2Þj þ/Þ (3.17)

If the absolute sum in Equation (3.17) is a finite number, the product of the absolute sum and the
maximum input value is therefore a finite number. Hence, we have a bounded input and bounded
output. In terms of the impulse response, a linear system is stable if the sum of its absolute impulse
response coefficients is a finite number. We can apply Equation (3.18) to determine whether a linear
time-invariant system is stable or not stable, that is,

S ¼
XN

k¼�N

jhðkÞj ¼ /þ jhð�1Þj þ jhð0Þj þ jhð1Þj þ/ < N (3.18)

Figure 3.17 describes a linear stable system, where the impulse response decreases to zero in a finite
amount of time so that the summation of its absolute impulse response coefficients is guaranteed to be
finite.

EXAMPLE 3.9
Given the linear system in Example 3.8,

yðnÞ ¼ 0:25yðn � 1Þ þ xðnÞ for n � 0 and yð�1Þ ¼ 0

h n( )
(n)

linear stable
system

n n

FIGURE 3.17

Illustration of stability of the digital linear system.
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which is described by the unit-impulse response

hðnÞ ¼ ð0:25ÞnuðnÞ

determine whether this system is stable.

Solution:
Using Equation (3.18), we have

S ¼
XN

k ¼�N

jhðkÞj ¼
XN

k ¼�N

���ð0:25ÞkuðkÞ���
Applying the definition of the unit-step function uðkÞ ¼ 1 for k � 0, we have

S ¼
XN
k ¼0

ð0:25Þk ¼ 1þ 0:25þ 0:252 þ/

Using the formula for a sum of the geometric series (see Appendix F),

XN
k¼0

ak ¼ 1

1� a
;

where a ¼ 0:25 < 1, we conclude

S ¼ 1þ 0:25þ 0:252 þ/ ¼ 1

1� 0:25
¼ 4

3
< N

Since the summation is a finite number, the linear system is stable.

3.5 DIGITAL CONVOLUTION
Digital convolution plays an important role in digital filtering. As we verified in the last section,
a linear time-invariant system can be represented using a digital convolution sum. Given a linear time-
invariant system, we can determine its unit-impulse response hðnÞ, which relates the system input and
output. To find the output sequence yðnÞ for any input sequence xðnÞ, we write the digital convolution
shown in Equation (3.15) as

yðnÞ ¼ PN
k¼�N

hðkÞxðn� kÞ

¼ /þ hð�1Þxðnþ 1Þ þ hð0ÞxðnÞ þ hð1Þxðn� 1Þ þ hð2Þxðn� 2Þ þ/

(3.19)

The sequences hðkÞ and xðkÞ in Equation (3.19) are interchangeable. Hence, we have an alternative
form:

yðnÞ ¼ PN
k¼�N

xðkÞhðn� kÞ

¼ /þ xð�1Þhðnþ 1Þ þ xð0ÞhðnÞ þ xð1Þhðn� 1Þ þ xð2Þhðn� 2Þ þ/

(3.20)
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Using conventional notation, we express the digital convolution as

yðnÞ ¼ hðnÞ � xðnÞ (3.21)

Note that for a causal system, which implies an impulse response of

hðnÞ ¼ 0 for n < 0 (3.16)

the lower limit of the convolution sum begins at 0 instead of N, that is

yðnÞ ¼
XN
k¼ 0

hðkÞxðn� kÞ ¼
XN
k¼ 0

xðkÞhðn� kÞ (3.22)

We will focus on evaluating the convolution sum based on Equation (3.20). Let us examine first a few
outputs from Equation (3.20):

yð0Þ ¼ PN
k¼�N xðkÞhð�kÞ ¼ /þ xð�1Þhð1Þ þ xð0Þhð0Þ þ xð1Þhð�1Þ þ xð2Þhð�2Þ þ/

yð1Þ ¼ PN
k¼�N xðkÞhð1� kÞ ¼ /þ xð�1Þhð2Þ þ xð0Þhð1Þ þ xð1Þhð0Þ þ xð2Þhð�1Þ þ/

yð2Þ ¼ PN
k¼�N xðkÞhð2� kÞ ¼ /þ xð�1Þhð3Þ þ xð0Þhð2Þ þ xð1Þhð1Þ þ xð2Þhð0Þ þ/

...

We see that the convolution sum requires the sequence hðnÞ to be reversed and shifted. The graphical,
formula, and table methods for evaluating the digital convolution will be discussed via several examples.
To evaluate the convolution sum graphically, we need to apply the reversed sequence and shifted
sequence. The reversed sequence is defined as follows: if hðnÞ is the given sequence, hð�nÞ is the reversed
sequence. The reversed sequence is a mirror image of the original sequence, assuming the vertical axis as
the mirror. Let us study the reversed sequence and shifted sequence via the following example.

EXAMPLE 3.10
Consider a sequence

hðkÞ ¼

8><
>:

3; k ¼ 0;1

1; k ¼ 2;3

0 elsewhere

where k is the time index or sample number.

a. Sketch the sequence hðkÞ and reversed sequence hð�kÞ.
b. Sketch the shifted sequences hð�k þ 3Þ and hð�k � 2Þ.
Solution:
a. Since hðkÞ is defined, we plot it in Figure 3.18. Next, we need to find the reversed sequence hð�kÞ. We examine
the following:

k > 0, hð�kÞ ¼ 0
k ¼ 0, hð�0Þ ¼ hð0Þ ¼ 3
k ¼ �1, hð�kÞ ¼ hð�ð�1ÞÞ ¼ hð1Þ ¼ 3
k ¼ �2, hð�kÞ ¼ hð�ð�2ÞÞ ¼ hð2Þ ¼ 1
k ¼ �3, hð�kÞ ¼ hð�ð�3ÞÞ ¼ hð3Þ ¼ 1

One can verify that k � �4, hð�kÞ ¼ 0. Then the reversed sequence hð�kÞ is shown as the second plot in
Figure 3.18.
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As shown in the sketches, hð�kÞ is just a mirror image of the original sequence hðkÞ.
b. Based on the definition of the original sequence, we know that hð0Þ ¼ hð1Þ ¼ 3, hð2Þ ¼ hð3Þ ¼ 1, and the
others are zeros. The time indices correspond to the following:

�k þ 3 ¼ 0, k ¼ 3
�k þ 3 ¼ 1, k ¼ 2
�k þ 3 ¼ 2, k ¼ 1
�k þ 3 ¼ 3, k ¼ 0

Thus we can sketch hð�k þ 3Þ as shown in Figure 3.19.
Similarly, hð�k � 2Þ is shown in Figure 3.20.

0 1 2 3 4 5
k

1

1

2
3

( )h k

0 12345
k

1

1

2

3

( )h k

FIGURE 3.18

Plots of the digital sequence and its reversed sequence in Example 3.10.

0 41 312
k

2

1

2

3

( 3)h k

FIGURE 3.19

Plot of the sequence hð�k þ 3Þ in Example 3.10.

02345
k

1

1

2

3

( 2)h k

6

FIGURE 3.20

Plot of the sequence hð�k � 2Þ in Example 3.10.
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We can get hð�k þ 3Þ by shifting hð�kÞ to the right by three samples, and we can obtain hð�k � 2Þ by shifting
hð�kÞ to the left by two samples.

In summary, given hð�kÞ, we can obtain hðn � kÞ by shifting hð�kÞn samples to the right or the left,
depending on whether n is positive or negative.

Once we understand the shifted sequence and reversed sequence, we can perform digital convolution of the
two sequences hðkÞ and xðkÞ, defined in Equation (3.20) graphically. From that equation, we see that each
convolution value yðnÞ is the sum of the products of two sequences xðkÞ and hðn � kÞ, the latter of which is the
shifted version of the reversed sequence hð�kÞ by jnj samples. Hence, we can summarize the graphical convo-
lution procedure in Table 3.3.

We illustrate the digital convolution sum in the following example.

EXAMPLE 3.11
Using the sequences defined in Figure 3.21, evaluate the digital convolution

yðnÞ ¼
XN

k¼�N

xðkÞhðn � kÞ

a. By the graphical method.
b. By applying the formula directly.

Solution:
a. To obtain yð0Þ, we need the reversed sequence hð�kÞ; and to obtain yð1Þ, we need the reversed sequence
hð1� kÞ, and so on. Using the technique we have discussed, sequences hð�kÞ, hð�k þ 1Þ, hð�k þ 2Þ,
hð�k þ 3Þ, and hð�k þ 4Þ are obtained and plotted in Figure 3.22.
Again, using the information in Figures 3.21 and 3.22, we can compute the convolution sum as

Table 3.3 Digital Convolution Using the Graphical Method

Step 1. Obtain the reversed sequence hð�kÞ.
Step 2. Shift hð�kÞ by jnj samples to get hðn � kÞ. If n � 0, hð�kÞ will be shifted to right by n samples; but if
n < 0, hð�kÞ will be shifted to the left by jnj samples.
Step 3. Perform the convolution sum, which is the sum of the products of two sequences xðkÞ and hðn � kÞ, to
get yðnÞ.
Step 4. Repeat Steps 1 to 3 for the next convolution value yðnÞ.

0 1 2 3
k

1

1

2
3

h(k)

0 1 2 3
k

1

1

2
3

x(k)

FIGURE 3.21

Plots of digital input sequence and impulse sequence in Example 3.11.
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FIGURE 3.22

Illustration of convolution of two sequences xðkÞ and hðkÞ in Example 3.11.
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sum of product of xðkÞ and hð�kÞ: yð0Þ ¼ 3� 3 ¼ 9
sum of product of xðkÞ and hð1� kÞ: yð1Þ ¼ 1� 3þ 3� 2 ¼ 9
sum of product of xðkÞ and hð2� kÞ: yð2Þ ¼ 2� 3þ 1� 2þ 3� 1 ¼ 11
sum of product of xðkÞ and hð3� kÞ: yð3Þ ¼ 2� 2þ 1� 1 ¼ 5
sum of product of xðkÞ and hð4� kÞ: yð4Þ ¼ 2� 1 ¼ 2
sum of product of xðkÞ and hð5� kÞ: yðnÞ ¼ 0 for n > 4, since sequences xðkÞ and hðn � kÞ do not overlap.

Finally, we sketch the output sequence yðnÞ in Figure 3.23.
b. Applying Equation (3.20) with zero initial conditions leads to

yðnÞ ¼ xð0ÞhðnÞ þ xð1Þhðn � 1Þ þ xð2Þhðn � 2Þ
n ¼ 0, yð0Þ ¼ xð0Þhð0Þ þ xð1Þhð�1Þ þ xð2Þhð�2Þ ¼ 3� 3þ 1� 0þ 2� 0 ¼ 9
n ¼ 1, yð1Þ ¼ xð0Þhð1Þ þ xð1Þhð0Þ þ xð2Þhð�1Þ ¼ 3� 2þ 1� 3þ 2� 0 ¼ 9
n ¼ 2, yð2Þ ¼ xð0Þhð2Þ þ xð1Þhð1Þ þ xð2Þhð0Þ ¼ 3� 1þ 1� 2þ 2� 3 ¼ 11
n ¼ 3, yð3Þ ¼ xð0Þhð3Þ þ xð1Þhð2Þ þ xð2Þhð1Þ ¼ 3� 0þ 1� 1þ 2� 2 ¼ 5
n ¼ 4, yð4Þ ¼ xð0Þhð4Þ þ xð1Þhð3Þ þ xð2Þhð2Þ ¼ 3� 0þ 1� 0þ 2� 1 ¼ 2
n � 5, yðnÞ ¼ xð0ÞhðnÞ þ xð1Þhðn � 1Þ þ xð2Þhðn � 2Þ ¼ 3� 0þ 1� 0þ 2� 0 ¼ 0

In simple cases such as this example, it is not necessary to use the graphical or formula methods. We can compute
the convolution by treating the input sequence and impulse response as number sequences and sliding the
reversed impulse response past the input sequence, cross-multiplying, and summing the nonzero overlap terms at
each step. The procedure and calculated results are listed in Table 3.4.

0 1 2 3
n

5

10

y n( )

4 5

FIGURE 3.23

Plot of the convolution sum in Example 3.11.

Table 3.4 Convolution Sum Using the Table Method

k : L2 L1 0 1 2 3 4 5

xðkÞ : 3 1 2

hð�kÞ : 1 2 3 yð0Þ ¼ 3� 3 ¼ 9

hð1� kÞ 1 2 3 yð1Þ ¼ 3� 2þ 1� 3 ¼ 9

hð2� kÞ 1 2 3 yð2Þ ¼ 3� 1þ 1� 2þ 2� 3 ¼ 11

hð3� kÞ 1 2 3 yð3Þ ¼ 1� 1þ 2� 2 ¼ 5

hð4� kÞ 1 2 3 yð4Þ ¼ 2� 1 ¼ 2

hð5� kÞ 1 2 3 yð5Þ ¼ 0 (no overlap)
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We can see that the calculated results using all the methods are consistent. The steps using the table method
are summarized in Table 3.5.

EXAMPLE 3.12
Convolve the following two rectangular sequences using the table method:

xðnÞ ¼
(
1 n ¼ 0;1;2

0 otherwise
and hðnÞ ¼

8>>><
>>>:

0 n ¼ 0

1 n ¼ 1;2

0 otherwise

Solution:
Using Table 3.5 as a guide, we list the operations and calculations in Table 3.6. Note that the output should show
the trapezoidal shape.

Table 3.6 Convolution Sum in Example 3.12

k : L2 L1 0 1 2 3 4 5

xðkÞ : 1 1 1

hð�kÞ : 1 1 0 yð0Þ ¼ 0 (no overlap)

hð1� kÞ 1 1 0 yð1Þ ¼ 1� 1 ¼ 1

hð2� kÞ 1 1 0 yð2Þ ¼ 1� 1þ 1� 1 ¼ 2

hð3� kÞ 1 1 0 yð3Þ ¼ 1� 1þ 1� 1 ¼ 2

hð4� kÞ 1 1 0 yð4Þ ¼ 1� 1 ¼ 1

hðn� kÞ 1 1 0 yðnÞ ¼ 0, n � 5 (no overlap)
Stop

Table 3.5 Digital Convolution Steps via the Table Method

Step 1. List the index k covering a sufficient range.
Step 2. List the input xðkÞ.
Step 3. Obtain the reversed sequence hð�kÞ, and align the rightmost element of hðn � kÞ to the leftmost
element of xðkÞ.
Step 4. Cross-multiply and sum the nonzero overlap terms to produce yðnÞ.
Step 5. Slide hðn � kÞ to the right by one position.
Step 6. Repeat Step 4; stop if all the output values are zero or if required.
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Let us examine convolving a finite long sequence with an infinite long sequence.

EXAMPLE 3.13
A system representation using the unit-impulse response for the linear system

yðnÞ ¼ 0:25yðn � 1Þ þ xðnÞ for n � 0 and yð�1Þ ¼ 0

was determined in Example 3:8 as

yðnÞ ¼
XN

k¼�N

xðkÞhðn � kÞ

where hðnÞ ¼ ð0:25ÞnuðnÞ. For a step input xðnÞ ¼ uðnÞ, determine the output response for the first three output
samples using the table method.

Solution:
Using Table 3.5 as a guide, we list the operations and calculations in Table 3.7. As expected, the output values are
the same as those obtained in Example 3.8.

3.6 SUMMARY
1. Digital signal samples are sketched using their encoded amplitude versus sample numbers with

vertical bars topped by solid circles located at their sampling instants, respectively. The impulse
sequence, unit-step sequence, and their shifted versions are sketched in this notation.

2. The analog signal function can be sampled to its digital (discrete-time) version by substituting time
t ¼ nT into the analog function, that is,
xðnÞ ¼ xðtÞjt¼nT ¼ xðnTÞ
The digital function values can be calculated for the given time index (sample number).

3. The DSP system we wish to design must be a linear, time-invariant, causal system. Linearity means
that the superposition principle exists. Time invariance requires that the shifted input generate the
corresponding shifted output in the same amount of time. Causality indicates that the system output
depends on only its current input sample and past input sample(s).

4. The difference equation describing a linear, time-invariant system has a format such that the current
output depends on the current input, past input(s), and past output(s) in general.

Table 3.7 Convolution Sum in Example 3.13.

k : L2 L1 0 1 2 3 .

xðkÞ : 1 1 1 1 .

hð�kÞ : 0.0625 0.25 1 yð0Þ ¼ 1� 1 ¼ 1

hð1� kÞ 0.0625 0.25 1 yð1Þ ¼ 1� 0:25þ 1� 1 ¼ 1:25

hð2� kÞ 0.0625 0.25 1 yð2Þ ¼ 1� 0:0625þ 1� 0:25þ
1� 1 ¼ 1:3125

Stop as required
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5. The unit-impulse response can be used to fully describe a linear, time-invariant system. Given the
impulse response, the system output is the sum of the products of the impulse response coefficients
and corresponding input samples, called the digital convolution sum.

6. BIBO is a type of stability in which a bounded input will produce a bounded output. A BIBO
system requires that the sum of the absolute impulse response coefficients be a finite number.

7. The digital convolution sum, which represents a DSP system, is evaluated in three ways: the
graphical method, evaluation of the formula, and the table method. The table method is found to
be most effective.

3.7 PROBLEMS

3.1. Sketch each of the following special digital sequences:

a. 5dðnÞ
b. �2dðn� 5Þ
c. �5uðnÞ
d. 5uðn� 2Þ

3.2. Calculate the first eight sample values and sketch each of the following sequences:

a. xðnÞ ¼ 0:5nuðnÞ
b. xðnÞ ¼ 5sinð0:2pnÞuðnÞ
c. xðnÞ ¼ 5cosð0:1pnþ 300ÞuðnÞ
d. xðnÞ ¼ 5ð0:75Þnsinð0:1pnÞuðnÞ

3.3. Sketch each of the following special digital sequences:

a. 8dðnÞ
b. �3:5dðn� 4Þ
c. 4:5uðnÞ
d. �6uðn� 3Þ

3.4. Calculate the first eight sample values and sketch each of the following sequences:

a. xðnÞ ¼ 0:25nuðnÞ
b. xðnÞ ¼ 3sinð0:4pnÞuðnÞ
c. xðnÞ ¼ 6cosð0:2pnþ 300ÞuðnÞ
d. xðnÞ ¼ 4ð0:5Þnsinð0:1pnÞuðnÞ

3.5. Sketch the following sequences:

a. xðnÞ ¼ 3dðnþ 2Þ � 0:5dðnÞ þ 5dðn� 1Þ � 4dðn� 5Þ
b. xðnÞ ¼ dðnþ 1Þ � 2dðn� 1Þ þ 5uðn� 4Þ
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3.6. Given the digital signals xðnÞ in Figures 3.24 and 3.25, write an expression for each digital
signal using the unit-impulse sequence and its shifted sequences.

3.7. Sketch the following sequences:

a. xðnÞ ¼ 2dðnþ 3Þ � 0:5dðnþ 1Þ � 5dðn� 2Þ � 4dðn� 5Þ
b. xðnÞ ¼ 2dðnþ 2Þ � 2dðnþ 1Þ þ 5uðn� 3Þ

3.8. Given the digital signals xðnÞ in Figures 3.26 and 3.27, write an expression for each digital
signal using the unit-impulse sequence and its shifted sequences.
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FIGURE 3.25

The second digital signal in Problem 3.6.
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FIGURE 3.24

The first digital signal in Problem 3.6.
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FIGURE 3.26

The first digital signal in Problem 3.8.
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FIGURE 3.27

The second digital signal in Problem 3.8.

3.9. Assume that a DS processor with a sampling time interval of 0.01 second converts the
following analog signals xðtÞ to a digital signal xðnÞ; determine the digital sequence for each
of the analog signals.

a. xðtÞ ¼ e�50tuðtÞ
b. xðtÞ ¼ 5sinð20ptÞuðtÞ
c. xðtÞ ¼ 10cosð40pt þ 300ÞuðtÞ
d. xðtÞ ¼ 10e�100tsinð15ptÞuðtÞ

3.10. Determine which of the following systems is a linear system.

a. yðnÞ ¼ 5xðnÞ þ 2x2ðnÞ
b. yðnÞ ¼ xðn� 1Þ þ 4xðnÞ
c. yðnÞ ¼ 4x3ðn� 1Þ � 2xðnÞ

3.11. Assume that a DS processor with a sampling time interval of 0.005 second converts each of
the following analog signals xðtÞ to a digital signal xðnÞ; determine the digital sequence for
each of the analog signals.

a. xðtÞ ¼ e�100tuðtÞ
b. xðtÞ ¼ 4sinð60ptÞuðtÞ
c. xðtÞ ¼ 7:5cosð20pt þ 600ÞuðtÞ
d. xðtÞ ¼ 20e�200tsinð60ptÞuðtÞ

3.12. Determine which of the following systems is a linear system.

a. yðnÞ ¼ 4xðnÞ þ 8x3ðnÞ
b. yðnÞ ¼ xðn� 3Þ þ 3xðnÞ
c. yðnÞ ¼ 5x2ðn� 1Þ � 3xðnÞ

3.13. Determine which of the following linear systems is time invariant.

a. yðnÞ ¼ �5xðn� 10Þ
b. yðnÞ ¼ 4xðn2Þ
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3.14. Determine which of the following linear systems is causal.

a. yðnÞ ¼ 0:5xðnÞ þ 100xðn� 2Þ � 20xðn� 10Þ
b. yðnÞ ¼ xðnþ 4Þ þ 0:5xðnÞ � 2xðn� 2Þ

3.15. Determine the causality for each of the following linear systems.

a. yðnÞ ¼ 0:5xðnÞ þ 20xðn� 2Þ � 0:1yðn� 1Þ
b. yðnÞ ¼ xðnþ 2Þ � 0:4yðn� 1Þ
c. yðnÞ ¼ xðn� 1Þ þ 0:5yðnþ 2Þ

3.16. Find the unit-impulse response for each of the following linear systems.

a. yðnÞ ¼ 0:5xðnÞ � 0:5xðn� 2Þ ; for n � 0, xð�2Þ ¼ 0, xð�1Þ ¼ 0

b. yðnÞ ¼ 0:75yðn� 1Þ þ xðnÞ ; for n � 0, yð�1Þ ¼ 0

c. yðnÞ ¼ �0:8yðn� 1Þ þ xðn� 1Þ ; for n � 0, xð�1Þ ¼ 0, yð�1Þ ¼ 0

3.17. Determine the causality for each of the following linear systems.

a. yðnÞ ¼ 5xðnÞ þ 10xðn� 4Þ � 0:1yðn� 5Þ
b. yðnÞ ¼ 2xðnþ 2Þ � 0:2yðn� 2Þ
c. yðnÞ ¼ 0:1xðnþ 1Þ þ 0:5yðnþ 2Þ

3.18. Find the unit-impulse response for each of the following linear systems.

a. yðnÞ ¼ 0:2xðnÞ � 0:3xðn� 2Þ ; for n � 0, xð�2Þ ¼ 0, xð�1Þ ¼ 0

b. yðnÞ ¼ 0:5yðn� 1Þ þ 0:5xðnÞ ; for n � 0, yð�1Þ ¼ 0

c. yðnÞ ¼ �0:6yðn� 1Þ � xðn� 1Þ ; for n � 0, xð�1Þ ¼ 0, yð�1Þ ¼ 0

3.19. For each of the following linear systems, find the unit-impulse response, and draw the block
diagram.

a. yðnÞ ¼ 5xðn� 10Þ
b. yðnÞ ¼ xðnÞ þ 0:5xðn� 1Þ

3.20. Determine the stability of the following linear system.

yðnÞ ¼ 0:5xðnÞ þ 100xðn� 2Þ � 20xðn� 10Þ
3.21. For each of the following linear systems, find the unit-impulse response, and draw the block

diagram.

a. yðnÞ ¼ 2:5xðn� 5Þ
b. yðnÞ ¼ 2xðnÞ þ 1:2xðn� 1Þ

3.22. Determine the stability for the following linear system.

yðnÞ ¼ 5xðnÞ þ 30xðn� 3Þ � 10xðn� 20Þ
3.23. Determine the stability for each of the following linear systems.

a. yðnÞ ¼ PN
k¼ 0 0:75

kxðn� kÞ
b. yðnÞ ¼ PN

k¼ 0 2
kxðn� kÞ
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3.24. Determine the stability for each of the following linear systems.

a. yðnÞ ¼ PN
k¼ 0ð�1:5Þkxðn� kÞ

b. yðnÞ ¼ PN
k¼ 0ð�0:5Þkxðn� kÞ

3.25. Given the sequence

hðkÞ ¼

8><
>:

2; k ¼ 0; 1; 2

1; k ¼ 3; 4

0 elsewhere;

where k is the time index or sample number,

a. sketch the sequence hðkÞ and the reverse sequence hð�kÞ ;
b. sketch the shifted sequences hð�k þ 2Þ and hð�k � 3Þ.

3.26. Given the sequence

hðkÞ ¼

8>>>><
>>>>:

�1 k ¼ 0; 1

2 k ¼ 2; 3

�2 k ¼ 4

0 elsewhere

where k is the time index or sample number,

a. sketch the sequence hðkÞ and the reverse sequence hð�kÞ ;
b. sketch the shifted sequences hð�k þ 1Þ and hð�k � 2Þ.

3.27. Using the sequence definitions

hðkÞ ¼

8><
>:

2; k ¼ 0; 1; 2

1; k ¼ 3; 4

0 elsewhere

and xðkÞ ¼

8><
>:

2; k ¼ 0

1; k ¼ 1; 2

0 elsewhere

evaluate the digital convolution

yðnÞ ¼
XN

k¼�N

xðkÞhðn� kÞ

a. using the graphical method;

b. using the table method;

c. applying the convolution formula directly.

3.28. Using the sequence definitions

xðkÞ ¼

8><
>:

�2; k ¼ 0; 1; 2

1; k ¼ 3; 4

0 elsewhere

and hðkÞ ¼

8><
>:

2; k ¼ 0

�1; k ¼ 1; 2

0 elsewhere
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evaluate the digital convolution

yðnÞ ¼
XN

k¼�N

xðkÞhðn� kÞ

a. using the graphical method;

b. using the table method;

c. applying the convolution formula directly.

3.29. Convolve the two rectangular sequences

xðnÞ ¼
(
1 n ¼ 0; 1

0 otherwise
and hðnÞ ¼

8><
>:

0 n ¼ 0

1 n ¼ 1; 2

0 otherwise

using the table method.
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OBJECTIVES:

This chapter investigates discrete Fourier transform (DFT) and fast Fourier transform (FFT) and their
properties; introduces the DFT/FFT algorithms that compute the signal amplitude spectrum and power
spectrum; and uses the window function to reduce spectral leakage. Finally, the chapter describes the FFT
algorithm and shows how to apply FFT to estimate a speech spectrum.

4.1 DISCRETE FOURIER TRANSFORM
In the time domain, representation of digital signals describes the signal amplitude versus the sampling
time instant or the sample number. However, in some applications, signal frequency content is very
useful in ways other than as digital signal samples. The representation of the digital signal in terms of
its frequency component in a frequency domain, that is, the signal spectrum, needs to be developed. As
an example, Figure 4.1 illustrates the time domain representation of a 1,000-Hz sinusoid with 32
samples at a sampling rate of 8,000 Hz; the bottom plot shows the signal spectrum (frequency domain
representation), where we can clearly observe that the amplitude peak is located at the frequency of
1,000 Hz in the calculated spectrum. Hence, the spectral plot better displays the frequency information
of a digital signal.
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The algorithm transforming the time domain signal samples to the frequency domain components
is known as the discrete Fourier transform, or DFT. The DFT also establishes a relationship between
the time domain representation and the frequency domain representation. Therefore, we can apply the
DFT to perform frequency analysis of a time domain sequence. In addition, the DFT is widely used in
many other areas, including spectral analysis, acoustics, imaging/video, audio, instrumentation, and
communications systems.

To be able to develop the DFT and understand how to use it, we first study the spectrum of periodic
digital signals using the Fourier series. (There is a detailed discussion of the Fourier series in
Appendix B.)

4.1.1 Fourier Series Coefficients of Periodic Digital Signals

Let us look at a process in which we want to estimate the spectrum of a periodic digital signal xðnÞ
sampled at a rate of fs Hz with the fundamental period T0 ¼ NT , as shown in Figure 4.2, where there
are N samples within the duration of the fundamental period and T ¼ 1=fs is the sampling period. For
the time being, we assume that the periodic digital signal is band limited such that all harmonic
frequencies are less than the folding frequency fs=2 so that aliasing does not occur.

According to Fourier series analysis (Appendix B), the coefficients of the Fourier series expansion
of the periodic signal xðtÞ in a complex form are
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FIGURE 4.1

Example of the digital signal and its amplitude spectrum.
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ck ¼ 1

T0

Z
T0

xðtÞe�jku0tdt �N < k < N (4.1)

where k is the number of harmonics corresponding to the harmonic frequency of kf0 and u0 ¼ 2p=T0
and f0 ¼ 1=T0 are the fundamental frequency in radians per second and the fundamental frequency in
Hz, respectively. To apply Equation (4.1), we substitute T0 ¼ NT , u0 ¼ 2p=T0 and approximate the
integration over one period using a summation by substituting dt ¼ T and t ¼ nT . We obtain

ck ¼ 1

N

XN�1

n¼ 0

xðnÞe�j 2pkn
N ; �N < k < N (4.2)

Since the coefficients ck are obtained from the Fourier series expansion in the complex form, the
resultant spectrum ck will have two sides. There is an important feature of Equation (4.2) in which the
Fourier series coefficient ck is periodic of N. We can verify this as follows:

ckþN ¼ 1

N

XN�1

n¼ 0

xðnÞe�j2pðkþNÞn
N ¼ 1

N

XN�1

n¼ 0

xðnÞe�j2pkn
N e�j2pn (4.3)

Since e�j2pn ¼ cosð2pnÞ � jsinð2pnÞ ¼ 1, it follows that

ckþN ¼ ck (4.4)

Therefore, the two-side line amplitude spectrum jckj is periodic, as shown in Figure 4.3.
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Periodic digital signal.
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Amplitude spectrum of the periodic digital signal.
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We note the following points:

a. As displayed in Figure 4.3, only the line spectral portion between the frequency �fs=2 and
frequency fs=2 (folding frequency) represents frequency information of the periodic signal.

b. Notice that the spectral portion from fs=2 to fs is a copy of the spectrum in the negative frequency
range from�fs=2 to 0 Hz due to the spectrum being periodic for every Nf0 Hz. Again, the amplitude
spectral components indexed from fs=2 to fs can be folded at the folding frequency fs=2 to match the
amplitude spectral components indexed from 0 to fs=2 in terms of fs � f Hz, where f is in the range
from fs=2 to fs. For convenience, we compute the spectrum over the range from 0 to fs Hz with
nonnegative indices, that is,

ck ¼ 1

N

XN�1

n¼ 0

xðnÞe�j2pkn
N ; k ¼ 0; 1;/;N � 1 (4.5)

We can apply Equation (4.4) to find the negative indexed spectral values if they are required.
c. For the kth harmonic, the frequency is

f ¼ kf0 Hz (4.6)

The frequency spacing between the consecutive spectral lines, called the frequency resolution, is f0 Hz.

EXAMPLE 4.1
The periodic signal

xðtÞ ¼ sinð2ptÞ

is sampled using the sampling rate fs ¼ 4 Hz.

a. Compute the spectrum ck using the samples in one period.
b. Plot the two-sided amplitude spectrum jck j over the range from �2 to 2 Hz.

Solution:
a. From the analog signal, we can determine the fundamental frequency u0 ¼ 2p radians per second and

f0 ¼ u0

2p
¼ 2p

2p
¼ 1 Hz, and the fundamental period T0 ¼ 1 second.

Since using the sampling interval T ¼ 1=fs ¼ 0:25 second, we get the sampled signal as

xðnÞ ¼ xðnT Þ ¼ sinð2pnT Þ ¼ sinð0:5pnÞ

and plot the first eight samples as shown in Figure 4.4.
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Periodic digital signal.
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Choosing the duration of one period, N ¼ 4, we have the following sample values:

xð0Þ ¼ 0; xð1Þ ¼ 1; xð2Þ ¼ 0; and xð3Þ ¼ �1

Using Equation (4.5),

c0 ¼ 1

4

X3
n¼0

xðnÞ ¼ 1

4

�
xð0Þ þ xð1Þ þ xð2Þ þ xð3Þ

�
¼ 1

4
ð0þ 1þ 0� 1Þ ¼ 0

c1 ¼ 1

4

X3
n¼0

xðnÞe�j2p�1n=4 ¼ 1

4

�
xð0Þ þ xð1Þe�jp=2 þ xð2Þe�jp þ xð3Þe�j3p=2

�

¼ 1

4

�
xð0Þ � jxð1Þ � xð2Þ þ jxð3Þ ¼ 0� jð1Þ � 0þ jð�1Þ

�
¼ �j0:5

Similarly, we get

c2 ¼ 1

4

X3
k ¼0

xðnÞe�j2p�2n=4 ¼ 0; and c3 ¼ 1

4

X3
n¼0

xðkÞe�j2p�3n=4 ¼ j0:5

Using periodicity, it follows that

c�1 ¼ c3 ¼ j0:5; and c�2 ¼ c2 ¼ 0

b. The amplitude spectrum for the digital signal is sketched in Figure 4.5.

As we know, the spectrum in the range of�2 to 2 Hz presents the information of the sinusoid with a frequency
of 1 Hz and a peak value of 2j:c1j: ¼ 1, which is obtained from converting two sides to one side by doubling the
two-sided spectral value. Note that we do not double the direct-current (DC) component, that is, c0.

4.1.2 Discrete Fourier Transform Formulas

Now let us concentrate on development of the DFT. Figure 4.6 shows one way to obtain the DFT
formula.
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FIGURE 4.5

Two-sided spectrum for the periodic digital signal in Example 4.1.
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First, we assume that the process acquires data samples from digitizing the relevant continuous
signal for T0 seconds. Next, we assume that a periodic signal xðnÞ is obtained by cascading the
acquired N data samples with the duration of T0 repetitively. Note that we assume continuity between
the N data sample frames. This is not true in practice. We will tackle this problem in Section 4.3.
Finally, we determine the Fourier series coefficients using one-period N data samples and Equation
(4.5). Then we multiply the Fourier series coefficients by a factor of N to obtain

XðkÞ ¼ Nck ¼
XN�1

n¼ 0

xðnÞe�j2pkn
N ; k ¼ 0; 1;/;N � 1

where XðkÞ constitutes the DFT coefficients. Notice that the factor of N is a constant and does not
affect the relative magnitudes of the DFT coefficients XðkÞ. As shown in the last plot, applying DFT
with N data samples of xðnÞ sampled at a sampling rate of fs (sampling period is T ¼ 1=fs) produces
N complex DFT coefficients XðkÞ. The index n is the time index representing the sample number of
the digital sequence, whereas k is the frequency index indicating each calculated DFT coefficient,
and can be further mapped to the corresponding signal frequency in terms of Hz.

Now let us conclude the DFT definition. Given a sequence xðnÞ,0� n� N � 1, its DFT is defined as

XðkÞ ¼
XN�1

n¼ 0

xðnÞe�j2pkn=N ¼
XN�1

n¼ 0

xðnÞWkn
N ; for k ¼ 0; 1;/;N � 1 (4.7)

FIGURE 4.6

Development of DFT formula.
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Equation (4.7) can be expanded as

XðkÞ ¼ xð0ÞWk0
N þ xð1ÞWk1

N þ xð2ÞWk2
N þ/þ xðN � 1ÞWkðN�1Þ

N ; for k ¼ 0; 1;/;N � 1 (4.8)

where the factor WN (called the twiddle factor in some textbooks) is defined as

WN ¼ e�j2p=N ¼ cos

�
2p

N

�
� jsin

�
2p

N

�
(4.9)

The inverse of the DFT is given by

xðnÞ ¼ 1

N

XN�1

k¼ 0

XðkÞej2pkn=N ¼ 1

N

XN�1

k¼ 0

XðkÞW�kn
N ; for n ¼ 0; 1;/;N � 1 (4.10)

Proof can be found in Ahmed and Nataranjan (1983); Proakis and Manolakis (1996); Oppenheim,
Schafer, and Buck (1997); and Stearns and Hush (1990).

Similar to Equation (4.7), the expansion of Equation (4.10) leads to

xðnÞ ¼ 1

N

�
Xð0ÞW�0n

N þ Xð1ÞW�1n
N þ Xð2ÞW�2n

N þ/þ XðN � 1ÞW�ðN�1Þn
N

�
;

for n ¼ 0; 1;/;N � 1 (4.11)

As shown in Figure 4.6, in time domainwe use the sample number or time index n for indexing the digital
sample sequence xðnÞ. However, in the frequency domain, we use index k for indexingN calculatedDFT
coefficients XðkÞ. We also refer to k as the frequency bin number in Equations (4.7) and (4.8).
We can use MATLAB functions fft() and ifft() to compute the DFT coefficients and the inverse DFT
with the syntax listed in Table 4.1.

The following examples serve to illustrate the application of DFT and the inverse DFT.

EXAMPLE 4.2
Given a sequence xðnÞ for 0� n � 3, where xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4, evaluate its DFT X ðkÞ.
Solution:
Since N ¼ 4 and W4 ¼ e�jp

2, using Equation (4.7) we have a simplified formula,

X ðkÞ ¼
X3
n¼0

xðnÞWkn
4 ¼

X3
n¼0

xðnÞe�jpkn
2

Table 4.1 MATLAB FFT Functions

X ¼ fft(x) % Calculate DFT coefficients

x ¼ ifft(X) % Inverse of DFT

x ¼ input vector

X ¼ DFT coefficient vector
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Thus, for k ¼ 0

X ð0Þ ¼
X3
n¼0

xðnÞe�j0 ¼ xð0Þe�j0 þ xð1Þe�j0 þ xð2Þe�j0 þ xð3Þe�j0

¼ xð0Þ þ xð1Þ þ xð2Þ þ xð3Þ
¼ 1þ 2þ 3þ 4 ¼ 10

for k ¼ 1

X ð1Þ ¼
X3
n¼0

xðnÞe�jpn
2 ¼ xð0Þe�j0 þ xð1Þe�jp

2 þ xð2Þe�jp þ xð3Þe�j3p
2

¼ xð0Þ � jxð1Þ � xð2Þ þ jxð3Þ
¼ 1� j2� 3þ j4 ¼ �2þ j2

for k ¼ 2

X ð2Þ ¼
X3
n¼0

xðnÞe�jpn ¼ xð0Þe�j0 þ xð1Þe�jp þ xð2Þe�j2p þ xð3Þe�j3p

¼ xð0Þ � xð1Þ þ xð2Þ � xð3Þ
¼ 1� 2þ 3� 4 ¼ �2

and for k ¼ 3

X ð3Þ ¼
X3
n¼0

xðnÞe�j3pn
2 ¼ xð0Þe�j0 þ xð1Þe�j3p

2 þ xð2Þe�j3p þ xð3Þe�j9p
2

¼ xð0Þ þ jxð1Þ � xð2Þ � jxð3Þ
¼ 1þ j2� 3� j4 ¼ �2� j2

Let us verify the result using the MATLAB function fft():

>> X ¼ fft([1 2 3 4 ])
X ¼ 10.0000 �2.0000 þ 2.0000i �2.0000 �2.0000 �2.0000i

EXAMPLE 4.3
Using the DFT coefficients X ðkÞ for 0� k � 3 computed in Example 4.2, evaluate the inverse DFT to determine the
time domain sequence xðnÞ.
Solution:
Since N ¼ 4 and W�1

4 ¼ ej
p
2, using Equation (4.10) we achieve a simplified formula,

xðnÞ ¼ 1

4

X3
k¼0

X ðkÞW�nk
4 ¼ 1

4

X3
k¼0

X ðkÞejpkn2
Then for n ¼ 0

xð0Þ ¼ 1

4

X3
k ¼0

X ðkÞej0 ¼ 1

4

�
X ð0Þej0 þ X ð1Þej0 þ X ð2Þej0 þ X ð3Þej0

�

¼ 1

4
ð10þ ð�2þ j2Þ � 2þ ð�2� j2ÞÞ ¼ 1
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for n ¼ 1

xð1Þ ¼ 1

4

X3
k ¼0

X ðkÞejkp2 ¼ 1

4

�
X ð0Þej0 þ X ð1Þejp2 þ X ð2Þejp þ X ð3Þej3p2

�

¼ 1

4
ðX ð0Þ þ jX ð1Þ � X ð2Þ � jX ð3ÞÞ

¼ 1

4
ð10þ jð�2þ j2Þ � ð�2Þ � jð�2� j2ÞÞ ¼ 2

for n ¼ 2

xð2Þ ¼ 1

4

X3
k ¼0

X ðkÞejkp ¼ 1

4

�
X ð0Þej0 þ X ð1Þejp þ X ð2Þej2p þ X ð3Þej3p

�

¼ 1

4
ðX ð0Þ � X ð1Þ þ X ð2Þ � X ð3ÞÞ

¼ 1

4
ð10� ð�2þ j2Þ þ ð�2Þ � ð�2� j2ÞÞ ¼ 3

and for n ¼ 3

xð3Þ ¼ 1

4

X3
k ¼0

X ðkÞejkp32 ¼ 1

4

�
X ð0Þej0 þ X ð1Þej3p2 þ X ð2Þej3p þ X ð3Þej9p2

�

¼ 1

4
ðX ð0Þ � jX ð1Þ � X ð2Þ þ jX ð3ÞÞ

¼ 1

4
ð10� jð�2þ j2Þ � ð�2Þ þ jð�2� j2ÞÞ ¼ 4

This example actually verifies the inverse DFT. Applying the MATLAB function ifft() we obtain

>> x ¼ ifft([10 �2þ2j �2 �2 �2j])
x ¼ 1 2 3 4

Now we explore the relationship between the frequency bin k and its associated frequency.
Omitting the proof, the calculated N DFT coefficients XðkÞ represent the frequency components
ranging from 0 Hz (or radians/second) to fs Hz (or us radians/second), hence we can map the frequency
bin k to its corresponding frequency as follows:

u ¼ kus

N
ðradians per secondÞ (4.12)

or in terms of Hz,

f ¼ kfs
N

ðHzÞ (4.13)

where us ¼ 2pfs.
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We can define the frequency resolution as the frequency step between two consecutive DFT
coefficients to measure how fine the frequency domain presentation is and obtain

Du ¼ us

N
ðradians per secondÞ (4.14)

or in terms of Hz, it follows that

Df ¼ fs
N

ðHzÞ (4.15)

Let us study the following example.

EXAMPLE 4.4

In Example 4.2, given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4, we
computed 4 DFT coefficients X ðkÞ for 0 � k � 3 as X ð0Þ ¼ 10, X ð1Þ ¼ �2þ j2, X ð2Þ ¼ �2, and
X ð3Þ ¼ �2� j2. If the sampling rate is 10 Hz,

a. determine the sampling period, time index, and sampling time instant for a digital sample xð3Þ in the time
domain;

b. determine the frequency resolution, frequency bin, and mapped frequencies for the DFT coefficients X ð1Þ and
X ð3Þ in the frequency domain.

Solution:
a. In the time domain, the sampling period is calculated as

T ¼ 1=fs ¼ 1=10 ¼ 0:1 second

For xð3Þ, the time index is n ¼ 3 and the sampling time instant is determined by

t ¼ nT ¼ 3$0:1 ¼ 0:3 second

b. In the frequency domain, since the total number of DFT coefficients is four, the frequency resolution is
determined by

Df ¼ fs
N

¼ 10

4
¼ 2:5 Hz

The frequency bin for X ð1Þ should be k ¼ 1 and its corresponding frequency is determined by

f ¼ kfs
N

¼ 1� 10

4
¼ 2:5 Hz

Similarly, for X ð3Þ and k ¼ 3,

f ¼ kfs
N

¼ 3� 10

4
¼ 7:5 Hz

Note that from Equation (4.4), k ¼ 3 is equivalent to k � N ¼ 3� 4 ¼ �1; and f ¼ 7.5 Hz is also equivalent to
the frequency f ¼ ð�1� 10Þ=4 ¼ �2:5 Hz, which corresponds to the negative side spectrum. The amplitude
spectrum at 7.5 Hz after folding should match the one at fs � f ¼ 10:0� 7:5 ¼ 2:5 Hz. We will apply these
developed notations in the next section for amplitude and power spectral estimation.
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4.2 AMPLITUDE SPECTRUM AND POWER SPECTRUM
One DFT application is transformation of a finite-length digital signal xðnÞ into the spectrum in
the frequency domain. Figure 4.7 demonstrates such an application, where Ak and Pk are
the computed amplitude spectrum and the power spectrum, respectively, using the DFT coeffi-
cients XðkÞ.

First, we obtain the digital sequence xðnÞ by sampling the analog signal xðtÞ and truncating the
sampled signal with a data window of length T0 ¼ NT , where T is the sampling period and N the
number of data points. The time for the data window is

T0 ¼ NT (4.16)

For the truncated sequence xðnÞ with a range of n ¼ 0; 1; 2;/;N � 1, we get

xð0Þ; xð1Þ; xð2Þ; .; xðN � 1Þ (4.17)

Next, we apply the DFT to the obtained sequence, xðnÞ, to get the N DFT coefficients

XðkÞ ¼
XN�1

n¼ 0

xðnÞWnk
N ; for k ¼ 0; 1; 2;/;N � 1 (4.18)

Since each calculated DFT coefficient is a complex number, it is not convenient to plot it versus
its frequency index. Hence, after evaluating Equation (4.18), the magnitude and phase of
each DFT coefficient (we refer to them as the amplitude spectrum and phase spectrum,
respectively) can be determined and plotted versus its frequency index. We define the amplitude
spectrum as

Ak ¼ 1

N
jXðkÞj ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReal½XðkÞ�Þ2 þ ðImag½XðkÞ�Þ2

q
; k ¼ 0; 1; 2;/;N � 1 (4.19)

DSP
processing
DFT or FFT

Power
spectrum or
amplitude
spectrumx n( )

X k( )

x n( )

n
T

T NT0

N 1

k

N f

N 1

A Pk k or 

0

0

T fs1/

f f Ns /

N / 2

f kf Ns /

FIGURE 4.7

Applications of DFT/FFT.
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We can modify the amplitude spectrum to a one-side amplitude spectrum by doubling the amplitudes
in Equation (4.19), keeping the original DC term at k ¼ 0. Thus we have

Ak ¼

8>>><
>>>:

1

N
jXð0Þj; k ¼ 0

2

N
jXðkÞj; k ¼ 1;/;N=2

(4.20)

We can also map the frequency bin k to its corresponding frequency as

f ¼ kfs
N

(4.21)

Correspondingly, the phase spectrum is given by

fk ¼ tan�1

�
Imag½XðkÞ�
Real½XðkÞ�

�
; k ¼ 0; 1; 2;/;N � 1 (4.22)

Besides the amplitude spectrum, the power spectrum is also used. The DFT power spectrum is
defined as

Pk ¼ 1

N2
jXðkÞj2¼ 1

N2

n
ðReal½XðkÞ�Þ2þðImag½XðkÞ�Þ2

o
; k ¼ 0; 1; 2;/;N � 1 (4.23)

Similarly, for a one-sided power spectrum, we get

Pk ¼

8>>><
>>>:

1

N2
jXð0Þj2 k ¼ 0

2

N2
jXðkÞj2 k ¼ 0; 1;/;N=2

(4.24)

and

f ¼ kfs
N

(4.25)

Again, notice that the frequency resolution, which denotes the frequency spacing between DFT
coefficients in the frequency domain, is defined as

Df ¼ fs
N

ðHzÞ (4.26)

It follows that better frequency resolution can be achieved by using a longer data sequence.
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EXAMPLE 4.5
Consider the sequence in Figure 4.8. Assuming that fs ¼ 100 Hz, compute the amplitude spectrum, phase
spectrum, and power spectrum.

Solution:
Since N ¼ 4, and using the DFT shown in Example 4.1, we find the DFT coefficients to be

X ð0Þ ¼ 10
X ð1Þ ¼ �2þ j2
X ð2Þ ¼ �2
X ð3Þ ¼ �2� j2

The amplitude spectrum, phase spectrum, and power density spectrum are computed as follows:
for k ¼ 0, f ¼ k$fs=N ¼ 0� 100=4 ¼ 0 Hz,

A0 ¼ 1

4
jX ð0Þj ¼ 2:5; f0 ¼ tan�1

�
Imag½X ð0Þ�
Realð½X ð0Þ�

�
¼ 00; P0 ¼ 1

42
jX ð0Þj2 ¼ 6:25

for k ¼ 1, f ¼ 1� 100=4 ¼ 25 Hz,

A1 ¼ 1

4
jX ð1Þj ¼ 0:7071; f1 ¼ tan�1

�
Imag½X ð1Þ�
Real½X ð1Þ�

�
¼ 1350; P1 ¼ 1

42
jX ð1Þj2 ¼ 0:5000

for k ¼ 2, f ¼ 2� 100=4 ¼ 50 Hz,

A2 ¼ 1

4
jX ð2Þj ¼ 0:5; f2 ¼ tan�1

�
Imag½X ð2Þ�
Real½X ð2Þ�

�
¼ 1800; P2 ¼ 1

42
jX ð2Þj2 ¼ 0:2500

Similarly,
for k ¼ 3, f ¼ 3� 100=4 ¼ 75 Hz,

A3 ¼ 1

4
jX ð3Þj ¼ 0:7071; f3 ¼ tan�1

�
Imag½X ð3Þ�
Real½X ð3Þ�

�
¼ �1350; P3 ¼ 1

42
jX ð3Þj2 ¼ 0:5000:

Thus, the sketches for the amplitude spectrum, phase spectrum, and power spectrum are given in Figures 4.9A
and B.
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2
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3
4

4

3

2

T NT0

FIGURE 4.8

Sampled values in Example 4.5.
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Note that the folding frequency in this example is 50 Hz and the amplitude and power spectrum values at
75 Hz are each image counterparts (corresponding negative-indexed frequency components), respectively. Thus
values at 0, 25, 50 Hz correspond to the positive-indexed frequency components.

We can easily find the one-sided amplitude spectrum and one-sided power spectrum as

A0 ¼ 2:5; A1 ¼ 1:4141; A2 ¼ 1 and

P0 ¼ 6:25; P1 ¼ 2; P2 ¼ 1

FIGURE 4.9A

Amplitude spectrum and phase spectrum in Example 4.5.

FIGURE 4.9B

Power density spectrum in Example 4.5.
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We plot the one-sided amplitude spectrum for comparison in Figure 4.10.
Note that in the one-sided amplitude spectrum, the negative-indexed frequency components are added back

to the corresponding positive-indexed frequency components; thus each amplitude value other than the DC term is
doubled. It represents the frequency components up to the folding frequency.

EXAMPLE 4.6
Consider a digital sequence sampled at the rate of 10 kHz. If we use 1,024 data points and apply the 1,024-point
DFT to compute the spectrum,

a. determine the frequency resolution;
b. determine the highest frequency in the spectrum.

Solution:

a. Df ¼ fs
N

¼ 10000

1024
¼ 9:776 Hz

b. The highest frequency is the folding frequency, given by

fmax ¼ N

2
Df ¼ fs

2

¼ 512$9:776 ¼ 5000 Hz:

As shown in Figure 4.7, the DFT coefficients may be computed via a fast Fourier transform (FFT)
algorithm. The FFT is a very efficient algorithm for computing DFT coefficients. The FFT algorithm
requires a time domain sequence xðnÞwhere the number of data points is equal to a power of 2; that is,
2m samples, where m is a positive integer. For example, the number of samples in xðnÞ can be
N ¼ 2; 4; 8; 16; etc.

When using the FFT algorithm to compute DFT coefficients, where the length of the available data
is not equal to a power of 2 (as required by the FFT), we can pad the data sequence with zeros to create

Ak

k
0 1 2

2

4

f Hz( )

2 5.
14141.

1

0 25 50

FIGURE 4.10

One-sided amplitude spectrum in Example 4.5.
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a new sequence with a larger number of samples, N ¼ 2m > N. The modified data sequence for
applying FFT, therefore, is

xðnÞ ¼
(
xðnÞ 0 � n � N � 1

0 N � n � N � 1
(4.27)

It is very important to note that the signal spectra obtained via zero-padding the data sequence in
Equation (4.27) do not add any new information and do not contain more accurate signal spectral
presentation. In this situation, the frequency spacing is reduced due to more DFT points, and the
achieved spectrum is an interpolated version with “better display.” We illustrate the zero-padding
effect via the following example instead of theoretical analysis. A theoretical discussion of zero
padding in FFT can be found in Proakis and Manolakis (1996).

Figure 4.11(a) shows the 12 data samples from an analog signal containing frequencies of 10 Hz
and 25 Hz at a sampling rate of 100 Hz, and the amplitude spectrum obtained by applying the DFT.
Figure 4.11(b) displays the signal samples with padding of four zeros to the original data to make up
a data sequence of 16 samples, along with the amplitude spectrum calculated by FFT. The data
sequence padded with 20 zeros and its calculated amplitude spectrum using FFT are shown in
Figure 4.11(c). It is evident that increasing the data length via zero padding to compute the signal
spectrum does not add basic information and does not change the spectral shape but gives the
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FIGURE 4.11

Zero-padding effect by using FFT.
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“interpolated spectrum” with reduced frequency spacing. We can get a better view of the two spectral
peaks described in this case.

The only way to obtain the detailed signal spectrum with a fine frequency resolution is to apply
more available data samples, that is, a longer sequence of data. Here, we choose to pad the least
number of zeros to satisfy the minimum FFT computational requirement. Let us look at another
example.

EXAMPLE 4.7
We use the DFT to compute the amplitude spectrum of a sampled data sequence with a sampling rate
fs ¼ 10 kHz. Given a requirement that the frequency resolution be less than 0.5 Hz, determine the number of data
points by using the FFT algorithm, assuming that the data samples are available.

Solution:

Df ¼ 0:5 Hz

N ¼ fs
Df

¼ 10;000

0:5
¼ 20;000

Since we use the FFT to compute the spectrum, the number of data points must be a power of 2, that is,

N ¼ 215 ¼ 32;768

The resulting frequency resolution can be recalculated as

Df ¼ fs
N

¼ 10;000

32;768
¼ 0:31 Hz:

Next, we study a MATLAB example.

EXAMPLE 4.8
Consider the sinusoid

xðnÞ ¼ 2$sin

�
2;000p

n

8;000

�

obtained by sampling the analog signal

xðtÞ ¼ 2$sinð2;000ptÞ

with a sampling rate of fs ¼ 8,000 Hz,

a. Use the MATLAB DFT to compute the signal spectrum where the frequency resolution is equal to or less
than 8 Hz.

b. Use the MATALB FFT and zero padding to compute the signal spectrum, assuming that the data samples in
(a) are available.
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Solution:
a. The number of data points is

N ¼ fs
Df

¼ 8;000

8
¼ 1;000

There is no zero padding needed if we use the DFT formula. The detailed implementation is given in Program 4.1.
The first and second plots in Figure 4.12 show the two-sided amplitude and power spectra, respectively, using the
DFT, where each frequency counterpart at 7,000 Hz appears. The third and fourth plots are the one-sided
amplitude and power spectra, where the true frequency contents are displayed from 0 Hz to the Nyquist frequency
of 4 kHz (folding frequency).
b. If the FFT is used, the number of data points must be a power of 2. Hence we choose

N ¼ 210 ¼ 1;024

Assuming there are only 1,000 data samples available in (a), we need to pad 24 zeros to the original 1,000
data samples before applying the FFT algorithm, as required. Thus the calculated frequency resolution is
Df ¼ fs=N ¼ 8;000=1;024 ¼ 7:8125 Hz. Note that this is an interpolated frequency resolution by using zero
padding. The zero padding actually interpolates a signal spectrum and carries no additional frequency information.
Figure 4.13 shows the spectral plots using FFT. The detailed implementation is given in Program 4.1.
Program 4.1. MATLAB program for Example 4.8.

% Example 4.8
close all;clear all
% Generate the sine wave sequence
fs¼8000; % Sampling rate
N¼1000; % Number of data points
x¼2*sin(2000*pi*[0:1:N-1]/fs);
% Apply the DFT algorithm
figure(1)
xf¼abs(fft(x))/N; % Compute the amplitude spectrum
P¼xf.*xf; % Compute power spectrum
f¼[0:1:N-1]*fs/N; % Map the frequency bin to frequency (Hz)
subplot(2,1,1); plot(f,xf);grid
xlabel(’Frequency (Hz)’); ylabel(’Amplitude spectrum (DFT)’);
subplot(2,1,2);plot(f,P);grid
xlabel(’Frequency (Hz)’); ylabel(’Power spectrum (DFT)’);
figure(2)
% Convert it to one side spectrum
xf(2:N)¼2*xf(2:N); % Get the single-side spectrum
P¼xf.*xf; % Calculate the power spectrum
f¼[0:1:N/2]*fs/N % Frequencies up to the folding frequency
subplot(2,1,1); plot(f,xf(1:N/2þ1));grid
xlabel(’Frequency (Hz)’); ylabel(’Amplitude spectrum (DFT)’);
subplot(2,1,2);plot(f,P(1:N/2þ1));grid
xlabel(’Frequency (Hz)’); ylabel(’Power spectrum (DFT)’);
figure (3)
% Zero padding to the length of 1024
x¼[x,zeros(1,23)];
N¼length(x);
xf¼abs(fft(x))/N; % Compute amplitude spectrum with zero padding
P¼xf.*xf; % Compute power spectrum
f¼[0:1:N-1]*fs/N; % Map frequency bin to frequency (Hz)
subplot(2,1,1); plot(f,xf);grid
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Amplitude spectrum and power spectrum using DFT for Example 4.8.
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FIGURE 4.13

Amplitude spectrum and power spectrum using FFT for Example 4.8.
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xlabel(’Frequency (Hz)’); ylabel(’Amplitude spectrum (FFT)’);
subplot(2,1,2);plot(f,P);grid
xlabel(’Frequency (Hz)’); ylabel(’Power spectrum (FFT)’);
figure(4)
% Convert it to one side spectrum
xf(2:N)¼2*xf(2:N);
P¼xf.*xf;
f¼[0:1:N/2]*fs/N;
subplot(2,1,1); plot(f,xf(1:N/2þ1));grid
xlabel(’Frequency (Hz)’); ylabel(’Amplitude spectrum (FFT)’);
subplot(2,1,2);plot(f,P(1:N/2þ1));grid
xlabel(’Frequency (Hz)’); ylabel(’Power spectrum (FFT)’);

4.3 SPECTRAL ESTIMATION USING WINDOW FUNCTIONS
When we apply DFT to the sampled data in the previous section, we theoretically imply the following
assumptions: first, that the sampled data are periodic (repeat themselves), and second, that the sampled
data are continuous and band limited to the folding frequency. The second assumption is often
violated, and the discontinuity produces undesired harmonic frequencies. Consider a pure 1-Hz sine
wave with 32 samples shown in Figure 4.14.

As shown in the figure, if we use a window size of N ¼ 16 samples, which is a multiple of the two
waveform cycles, the second window has continuity with the first. However, when the window size is
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FIGURE 4.14

Sampling a 1-Hz sine wave using (top) 16 samples per cycle and (bottom) 18 samples per cycle.
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chosen to be 18 samples, which is not multiple of the waveform cycles (2.25 cycles), there is
a discontinuity in the second window. It is this discontinuity that produces harmonic frequencies
that are not present in the original signal. Figure 4.15 shows the spectral plots for both cases using the
DFT/FFT directly.

The first spectral plot contains a single frequency, as we expected, while the second spectrum has
the expected frequency component plus many harmonics, which do not exist in the original signal.
We called such an effect spectral leakage. The amount of spectral leakage shown in the second plot
is due to amplitude discontinuity in time domain. The bigger the discontinuity, the more the leakage.
To reduce the effect of spectral leakage, a window function can be used whose amplitude tapers
smoothly and gradually toward zero at both ends. Applying the window function wðnÞ to a data
sequence xðnÞ to obtain the windowed sequence xwðnÞ is illustrated in Figure 4.16 using
Equation (4.28):

xwðnÞ ¼ xðnÞwðnÞ; for n ¼ 0; 1;/;N � 1 (4.28)

The top plot is the data sequence xðnÞ, and the middle plot is the window function wðnÞ. The bottom
plot in Figure 4.16 shows that the windowed sequence xwðnÞ is tapped down by a window function to
zero at both ends such that the discontinuity is dramatically reduced.
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Signal samples and spectra without spectral leakage and with spectral leakage.
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EXAMPLE 4.9
In Figure 4.16, given

• xð2Þ ¼ 1 and wð2Þ ¼ 0:2265
• xð5Þ ¼ �0:7071 and wð5Þ ¼ 0:7008

calculate the windowed sequence data points xw ð2Þ and xw ð5Þ.
Solution:
Applying the window function operation leads to

xw ð2Þ ¼ xð2Þ � wð2Þ ¼ 1� 0:2265 ¼ 0:2265 and
xw ð5Þ ¼ xð5Þ � wð5Þ ¼ �0:7071� 0:7008 ¼ �0:4956

which agree with the values shown in the bottom plot in Figure 4.16.

Using the window function shown in Example 4.9, the spectral plot is reproduced. As a result, the
spectral leakage is greatly reduced, as shown in Figure 4.17.

The common window functions are listed as follows.
The rectangular window (no window function):

wRðnÞ ¼ 1; 0 � n � N � 1 (4.29)
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Illustration of the window operation.
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The triangular window:

wtriðnÞ ¼ 1� j2n� N þ 1j
N � 1

; 0 � n � N � 1 (4.30)

The Hamming window:

whmðnÞ ¼ 0:54� 0:46cos

�
2pn

N � 1

�
; 0 � n � N � 1 (4.31)

The Hanning window:

whnðnÞ ¼ 0:5� 0:5cos

�
2pn

N � 1

�
; 0 � n � N � 1 (4.32)

Plots for each window function for a size of 20 samples are shown in Figure 4.18.
The following example details each step for computing the spectral information using the window
functions.
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Comparison of spectra calculated without using a window function and using a window function to reduce

spectral leakage.
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EXAMPLE 4.10
Considering the sequence xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, xð3Þ ¼ 4, and given fs ¼ 100 Hz,
T ¼ 0:01 seconds; compute the amplitude spectrum, phase spectrum, and power spectrum

a. using the triangle window function;
b. using the Hamming window function.

Solution:
a. Since N ¼ 4, from the triangular window function, we have

wtrið0Þ ¼ 1� j2� 0� 4þ 1j
4� 1

¼ 0

wtrið1Þ ¼ 1� j2� 1� 4þ 1j
4� 1

¼ 0:6667

Similarly, wtrið2Þ ¼ 0:6667, wtrið3Þ ¼ 0. Next, the windowed sequence is computed as

xw ð0Þ ¼ xð0Þ � wtrið0Þ ¼ 1� 0 ¼ 0
xw ð1Þ ¼ xð1Þ � wtrið1Þ ¼ 2� 0:6667 ¼ 1:3334
xw ð2Þ ¼ xð2Þ � wtrið2Þ ¼ 3� 0:6667 ¼ 2
xw ð3Þ ¼ xð3Þ � wtrið3Þ ¼ 4� 0 ¼ 0
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Plots of window sequences.
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Applying DFT Equation (4.8) to xw ðnÞ for k ¼ 0;1;2;3, respectively,

X ðkÞ ¼ xw ð0ÞWk�0
4 þ xð1ÞWk�1

4 þ xð2ÞWk�2
4 þ xð3ÞWk�3

4

We obtain the following results:

X ð0Þ ¼ 3:3334
X ð1Þ ¼ �2� j1:3334
X ð2Þ ¼ 0:6666
X ð3Þ ¼ �2þ j1:3334

Df ¼ 1

NT
¼ 1

4$0:01
¼ 25 Hz

Applying Equations (4.19), (4.22), and (4.23) leads to

A0 ¼ 1

4
jX ð0Þj ¼ 0:8334; f0 ¼ tan�1

�
0

3:3334

�
¼ 00; P0 ¼ 1

42
jX ð0Þj2 ¼ 0:6954

A1 ¼ 1

4
jX ð1Þj ¼ 0:6009; f1 ¼ tan�1

��1:3334

�2

�
¼ �146:310; P1 ¼ 1

42
jX ð1Þj2

¼ 0:3611

A2 ¼ 1

4
jX ð2Þj ¼ 0:1667; f2 ¼ tan�1

�
0

0:6666

�
¼ 00; P1 ¼ 1

42
jX ð2Þj2 ¼ 0:0278

Similarly,

A3 ¼ 1

4
jX ð3Þj ¼ 0:6009; f3 ¼ tan�1

�
1:3334

�2

�
¼ 146:310; P3 ¼ 1

42
jX ð3Þj2 ¼ 0:3611

b. Since N ¼ 4, from the Hamming window function, we have

whmð0Þ ¼ 0:54� 0:46 cos

�
2p� 0

4� 1

�
¼ 0:08

whmðnÞ ¼ 0:54� 0:46 cos

�
2p� 1

4� 1

�
¼ 0:77

Similarly,whmð2Þ ¼ 0:77, whmð3Þ ¼ 0:08. Next, the windowed sequence is computed as

xw ð0Þ ¼ xð0Þ � whmð0Þ ¼ 1� 0:08 ¼ 0:08
xw ð1Þ ¼ xð1Þ � whmð1Þ ¼ 2� 0:77 ¼ 1:54
xw ð2Þ ¼ xð2Þ � whmð2Þ ¼ 3� 0:77 ¼ 2:31
xw ð0Þ ¼ xð3Þ � whmð3Þ ¼ 4� 0:08 ¼ 0:32

Applying DFT Equation (4.8) to xw ðnÞ for k ¼ 0;1;2;3, respectively,

X ðkÞ ¼ xw ð0ÞWk�0
4 þ xð1ÞWk�1

4 þ xð2ÞWk�2
4 þ xð3ÞWk�3

4
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We obtain the following:

X ð0Þ ¼ 4:25
X ð1Þ ¼ �2:23� j1:22
X ð2Þ ¼ 0:53
X ð3Þ ¼ �2:23þ j1:22

Df ¼ 1

NT
¼ 1

4$0:01
¼ 25 Hz

Applying Equations (4.19), (4.22), and (4.23), we achieve

A0 ¼ 1

4
jX ð0Þj ¼ 1:0625; f0 ¼ tan�1

�
0

4:25

�
¼ 00; P0 ¼ 1

42
jX ð0Þj2 ¼ 1:1289

A1 ¼ 1

4
jX ð1Þj ¼ 0:6355; f1 ¼ tan�1

��1:22

�2:23

�
¼ �151:320; P1 ¼ 1

42
jX ð1Þj2 ¼ 0:4308

A2 ¼ 1

4
jX ð2Þj ¼ 0:1325; f2 ¼ tan�1

�
0

0:53

�
¼ 00 ; P2 ¼ 1

42
jX ð2Þj2 ¼ 0:0176

Similarly,

A3 ¼ 1

4
jX ð3Þj ¼ 0:6355; f3 ¼ tan�1

�
1:22

�2:23

�
¼ 151:320; P3 ¼ 1

42
jX ð3Þj2 ¼ 0:4308

EXAMPLE 4.11
Given the sinusoid

xðnÞ ¼ 2$sin

�
2;000p

n

8;000

�

obtained using a sampling rate of fs ¼ 8;000 Hz, use the DFT to compute the spectrum with the following
specifications:

a. Compute the spectrum of a triangular window function with window size ¼ 50.
b. Compute the spectrum of a Hamming window function with window size ¼ 100.
c. Compute the spectrum of a Hanning window function with window size ¼ 150 and a one-sided spectrum.

Solution:
The MATLAB program is listed in Program 4.2, and results are plotted in Figures 4.19 to 4.21. As compared with
the no-window (rectangular window) case, all three windows are able to effectively reduce the spectral leakage, as
shown in the figures.
Program 4.2. MATLAB program for Example 4.11.
%Example 4.11
close all;clear all
% Generate the sine wave sequence
fs¼8000; T¼1/fs; % Sampling rate and sampling period
x¼2*sin(2000*pi*[0:1:50]*T); % Generate 51 2000-Hz samples.
% Apply the FFT algorithm
N¼length(x);
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index_t¼[0:1:N-1];
f¼[0:1:N-1]*8000/N; % Map frequency bin to frequency (Hz)
xf¼abs(fft(x))/N; % Calculate amplitude spectrum
figure(1)
%Using Bartlett window
x_b¼x.*bartlett(N)’; % Apply triangular window function
xf_b¼abs(fft(x_b))/N; % Calculate amplitude spectrum
subplot(2,2,1);plot(index_t,x);grid
xlabel(’Time index n’); ylabel(’x(n)’);
subplot(2,2,3); plot(index_t,x_b);grid
xlabel(’Time index n’); ylabel(’Triangular windowed x(n)’);
subplot(2,2,2);plot(f,xf);grid;axis([0 8000 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Ak (no window)’);
subplot(2,2,4); plot(f,xf_b);grid; axis([0 8000 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Triangular windowed Ak’);
figure(2)
% Generate the sine wave sequence
x¼2*sin(2000*pi*[0:1:100]*T); % Generate 101 2000-Hz samples.
% Apply the FFT algorithm
N¼length(x);
index_t¼[0:1:N-1];
f¼[0:1:N-1]*fs/N;
xf¼abs(fft(x))/N;
% Using Hamming window
x_hm¼x.*hamming(N)’; % Apply Hamming window function
xf_hm¼abs(fft(x_hm))/N; % Calculate amplitude spectrum
subplot(2,2,1);plot(index_t,x);grid
xlabel(’Time index n’); ylabel(’x(n)’);
subplot(2,2,3); plot(index_t,x_hm);grid
xlabel(’Time index n’); ylabel(’Hamming windowed x(n)’);
subplot(2,2,2);plot(f,xf);grid;axis([0 fs 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Ak (no window)’);
subplot(2,2,4); plot(f,xf_hm);grid;axis([0 fs 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Hamming windowed Ak’);
figure(3)
% Generate the sine wave sequence
x¼2*sin(2000*pi*[0:1:150]*T); % Generate 151 2-kHz samples
% Apply the FFT algorithm
N¼length(x);
index_t¼[0:1:N-1];
f¼[0:1:N-1]*fs/N;
xf¼2*abs(fft(x))/N;xf(1)¼xf(1)/2; % Single-sided spectrum
%Using Hanning window
x_hn¼x.*hanning(N)’;
xf_hn¼2*abs(fft(x_hn))/N;xf_hn(1)¼xf_hn(1)/2; % Single-sided spectrum
subplot(2,2,1);plot(index_t,x);grid
xlabel(’Time index n’); ylabel(’x(n)’);
subplot(2,2,3); plot(index_t,x_hn);grid
xlabel(’Time index n’); ylabel(’Hanning windowed x(n)’);
subplot(2,2,2);plot(f(1:(N-1)/2),xf(1:(N-1)/2));grid;axis([0 fs/2 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Ak (no window)’);
subplot(2,2,4); plot(f(1:(N-1)/2),xf_hn(1:(N-1)/2));grid;axis([0 fs/2 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Hanning windowed Ak’);
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FIGURE 4.19

Comparison of a spectrum without using a window function and a spectrum using a triangular window with

50 samples in Example 4.11.

0 50 100
-2

-1

0

1

2

Time index n

x(
n)

0 50 100
-2

-1

0

1

2

Time index n

H
am

m
in

g 
w

in
do

w
ed

 x
(n

)

0 2000 4000 6000 8000
0

0.5

1

Frequency (Hz)

Ak
 (n

o 
w

in
do

w
)

0 2000 4000 6000 8000
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

H
am

m
in

g 
w

in
do

w
ed

 A
k

FIGURE 4.20

Comparison of a spectrum without using a window function and a spectrum using a Hamming window with

100 samples in Example 4.11.
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4.4 APPLICATION TO SIGNAL SPECTRAL ESTIMATION
The following plots compare amplitude spectra for speech data (we.dat) with 2,001 samples and
a sampling rate of 8,000 Hz using the rectangular window (no window) function and the
Hamming window function. As demonstrated in Figure 4.22 (two-sided spectrum) and Figure 4.23
(one-sided spectrum), there is little difference between the amplitude spectrum using the
Hamming window function and the spectrum without using the window function. This is due to
the fact that when the data length of the sequence (e.g., 2,001 samples) increases, the frequency
resolution will be improved and the spectral leakage will become less significant. However, when
data length is short, the reduction in spectral leakage using a window function will be more
prominent.

Next, we compute the one-sided spectrum for 32-bit seismic data sampled at 15 Hz (provided by
the US Geological Survey, Albuquerque Seismological Laboratory) with 6,700 data samples. The
computed spectral plots without using a window function and using the Hamming window are
displayed in Figure 4.24. We can see that most of seismic signal components are below 3 Hz.
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FIGURE 4.21

Comparison of a one-sided spectrum without using the window function and a one-sided spectrum using

a Hanning window with 150 samples in Example 4.11.
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FIGURE 4.22

Comparison of a spectrum without using a window function and a spectrum using the Hamming window for

speech data.
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FIGURE 4.23

Comparison of a one-sided spectrum without using a window function and a one-sided spectrum using the

Hamming window for speech data.
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FIGURE 4.24

Comparison of a one-sided spectrum without using a window function and a one-sided spectrum using the

Hamming window for seismic data.
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FIGURE 4.25

Comparison of a one-sided spectrum without using a window function and a one-sided spectrum using the

Hamming window for electrocardiogram data.
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We also compute the one-sided spectrum for a standard electrocardiogram (ECG) signal from the
MIT–BIH (Massachusetts Institute of Technology–Beth Israel Hospital) Database. The ECG signal
contains frequency components ranging from 0.05 to 100 Hz sampled at 500 Hz. As shown in
Figure 4.25, there is a spike located at 60 Hz. This is due to the 60-Hz power line interference when the
ECG is acquired via the ADC acquisition process. This 60-Hz interference can be removed by using
a digital notch filter, which will be studied in Chapter 8.

Figure 4.26 shows a vibration signal and its spectrum. The vibration signal is captured using an
accelerometer sensor attached to a simple supported beam while an impulse force is applied to
a location that is close to the middle of the beam. The sampling rate is 1 kHz. As shown in Figure 4.26,
four dominant modes (natural frequencies corresponding to locations of spectral peaks) can be easily
identified from the displayed spectrum.

We now present another practical example for vibration signature analysis of a defective gear
tooth, described in Section 1.3.5. Figure 4.27 shows a gearbox containing two straight bevel gears
with a transmission ratio of 1.5:1 and the number of teeth on the pinion and gear are 18 and 27.
The vibration data is collected by an accelerometer installed on the top of the gearbox. The
data acquisition system uses a sampling rate of 12.8 kHz. The meshing frequency is determined as
fm ¼ fiðRPMÞ � 18=60 ¼ 300 Hz, where the input shaft frequency is fi ¼ 1000 RPM ¼ 16:67Hz.
Figures 4.28–4.31 show the baseline vibration signal and spectrum for a gearbox in good condition,
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FIGURE 4.26

Comparison of a one-sided spectrum without using a window function and a one-sided spectrum using the

Hamming window for vibration signal.
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along with the vibration signals and spectra for three different damage severity levels (there are five
levels classified by SpectraQuest, Inc; the spectrums shown are for severity level 1 [lightly chipped];
severity level 4 [heavily chipped]; and severity level 5 [missing tooth]). As we can see, the baseline
spectrum contains the meshing frequency component of 300 Hz and a sideband frequency compo-
nent of 283.33 Hz (300–16.67). We can observe that the sidebands (fm � fi, fm � 2fi .) become
more dominant when the severity level increases. Hence, the spectral information is very useful for
monitoring the health condition of the gearbox.

(a) Gearbox     (b) Pinion and gear  

        (c) Damaged pinion 

missing tooth

FIGURE 4.27

Vibration signature analysis of a gearbox.

(Courtesy of SpectaQuest, Inc.)
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FIGURE 4.28

Vibration signal and spectrum from the good condition gearbox.

(Data provided by SpectaQuest, Inc.)
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FIGURE 4.29

Vibration signal and spectrum for damage severity level 1.

(Data provided by SpectaQuest, Inc.)
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FIGURE 4.30

Vibration signal and spectrum for damage severity level 4.

(Data provided by SpectaQuest, Inc.)
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FIGURE 4.31

Vibration signal and spectrum for damage severity level 5.

(Data provided by SpectaQuest, Inc.)

122 CHAPTER 4 Discrete Fourier Transform and Signal Spectrum



4.5 FAST FOURIER TRANSFORM
Now we study FFT in detail. FFT is a very efficient algorithm in computing DFT coefficients and can
reduce a very large amount of computational complexity (multiplications). Without loss of generality,
we consider the digital sequence xðnÞ consisting of 2m samples, where m is a positive integer, that is,
the number of samples of the digital sequence xðnÞ is a power of 2, N ¼ 2; 4; 8; 16; etc. If xðnÞ does
not contain 2m samples, then we simply append it with zeros until the number of the appended
sequence is a power of 2.

In this section, we focus on two formats. One is called the decimation-in-frequency algorithm,
while the other is the decimation-in-time algorithm. They are referred to as the radix-2 FFTalgorithms.
Other types of FFT algorithms are the radix-4 and the split radix and their advantages can be explored
in more detail in other texts (see Proakis and Manolakis, 1996).

4.5.1 Decimation-in-Frequency Method

We begin with the definition of DFT studied in the opening section in this chapter:

XðkÞ ¼
XN�1

n¼ 0

xðnÞWkn
N for k ¼ 0; 1;/;N � 1 (4.33)

where WN ¼ e�j2p
N is the twiddle factor, and N ¼ 2; 4; 8; 16;/. Equation (4.33) can be expanded as

XðkÞ ¼ xð0Þ þ xð1ÞWk
N þ/þ xðN � 1ÞWkðN�1Þ

N (4.34)

Again, if we split Equation (4.34) into

XðkÞ ¼ xð0Þ þ xð1ÞWk
N þ/þ x

�
N

2
� 1

�
W

kðN=2�1Þ
N

þx

�
N

2

�
WkN=2 þ/þ xðN � 1ÞWkðN�1Þ

N

(4.35)

then we can rewrite it as a sum of the following two parts:

XðkÞ ¼
XðN=2Þ�1

n¼ 0

xðnÞWkn
N þ

XN�1

n¼N=2

xðnÞWkn
N (4.36)

Modifying the second term in Equation (4.36) yields

XðkÞ ¼
XðN=2Þ�1

n¼ 0

xðnÞWkn
N þW

ðN=2Þk
N

XðN=2Þ�1

n¼ 0

x

�
nþ N

2

�
Wkn

N (4.37)
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Recall W
N=2
N ¼ e�j2pðN=2Þ

N ¼ e�jp ¼ �1 ; then we have

XðkÞ ¼
XðN=2Þ�1

n¼ 0

�
xðnÞ þ ð�1Þkx

�
nþ N

2

��
Wkn

N (4.38)

Now letting k ¼ 2m be an even number we obtain

Xð2mÞ ¼
XðN=2Þ�1

n¼ 0

�
xðnÞ þ x

�
nþ N

2

��
W2mn

N (4.39)

while substituting k ¼ 2mþ 1 (an odd number) yields

Xð2mþ 1Þ ¼
XðN=2Þ�1

n¼ 0

�
xðnÞ � x

�
nþ N

2

��
Wn

NW
2mn
N (4.40)

Using the fact that W2
N ¼ e�j2p�2

N ¼ e�j 2p
ðN=2Þ ¼ WN=2, it follows that

Xð2mÞ ¼
XðN=2Þ�1

n¼ 0

aðnÞWmn
N=2 ¼ DFTfaðnÞwithðN=2Þpointsg (4.41)

Xð2mþ 1Þ ¼
XðN=2Þ�1

n¼ 0

bðnÞWn
NW

mn
N=2 ¼ DFT

�
bðnÞWn

N with ðN=2Þpoints� (4.42)

where aðnÞ and bðnÞ are introduced and expressed as

aðnÞ ¼ xðnÞ þ x

�
nþ N

2

�
; for n ¼ 0; 1/;

N

2
� 1 (4.43a)

bðnÞ ¼ xðnÞ � x

�
nþ N

2

�
; for n ¼ 0; 1;/;

N

2
� 1 (4.43b)

Equations (4.33), (4.41), and (4.42) can be summarized as

DFTfxðnÞ with N pointsg ¼
(

DFTfaðnÞ with ðN=2Þ pointsg
DFT

�
bðnÞWn

N with ðN=2Þ points� (4.44)

The computation process is illustrated in Figure 4.32. As shown in this figure, there are three graphical
operations, which are illustrated Figure 4.33.
If we continue the process described by Figure 4.32, we obtain the block diagrams shown in Figures
4.34 and 4.35.

Figure 4.35 illustrates the FFT computation for the eight-point DFT, where there are 12 complex
multiplications. This is a big saving as compared with the eight-point DFT with 64 complex
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The first iteration of the eight-point FFT.

x

y

z x y

1

x

y
z x y

x
w

z wx

FIGURE 4.33

Definitions of the graphical operations.
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The second iteration of the eight-point FFT.
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Block diagram for the eight-point FFT (total 12 multiplications).
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multiplications. For a data length of N, the number of complex multiplications for DFT and FFT,
respectively, are determined by

Complex multiplications of DFT ¼ N2; and

Complex multiplications of FFT ¼ N

2
log2ðNÞ

To see the effectiveness of FFT, let us consider a sequence with 1,024 data points. Applying DFT
will require 1; 024� 1; 024 ¼ 1; 048; 576 complex multiplications; however, applying FFT will
require only ð1024=2Þlog2ð1; 024Þ ¼ 5; 120 complex multiplications. Next, the index (bin
number) of the eight-point DFT coefficient XðkÞ becomes 0, 4, 2, 6, 1, 5, 3, and 7, respectively,
which is not the natural order. This can be fixed by index matching. The index matching between
the input sequence and output frequency bin number by applying reversal bits is described in
Table 4.2.

Figure 4.36 explains the bit reversal process. First, the input data with indices 0, 1, 2, 3, 4, 5, 6, 7 are
split into two parts. The first half contains even indicesd0, 2, 4, 6dwhile the second half contains odd
indices. The first half with indices 0, 2, 4, 6 at the first iteration continues to be split into even indices 0,
4 and odd indices 2, 6 as shown in the second iteration. The second half with indices 1, 3, 5, 7 at the
first iteration is split to even indices 1, 5 and odd indices 3, 7 in the second iteration. The splitting
process continues to the end at the third iteration. The bit patterns of the output data indices are just the
respective reversed bit patterns of the input data indices.

Although Figure 4.36 illustrates the case of an eight-point FFT, this bit reversal process works as
long as N is a power of 2.

The inverse FFT is defined as

xðnÞ ¼ 1

N

XN�1

k¼ 0

XðkÞW�kn
N ¼ 1

N

XN�1

k¼ 0

XðkÞ ~Wkn
N ; for k ¼ 0; 1;/;N � 1 (4.45)

Table 4.2 Index Mapping for Fast Fourier Transform

Input Data Index Bits Reversal Bits Output Data

xð0Þ 000 000 Xð0Þ
xð1Þ 001 100 Xð4Þ
xð2Þ 010 010 Xð2Þ
xð3Þ 011 110 Xð6Þ
xð4Þ 100 001 Xð1Þ
xð5Þ 101 101 Xð5Þ
xð6Þ 110 011 Xð3Þ
xð7Þ 111 111 Xð7Þ
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Comparing Equation (4.45) with Equation (4.33), we notice the difference as follows: the twiddle
factor WN is changed to ~WN ¼ W�1

N , and the sum is multiplied by a factor of 1=N. Hence, by
modifying the FFT block diagram as shown in Figure 4.35, we achieve the inverse FFT block diagram
shown in Figure 4.37.

EXAMPLE 4.12
Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4,

a. evaluate its DFT X ðkÞ using the decimation-in-frequency FFT method;
b. determine the number of complex multiplications.

Solution:
a. Using the FFT block diagram in Figure 4.35, the result is shown in Figure 4.38.
b. From Figure 4.38, the number of complex multiplications is four, which can also be determined by

N

2
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Bit reversal process in FFT.

x( )0

x( )4

x( )2

x( )6

x( )1

x( )5

x( )3
x( )7

~
WN

0

~
WN

0

~
WN

0

~
WN

0

1

1

1

1

X ( )0
X ( )1

X ( )3

X ( )4

X ( )5

X ( )6

X ( )7

X ( )2

~
WN

0

~
WN

1

~
WN

2

~
WN

3

1

1

1

1

~
WN

0

~
WN

0

~
WN

2

~
WN

2

1

1

1

1

1

8
1

8
1

8
1

8
1

8
1

8
1

8
1

8

FIGURE 4.37

Block diagram for the inverse of eight-point FFT.
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EXAMPLE 4.13
Given the DFT sequence X ðkÞ for 0 � k � 3 computed in Example 4.12, evaluate its inverse DFT xðnÞ using the
decimation-in-frequency FFT method.

Solution:
Using the inverse FFT block diagram in Figure 4.37, we have the result shown in Figure 4.39.

4.5.2 Decimation-in-Time Method

In this method, we split the input sequence xðnÞ into the even indexed xð2mÞ and xð2mþ 1Þ, each with
N data points. Then Equation (4.33) becomes

XðkÞ ¼
XðN=2Þ�1

m¼ 0

xð2mÞW2mk
N þ

XðN=2Þ�1

m¼ 0

xð2mþ 1ÞWk
NW

2mk
N ; for k ¼ 0; 1;/;N � 1 (4.46)
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Four-point FFT block diagram in Example 4.12.

x( )0 1
x( )2 3
x( )1 2

x( )4 4

~
W4

0 1

~
W4

0 1

1

1

X ( )0 10

X j( )1 2 2

X j( )3 2 2

X ( )2 2
~

W4
0 1

~
W j4

11

1

1

4
Bit reversal

00
10
01

11

Bit index

00
01

10

11

8

4

12

j4

4

12
8

16

1

4
1

4
1

4

FIGURE 4.39

Four-point inverse FFT block diagram in Example 4.13.
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Using the relation W2
N ¼ WN=2, it follows that

XðkÞ ¼
XðN=2Þ�1

m¼ 0

xð2mÞWmk
N=2 þWk

N

XðN=2Þ�1

m¼ 0

xð2mþ 1ÞWmk
N=2 ; for k ¼ 0; 1;/;N � 1 (4.47)

Define new functions as

GðkÞ ¼
XðN=2Þ�1

m¼ 0

xð2mÞWmk
N=2 ¼ DFTfxð2mÞ with ðN=2Þ pointsg (4.48)

HðkÞ ¼
XðN=2Þ�1

m¼ 0

xð2mþ 1ÞWmk
N=2 ¼ DFTfxð2mþ 1Þ with ðN=2Þ pointsg (4.49)

Note that

GðkÞ ¼ G

�
k þ N

2

�
; for k ¼ 0; 1;/;

N

2
� 1 (4.50)

HðkÞ ¼ H

�
k þ N

2

�
; for k ¼ 0; 1;/;

N

2
� 1 (4.51)

Substituting Equations (4.50) and (4.51) into Equation (4.47) yields the first half frequency bins

XðkÞ ¼ GðkÞ þWk
NHðkÞ; for k ¼ 0; 1;/;

N

2
� 1 (4.52)

Considering Equations (4.50) and (4.51) and the fact that

W
ðN=2þkÞ
N ¼ �Wk

N (4.53)

the second half of frequency bins can be computed as follows:

X

�
N

2
þ k

�
¼ GðkÞ �Wk

NHðkÞ; for k ¼ 0; 1;/;
N

2
� 1 (4.54)

If we perform backward iterations, we can obtain the FFT algorithm. The procedure using Equations
(4.52) and (4.54) is illustrated in Figure 4.40, the block diagram for the eight-point FFT algorithm.
From a further computation, we obtain Figure 4.41. Finally, after three recursions, we end up with the
block diagram in Figure 4.42.
The index for each input sequence element can be achieved by bit reversal of the frequency index in
sequential order. Similar to the decimation-in-frequency method, after we change WN to ~WN in
Figure 4.42 and multiply the output sequence by a factor of 1=N, we derive the inverse FFT block
diagram for the eight-point inverse FFT in Figure 4.43.
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The second iteration.
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The eight-point FFT algorithm using decimation-in-time (12 complex multiplications).
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The first iteration.
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EXAMPLE 4.14
Given a sequence xðnÞ for 0� n � 3, where xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4, evaluate its DFT X ðkÞ
using the decimation-in-time FFT method.

Solution:
Using the block diagram in Figure 4.42 leads to the result shown in Figure 4.44.

EXAMPLE 4.15
Given the DFT sequence X ðkÞ for 0 � k � 3 computed in Example 4.14, evaluate its inverse DFT xðnÞ using the
decimation-in-time FFT method.

Solution:
Using the block diagram in Figure 4.43 yields Figure 4.45.
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The eight-point IFFT using decimation-in-time.
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The four-point FFT using decimation-in-time.
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The four-point IFFT using decimation-in-time.
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4.6 SUMMARY
1. The Fourier series coefficients for a periodic digital signal can be used to develop the DFT.
2. The DFT transforms a time sequence to the complex DFT coefficients, while the inverse DFT

transforms DFT coefficients back to the time sequence.
3. The frequency bin number is the same as the frequency index. Frequency resolution is the

frequency spacing between two consecutive frequency indices (two consecutive spectrum
components).

4. The DFT coefficients for a given digital signal are applied to compute the amplitude spectrum,
power spectrum, or phase spectrum.

5. The spectrum calculated from all the DFT coefficients represents the signal frequency range from 0
Hz to the sampling rate. The spectrum beyond the folding frequency is equivalent to the negative-
indexed spectrum from the negative folding frequency to 0 Hz. This two-sided spectrum can be
converted into a single-sided spectrum by doubling alternation-current (AC) components from 0
Hz to the folding frequency and retaining the DC component as is.

6. To reduce the burden of computing DFT coefficients, the FFT algorithm is used, which requires the
data length to be a power of 2. Sometimes zero padding is employed to make up the data length.
The zero padding actually interpolates the spectrum and does not carry any new information about
the signal; even the calculated frequency resolution is smaller due to the zero-padded longer length.

7. Applying a window function to the data sequence before DFT reduces the spectral leakage due to
abrupt truncation of the data sequence when performing spectral calculation for a short sequence.

8. Two radix-2 FFT algorithmsddecimation-in-frequency and decimation-in-timedare developed
via graphical illustrations.

4.7 PROBLEMS

4.1. Given a sequence xðnÞ for 0� n� 3, where xð0Þ ¼ 1, xð1Þ ¼ 1, xð2Þ ¼ �1, and xð3Þ ¼ 0,
compute its DFT XðkÞ.

4.2. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 4, xð1Þ ¼ 3, xð2Þ ¼ 2, and xð3Þ ¼ 1,
evaluate its DFT XðkÞ.

4.3. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 0:2, xð1Þ ¼ 0:2, xð2Þ ¼ �0:2, and
xð3Þ ¼ 0, compute its DFT XðkÞ.

4.4. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 0:8, xð1Þ ¼ 0:6, xð2Þ ¼ 0:4, and
xð3Þ ¼ 0:2, evaluate its DFT XðkÞ.

4.5. Given the DFT sequence XðkÞ for 0 � k � 3 obtained in Problem 4.2, evaluate its inverse
DFT xðnÞ.

4.6. Given a sequence xðnÞ, where xð0Þ ¼ 4,xð1Þ ¼ 3, xð2Þ ¼ 2, and xð3Þ ¼ 1 with two
additional zero-padded data points xð4Þ ¼ 0 and xð5Þ ¼ 0, evaluate its DFT XðkÞ.

4.7. Given the DFT sequence XðkÞ for 0 � k � 3 obtained in Problem 4.4, evaluate its inverse
DFT xðnÞ.
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4.8. Given a sequence xðnÞ, where xð0Þ ¼ 0:8, xð1Þ ¼ 0:6, xð2Þ ¼ 0:4, and xð3Þ ¼ 0:2 with
two additional zero-padded data points xð4Þ ¼ 0 and xð5Þ ¼ 0, evaluate its DFT XðkÞ.

4.9. Using the DFT sequence XðkÞ for 0 � k � 5 computed in Problem 4.6, evaluate the inverse
DFT for xð0Þ and xð4Þ.

4.10. Consider a digital sequence sampled at the rate of 20,000 Hz. If we use the 8,000-point DFT
to compute the spectrum, determine

a. the frequency resolution;

b. the folding frequency in the spectrum.

4.11. Using the DFT sequence XðkÞ for 0 � k � 5 computed in Problem 4.8, evaluate the inverse
DFT for xð0Þ and xð4Þ.

4.12. Consider a digital sequence sampled at the rate of 16,000 Hz. If we use the 4,000-point DFT
to compute the spectrum, determine

a. the frequency resolution;

b. the folding frequency in the spectrum.

4.13. We use the DFT to compute the amplitude spectrum of a sampled data sequence with
a sampling rate fs ¼ 2; 000 Hz. It requires the frequency resolution to be less than 0.5 Hz.
Determine the number of data points used by the FFT algorithm and actual frequency reso-
lution in Hz, assuming that the data samples are available for selecting the number of data
points.

4.14. Given the sequence in Figure 4.46 and assuming fs ¼ 100 Hz, compute the amplitude
spectrum, phase spectrum, and power spectrum.

4.15. Compute the following window functions for a size of eight:

a. Hamming window function;

b. Hanning window function.

x n( )

0

1

2 3

1

2

n

2

4

4

5

3

4

4

1 1

T NT0

1

FIGURE 4.46

Data sequence for Problem 4.14.
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4.16. Consider the following data sequence of length six:

xð0Þ ¼ 0; xð1Þ ¼ 1; xð2Þ ¼ 0; xð3Þ ¼ �1; xð4Þ ¼ 0; xð5Þ ¼ 1

Compute the windowed sequence xwðnÞ using the

a. triangular window function;

b. Hamming window function;

c. Hanning window function.

4.17. Compute the following window functions for a size of 10:

a. Hamming window function;

b. Hanning window function.

4.18. Consider the following data sequence of length six:

xð0Þ ¼ 0; xð1Þ ¼ 0:2; xð2Þ ¼ 0; xð3Þ ¼ �0:2; xð4Þ ¼ 0; xð5Þ ¼ 0:2

Compute the windowed sequence xwðnÞ using the

a. triangular window function;

b. Hamming window function;

c. Hanning window function.

4.19. Given the sequence in Figure 4.47 where fs ¼ 100 Hz and T ¼ 0:01 sec:, compute the
amplitude spectrum, phase spectrum, and power spectrum using the

a. triangular window;

b. Hamming window;

c. Hanning window.

4.20. Given the sinusoid

xðnÞ ¼ 2$sin

�
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FIGURE 4.47

Data sequence for Problem 4.19.
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obtained using a sampling rate of fs ¼ 8; 000 Hz, we apply the DFT to compute the
amplitude spectrum.

a. Determine the frequency resolution when the data length is 100 samples. Without using
the window function, is there any spectral leakage in the computed spectrum?
Explain.

b. Determine the frequency resolution when the data length is 73 samples. Without using the
window function, is there any spectral leakage in the computed spectrum?
Explain.

4.21. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 4, xð1Þ ¼ 3, xð2Þ ¼ 2, and xð3Þ ¼ 1,
evaluate its DFT XðkÞ using the decimation-in-frequency FFT method, and determine the
number of complex multiplications.

4.22. Given the DFT sequence XðkÞ for 0 � k � 3 obtained in Problem 4.21, evaluate its inverse
DFT xðnÞ using the decimation-in-frequency FFT method.

4.23. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 0:8, xð1Þ ¼ 0:6, xð2Þ ¼ 0:4, and
xð3Þ ¼ 0:2, evaluate its DFT XðkÞ using the decimation-in-frequency FFT method, and
determine the number of complex multiplications.

4.24. Given the DFT sequence XðkÞ for 0 � k � 3 obtained in Problem 4.23, evaluate its inverse
DFT xðnÞ using the decimation-in-frequency FFT method.

4.25. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 4, xð1Þ ¼ 3, xð2Þ ¼ 2, and xð3Þ ¼ 1,
evaluate its DFT XðkÞ using the decimation-in-time FFT method, and determine the number
of complex multiplications.

4.26. Given the DFT sequence XðkÞ for 0 � k � 3 computed in Problem 4.25, evaluate its inverse
DFT xðnÞ using the decimation-in-time FFT method.

4.27. Given a sequence xðnÞ for 0 � n � 3, where xð0Þ ¼ 0:8, xð1Þ ¼ 0:4, xð2Þ ¼ �0:4, and
xð3Þ ¼ �0:2, evaluate its DFT XðkÞ using the decimation-in-time FFT method, and
determine the number of complex multiplications.

4.28. Given the DFT sequence XðkÞ for 0 � k � 3 computed in Problem 4.27, evaluate its inverse
DFT xðnÞ using the decimation-in-time FFT method.

4.7.1 Computer Problems with MATLAB
Use MATLAB to solve Problems 4.29 and 4.30.

4.29. Consider three sinusoids with the following amplitudes and phases:

x1ðtÞ ¼ 5cosð2pð500ÞtÞ
x2ðtÞ ¼ 5cosð2pð1200Þt þ 0:25pÞ
x3ðtÞ ¼ 5cosð2pð1800Þt þ 0:5pÞ

a. Create a MATLAB program to sample each sinusoid and generate a sum of three sinu-
soids, that is, xðnÞ ¼ x1ðnÞ þ x2ðnÞ þ x3ðnÞ, using a sampling rate of 8,000 Hz. Plot xðnÞ
over a range of 0.1 seconds.

b. Use the MATLAB function fft() to compute DFT coefficients, and plot and examine the
spectrum of the signal xðnÞ.
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4.30. Consider the sum of sinusoids in Problem 4.29.

a. Generate the sum of sinusoids for 240 samples using a sampling rate of 8,000 Hz.

b. Write a MATLAB program to compute and plot the amplitude spectrum of the signal xðnÞ
with the FFT using each of the following window functions:

(1) Rectangular window (no window);

(2) Triangular window;

(3) Hamming window.

c. Examine the effect of spectral leakage for each window use in (b).

4.7.2 MATLAB Projects

4.31. Signal spectral analysis:

Given the four practical signals below, compute their one-sided spectra and create their time-
domain plots and spectral plots, respectively:

a. Speech signal (“speech.dat”), sampling rate ¼ 8,000 Hz. From the spectral plot, identify
the first 5 formants.

b. ECG signal (“ecg.dat”), sampling rate ¼ 500 Hz. From the spectral plot, identify the
60 Hz-interference component.

c. Seismic data (“seismic.dat”), sampling rate¼15 Hz. From the spectral plot, determine the
dominant frequency component.

d. Vibration signal of the acceleration response from a simple supported beam (“vbrdata.dat”),
sampling rate ¼1,000 Hz. From the spectral plot, determine four dominant frequencies
(modes).

4.32. Vibration signature analysis:

The acceleration signals measured from a gearbox can be used to monitor the condition of
the gears inside the gearbox. The early diagnosis of any gear issues can prevent the future
catastrophic failure of the system. Assume the following measurements and specifications
(courtesy of SpectraQuest, Inc.):

a. The input shaft has a speed of 1,000 RPM andmeshing frequency is approximately 300 Hz.

b. Data specifications:

Sampling rate ¼ 12.8 kHz
v0.dat: healthy condition
v1.dat: damage severity level 1 (lightly chipped gear)
v2.dat: damage severity level 2 (moderately chipped gear)
v3.dat: damage severity level 3 (chipped gear)
v4.dat: damage severity level 4 (heavily chipped gear)
v5.dat: damage severity level 5 (missing tooth)
Investigate the spectrum for each measurement and identify sidebands. For each measure-
ment, determine the ratio of the largest sideband amplitude over the amplitude of meshing
frequency. Investigate the relation between the computed ratio values and the damage
severity.
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OBJECTIVES

This chapter introduces the z-transform and its properties; illustrates how to determine the inverse
z-transform using partial fraction expansion; and applies the z-transform to solve linear difference
equations.

5.1 DEFINITION
The z-transform is a very important tool in describing and analyzing digital systems. It also supports
the techniques for digital filter design and frequency analysis of digital signals. We begin with the
definition of the z-transform.

The z-transform of a causal sequence xðnÞ, designated by XðzÞ or ZðxðnÞÞ, is defined as

XðzÞ ¼ ZðxðnÞÞ ¼ PN
n¼ 0

x
�
n
�
z�n

¼ xð0Þz�0 þ xð1Þz�1 þ xð2Þz�2 þ/

(5.1)

where z is the complex variable. Here, the summation taken from n ¼ 0 to n ¼ N is according to the
fact that for most situations, the digital signal xðnÞ is the causal sequence, that is, xðnÞ ¼ 0 for n < 0.
Thus, the definition in Equation (5.1) is referred to as a one-sided z-transform or a unilateral transform.
In Equation (5.1), all the values of z that make the summation exist form a region of convergence in the
z-transform domain, while all other values of z outside the region of convergence will cause the
summation to diverge. The region of convergence is defined based on the particular sequence xðnÞ
being applied. Note that we deal with the unilateral z-transform in this book, and hence when
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performing inverse z-transform (which we shall study later), we are restricted to the causal sequence.
Now let us study the following typical examples.

EXAMPLE 5.1
Given the sequence

xðnÞ ¼ uðnÞ

find the z-transform of xðnÞ.
Solution:
From the definition of Equation (5.1), the z-transform is given by

X ðzÞ ¼
XN
n¼0

uðnÞz�n ¼
XN
n¼0

�
z�1

�n ¼ 1þ
�
z�1

�
þ
�
z�1

�2þ/

This is an infinite geometric series that converges to

X ðzÞ ¼ z

z � 1

with a condition jz�1j<1. Note that for an infinite geometric series, we have 1þ r þ r2 þ/ ¼ 1

1� r
when jr j<1.

The region of convergence for all values ofz is given as jzj>1.

EXAMPLE 5.2
Consider the exponential sequence

xðnÞ ¼ anuðnÞ

and find the z-transform of the sequence xðnÞ.
Solution:
From the definition of the z-transform in Equation (5.1), it follows that

X ðzÞ ¼
XN
n¼0

anuðnÞz�n ¼
XN
n¼0

�
az�1

�n ¼ 1þ
�
az�1

�
þ
�
az�1

�2þ/

Since this is a geometric series that will converge for jaz�1j<1, it is further expressed as

X ðzÞ ¼ z

z � a
; for jzj > jaj

The z-transforms for common sequences are summarized in Table 5.1. Example 5.3 illustrates how
to find the z-transform using Table 5.1.
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EXAMPLE 5.3
Find the z-transform for each of the following sequences:

a. xðnÞ ¼ 10uðnÞ
b. xðnÞ ¼ 10sinð0:25pnÞuðnÞ

Table 5.1 Table of z-Transform Pairs

Line No. xðnÞ; n ‡ 0 z-Transform XðzÞ
Region of
Convergence

1 xðnÞ PN
n¼ 0 xðnÞz�n

2 dðnÞ 1 jzj> 0

3 auðnÞ az

z � 1
jzj> 1

4 nuðnÞ z

ðz � 1Þ2 jzj> 1

5 n2 uðnÞ zðz þ 1Þ
ðz � 1Þ3 jzj> 1

6 an uðnÞ z

z � a
jzj> jaj

7 e�na uðnÞ z

ðz � e�aÞ jzj> e�a

8 nan uðnÞ az

ðz � aÞ2 jzj> jaj

9 sinðanÞuðnÞ z sinðaÞ
z2 � 2z cosðaÞ þ 1

jzj> 1

10 cosðanÞuðnÞ z½z � cosðaÞ�
z2 � 2z cosðaÞ þ 1

jzj> 1

11 an sinðbnÞuðnÞ ½a sinðbÞ�z
z2 � ½2a cosðbÞ�z þ a2

jzj> jaj

12 an cosðbnÞuðnÞ z½z � a cosðbÞ�
z2 � ½2a cosðbÞ�z þ a�2

jzj> jaj

13 e�an sinðbnÞuðnÞ ½e�a sinðbÞ�z
z2 � ½2e�a cosðbÞ�z þ e�2a

jzj> e�a

14 e�an cosðbnÞuðnÞ z½z � e�a cosðbÞ�
z2 � ½2e�a cosðbÞ�z þ e�2a

jzj> e�a

15 2jAjjP jncosðnqþ 4ÞuðnÞ
where P and A are complex
constants defined by
P ¼ jP j:q; A ¼ jAj:4

Az

z � P
þ A�z

z � P�
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c. xðnÞ ¼ ð0:5ÞnuðnÞ
d. xðnÞ ¼ ð0:5Þnsinð0:25pnÞuðnÞ
e. xðnÞ ¼ e�0:1ncosð0:25pnÞuðnÞ
Solution:

a. From Line 3 in Table 5.1, we get

X ðzÞ ¼ Z ð10uðnÞÞ ¼ 10z

z � 1

b. Line 9 in Table 5.1 leads to

X ðzÞ ¼ 10Z ðsinð0:2pnÞuðnÞÞ

¼ 10sinð0:25pÞz
z2 � 2zcos

�
0:25p

�þ 1
¼ 7:07z

z2 � 1:414z þ 1

c. From Line 6 in Table 5.1, we obtain

X ðzÞ ¼ Z
�ð0:5Þnu�n�� ¼ z

z � 0:5

d. From Line 11 in Table 5.1, it follows that

X ðzÞ ¼ Z
�ð0:5Þnsin�0:25pn�u�n�� ¼ 0:5� sinð0:25pÞz

z2 � 2� 0:5 cos
�
0:25p

�
z þ 0:52

¼ 0:3536z

z2 � 1:4142z þ 0:25

e. From Line 14 in Table 5.1, it follows that

X ðzÞ ¼ Z
�
e�0:1ncos

�
0:25pn

�
uðnÞ� ¼ z

�
z � e�0:1cos

�
0:25p

��
z2 � 2e�0:1 cos

�
0:25p

�
z þ e�0:2

¼ zðz � 0:6397Þ
z2 � 1:2794z þ 0:8187

5.2 PROPERTIES OF THE Z-TRANSFORM
In this section, we study some important properties of the z-transform. These properties are widely
used in deriving the z-transfer functions of difference equations and solving the system output
responses of linear digital systems with constant system coefficients, which will be discussed in the
next chapter.

Linearity: The z-transform is a linear transformation, which implies

Zðax1ðnÞ þ bx2ðnÞÞ ¼ aZðx1ðnÞÞ þ bZðx2ðnÞÞ (5.2)

where x1ðnÞ and x2ðnÞ denote the sampled sequences, while a and b are the arbitrary constants.
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EXAMPLE 5.4
Find the z-transform of the sequence defined by

x
�
n
� ¼ u

�
n
�� ð0:5Þnu�n�

Solution:
Applying the linearity of the z-transform discussed above, we have

X ðzÞ ¼ Z ðxðnÞÞ ¼ Z ðuðnÞÞ � Z ð0:5nðnÞÞ

Using Table 5.1 yields

Z ðuðnÞÞ ¼ z

z � 1

and

Z ð0:5nuðnÞÞ ¼ z

z � 0:5

Substituting these results in X ðzÞ leads to the final solution,

X ðzÞ ¼ z

z � 1
� z

z � 0:5

Shift theorem: Given XðzÞ, the z-transform of a sequence xðnÞ, the z-transform of xðn� mÞ, the
time-shifted sequence, is given by

Zðxðn� mÞÞ ¼ z�mX
�
z
�

(5.3)

Note that if m � 0, then xðn� mÞ is obtained by right shifting xðnÞ by m samples. Since the shift
theorem plays a very important role in developing the transfer function from a difference equation, we
verify the shift theorem for the causal sequence. Note that the shift theorem also works for the
noncausal sequence.
Verification: Applying the z-transform to the shifted causal signal xðn� mÞ leads to

Zðxðn� mÞÞ ¼ PN
n¼ 0

x
�
n� m

�
z�n

¼ xð�mÞz�0 þ/þ xð�1Þz�ðm�1Þ þ xð0Þz�m þ x
�
1
�
z�m�1 þ.

Since xðnÞ is assumed to be a causal sequence, this means that

xð� mÞ ¼ xð� mþ 1Þ ¼ / ¼ xð� 1Þ ¼ 0

Then we achieve

Zðxðn� mÞÞ ¼ xð0Þz�m þ xð1Þz�m�1 þ xð2Þz�m�2 þ. (5.4)
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Factoring z�m from Equation (5.4) and applying the definition of z-transform of XðzÞ, we get
Zðxðn� mÞÞ ¼ z�m

�
xð0Þ þ xð1Þz�1 þ xð2Þz�2 þ.

� ¼ z�mXðzÞ

EXAMPLE 5.5
Determine the z-transform of the following sequence:

yðnÞ ¼ ð0:5Þðn�5Þ,uðn � 5Þ

where uðn � 5Þ ¼ 1 for n � 5 and uðn � 5Þ ¼ 0 for n<5.

Solution:
We first use the shift theorem to obtain

Y ðzÞ ¼ Z
h
ð0:5Þn�5uðn � 5Þ

i
¼ z�5Z

�ð0:5Þnu�n��
Using Table 5.1 leads to

Y ðzÞ ¼ z�5,
z

z � 0:5
¼ z�4

z � 0:5

Convolution: Given two sequences x1ðnÞ and x2ðnÞ, their convolution can be determined as
follows:

xðnÞ ¼ x1ðnÞ � x2ðnÞ ¼
XN
k¼ 0

x1ðn� kÞx2ðkÞ (5.5)

where * designates the linear convolution. In the z-transform domain, we have

XðzÞ ¼ X1ðzÞX2ðzÞ (5.6)

Here, XðzÞ ¼ ZðxðnÞÞ, X1ðzÞ ¼ Zðx1ðnÞÞ, and X2ðzÞ ¼ Zðx2ðnÞÞ.

EXAMPLE 5.6
Verify Equation (5.6) using causal sequences x1ðnÞ and x2ðnÞ.
Solution:
Taking the z-transform of Equation (5.5) leads to

X ðzÞ ¼
XN
n¼0

xðnÞz�n ¼
XN
n¼0

XN
k ¼0

x1ðn � kÞx2ðkÞz�n

This expression can be further modified to

X ðzÞ ¼
XN
n¼0

XN
k ¼0

x2ðkÞz�kx1ðn � kÞz�ðn�kÞ
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Now interchanging the order of the previous summation gives

X ðzÞ ¼
XN
k ¼0

x2ðkÞz�k
XN
n¼0

x1ðn � kÞz�ðn�kÞ

Now, let m ¼ n � k :

X ðzÞ ¼
XN
k ¼0

x2ðkÞz�k
XN
m¼0

x1ðmÞz�m

By the definition of Equation (5.1), it follows that

X ðzÞ ¼ X2ðzÞX1ðzÞ ¼ X1ðzÞX2ðzÞ

EXAMPLE 5.7
Consider two sequences,

x1ðnÞ ¼ 3dðnÞ þ 2dðn � 1Þ

x2ðnÞ ¼ 2dðnÞ � dðn � 1Þ
a. Find the z-transform of the convolution:

X ðzÞ ¼ Z ðx1ðnÞ � x2ðnÞÞ

b. Determine the convolution sum using the z-transform:

xðnÞ ¼ x1ðnÞ � x2ðnÞ ¼
XN
k¼0

x1ðkÞx2ðn � kÞ

Solution:

a. Applying the z-transform for x1ðnÞ and x2ðnÞ, respectively, it follows that
X1ðzÞ ¼ 3þ 2z�1

X2ðzÞ ¼ 2� z�1

Using the convolution property, we have

X ðzÞ ¼ X1ðzÞX2ðzÞ ¼ �
3þ 2z�1

��
2� z�1

�
¼ 6þ z�1 � 2z�2

b. Applying the inverse z-transform and using the shift theorem and Line 1 of Table 5.1 leads to

xðnÞ ¼ Z�1ð6þ z�1 � 2z�2Þ ¼ 6dðnÞ þ dðn � 1Þ � 2dðn � 2Þ
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The properties of the z-transform discussed in this section are listed in Table 5.2.

5.3 INVERSE Z-TRANSFORM
The z-transform of the sequence xðnÞ and the inverse z-transform for the function XðzÞ are defined as,
respectively

XðzÞ ¼ ZðxðnÞÞ (5.7)

and

xðnÞ ¼ Z�1ðXðzÞÞ (5.8)

where Zð Þ is the z-transform operator, and Z�1ð Þ is the inverse z-transform operator.
The inverse of the z-transform may be obtained by at least three methods:

1. partial fraction expansion and lookup table;
2. power series expansion;
3. residue method.

The first method is widely utilized, and it is assumed that the reader is well familiar with the partial
fraction expansion method in learning Laplace transform. Therefore, we concentrate on the first
method in this book. As for the power series expansion and residue methods, the interested reader is
referred to the textbook by Oppenheim and Schafer (1975). The key idea of the partial fraction
expansion is that if XðzÞ is a proper rational function of z, we can expand it to a sum of the first-order
factors or higher-order factors using the partial fraction expansion that can be inverted by inspecting
the z-transform table. The partial fraction expansion method is illustrated via the following examples.
(For simple z-transform functions, we can directly find the inverse z-transform using Table 5.1.)

EXAMPLE 5.8
Find the inverse z-transform for each of the following functions:

a. X ðzÞ ¼ 2þ 4z

z � 1
� z

z � 0:5

b. X ðzÞ ¼ 5z

ðz � 1Þ2
� 2z

ðz � 0:5Þ2

Table 5.2 z-Transform Properties

Property Time Domain z-Transform

Linearity ax1ðnÞ þ bx2ðnÞ aZðx1ðnÞÞ þ bZðx2ðnÞÞ
Shift theorem xðn�mÞ z�mXðzÞ
Linear convolution x1ðnÞ � x2ðnÞ ¼ PN

k¼ 0 x1ðn� kÞx2ðkÞ X1ðzÞX2ðzÞ
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c. X ðzÞ ¼ 10z

z2 � z þ 1

d. X ðzÞ ¼ z�4

z � 1
þ z�6 þ z�3

z þ 0:5
Solution:

a. xðnÞ ¼ 2Z�1ð1Þ þ 4Z�1
� z

z � 1

�
� Z�1

� z

z � 0:5

�

From Table 5.1, we have

x
�
n
� ¼ 2d

�
n
�þ 4u

�
n
�� ð0:5Þnu�n�

b. xðnÞ ¼ Z�1

 
5z

ðz � 1Þ2
!

� Z�1

 
2z

ðz � 0:5Þ2
!

¼ 5Z�1

 
z

ðz � 1Þ2
!

� 2

0:5
Z�1

 
0:5z

ðz � 0:5Þ2
!

Then

xðnÞ ¼ 5nu
�
n
�� 4nð0:5Þnu�n�

c. X ðzÞ ¼ 10z

z2 � z þ 1
¼
�

10

sinðaÞ
	

sinðaÞz
z2 � 2zcosðaÞ þ 1

By coefficient matching, we have

� 2cosðaÞ ¼ �1

Hence, cosðaÞ ¼ 0:5, and a ¼ 600. Substituting a ¼ 600 into the sine function leads to

sin
�
a
�

¼ sin
�
600

�
¼ 0:866

Finally, we have

xðnÞ ¼ 10

sinðaÞZ
�1

�
sinðaÞz

z2 � 2zcos
�
a
�þ 1

	
¼ 10

0:866
sinðn,600Þ ¼ 11:547sinðn,600Þ

d.
xðnÞ ¼ Z�1

�
z�5 z

z � 1

�
þ Z�1

�
z�6,1

�
þ Z�1

�
z�4 z

z þ 0:5

�

Using Table 5.1 and the shift property, we get

xðnÞ ¼ uðn � 5Þ þ dðn � 6Þ þ ð � 0:5Þn�4uðn � 4Þ

Now, we are ready to deal with the inverse z-transform using the partial fraction expansion and
lookup table. The general procedure is as follows:

1. Eliminate the negative powers of z for the z-transform function XðzÞ.
2. Determine the rational function XðzÞ=z (assuming it is proper), and apply the partial fraction

expansion to the determined rational function XðzÞ=z using the formula in Table 5.3.
3. Multiply the expanded function XðzÞ=z by z on both sides of the equation to obtain XðzÞ.
4. Apply the inverse z-transform using Table 5.1.
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The partial fraction format and the formulas for calculating the constants are listed in Table 5.3.
Example 5.9 considers the situation of the z-transform function having first-order poles.

EXAMPLE 5.9
Find the inverse of the following z-transform:

X ðzÞ ¼ 1�
1� z�1

��
1� 0:5z�1

�

Solution:
Eliminating the negative power of z by multiplying the numerator and denominator by z2 yields

X ðzÞ ¼ z2

z2
�
1� z�1

��
1� 0:5z�1

�

¼ z2

ðz � 1Þðz � 0:5Þ

Dividing both sides by z leads to

X ðzÞ
z

¼ z

ðz � 1Þðz � 0:5Þ

Again, we write

X ðzÞ
z

¼ A

ðz � 1Þ þ
B

ðz � 0:5Þ

where A and B are constants found using the formula in Table 5.3, that is,

Table 5.3 Partial Fraction(s) and Formulas for Constant(s)

Partial fraction with the first-order real pole:
R

z � p
R ¼ ðz � pÞXðzÞ

z






z¼p

Partial fraction with the first-order complex poles:
Az

ðz � PÞ þ
A�z

ðz � P �Þ A ¼ ðz � P ÞXðzÞ
z






z¼P

P � ¼ complex conjugate of P A� ¼ complex conjugate of A

Partial fraction with mth-order real poles:

Rm

ðz � pÞ þ
Rm�1

ðz � pÞ2 þ/þ R1

ðz � pÞm Rk ¼ 1

ðk � 1Þ!
dk�1

dzk�1

�
ðz � pÞmXðzÞ

z

	




z¼p

A ¼ ðz � 1ÞX ðzÞ
z






z¼1

¼ z

ðz � 0:5Þ





z¼1

¼ 2
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B ¼ ðz � 0:5ÞX ðzÞ
z






z¼0:5

¼ z

ðz � 1Þ





z¼0:5

¼ �1

Thus

X ðzÞ
z

¼ 2

ðz � 1Þ þ
�1

ðz � 0:5Þ

Multiplying z on both sides gives

X ðzÞ ¼ 2z

ðz � 1Þ þ
�z

ðz � 0:5Þ

Using Table 5.1 with the z-transform pairs, it follows that

x
�
n
� ¼ 2u

�
n
�� ð0:5Þnu�n�

Tabulating this solution in terms of integer values of n, we obtain the results in Table 5.4.

The following example considers the case where XðzÞ has first-order complex poles.

EXAMPLE 5.10
Find yðnÞ if

Y ðzÞ ¼ z2
�
z þ 1

��
z � 1

��
z2 � z þ 0:5

�
Solution:
Dividing Y ðzÞ by z, we have

Y ðzÞ
z

¼ zðz þ 1Þ�
z � 1

��
z2 � z þ 0:5

�
Applying the partial fraction expansion leads to

Y ðzÞ
z

¼ B

z � 1
þ A

ðz � 0:5� j0:5Þ þ
A�

ðz � 0:5þ j0:5Þ

Table 5.4 Determined Sequence in Example 5.9

n 0 1 2 3 4 . N

xðnÞ 1.0 1.5 1.75 1.875 1.9375 . 2.0
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We first find B :

B ¼ ðz � 1ÞY ðzÞ
z






z¼1

¼ zðz þ 1Þ�
z2 � z þ 0:5

�




z¼1

¼ 1� ð1þ 1Þ�
12 � 1þ 0:5

� ¼ 4

Notice that A and A� are a complex conjugate pair. We determine A as follows:

A ¼ ðz � 0:5� j0:5ÞY ðzÞ
z






z¼0:5þj0:5

¼ zðz þ 1Þ
ðz � 1Þðz � 0:5þ j0:5Þ






z¼0:5þj0:5

¼ ð0:5þ j0:5Þð0:5þ j0:5þ 1Þ
ð0:5þ j0:5� 1Þð0:5þ j0:5� 0:5þ j0:5Þ ¼ ð0:5þ j0:5Þð1:5þ j0:5Þ

ð � 0:5þ j0:5Þj

Using the polar form, we get

A ¼
�
0:707:450

��
1:58114:18:430

��
0:707:1350

��
1:900

� ¼ 1:58114:� 161:570

A� ¼ A ¼ 1:58114:161:570

Assume that a first-order complex pole takes the form

P ¼ 0:5þ 0:5j ¼ jP j:q ¼ 0:707:450 and P� ¼ jP j:� q ¼ 0:707:� 450

We have

Y ðzÞ ¼ 4z

z � 1
þ Az

ðz � PÞ þ
A�z

ðz � P�Þ

Applying the inverse z-transform from Line 15 in Table 5.1 leads to

yðnÞ ¼ 4Z�1
� z

z � 1

�
þ Z�1

�
Az

ðz � PÞ þ
A�z

ðz � P�Þ
	

Using the previous formula, the inversion and subsequent simplification yield

y
�
n
� ¼ 4u

�
n
�þ 2jAjðjP jÞncos�nqþ 4

�
u
�
n
�

¼ 4u
�
n
�þ 3:1623ð0:7071Þncos�450n � 161:570

�
u
�
n
�

The situation dealing with real repeated poles is presented next.

EXAMPLE 5.11
Find xðnÞ if

X ðzÞ ¼ z2�
z � 1

��
z � 0:5

�2
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Solution:
Dividing both sides of the previous z-transform by z yields

X ðzÞ
z

¼ z

ðz � 1Þðz � 0:5Þ2
¼ A

z � 1
þ B

z � 0:5
þ C

ðz � 0:5Þ2

where

A ¼ ðz � 1ÞX ðzÞ
z






z¼1

¼ z

ðz � 0:5Þ2







z¼1

¼ 4

Using the formulas formth-order real poles in Table 5.3, wherem ¼ 2 and p ¼ 0:5, to determine B and C yields

B ¼ R2 ¼ 1

ð2� 1Þ!
d

dz

�
ðz � 0:5Þ2X ðzÞ

z

�
z¼0:5

¼ d

dz

�
z

z � 1

	




z¼0:5

¼ �1

ðz � 1Þ2







z¼0:5

¼ �4

C ¼ R1 ¼ 1

ð1� 1Þ!
d0

dz0

�
ðz � 0:5Þ2X ðzÞ

z

�
z¼0:5

¼ z

z � 1





z¼0:5

¼ �1

Then

X ðzÞ ¼ 4z

z � 1
þ �4z

z � 0:5
þ �1z

ðz � 0:5Þ2
(5.9)

The inverse z-transform for each term on the right-hand side of Equation (5.9) can be obtained using the result
listed in Table 5.1, that is,

Z�1
n z

z � 1

o
¼ u

�
n
�

Z�1
n z

z � 0:5

o
¼ ð0:5Þnu

�
n
�

Z�1

(
z

ðz � 0:5Þ2
)

¼ 2nð0:5ÞnuðnÞ

From these results, it follows that

x
�
n
� ¼ 4u

�
n
�� 4ð0:5Þnu�n�� 2nð0:5Þnu�n�
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5.3.1 Partial Fraction Expansion Using MATLAB

The MATLAB function residue() can be applied to perform the partial fraction expansion of a
z-transform function XðzÞ=z. The syntax is given as

½R;P;K� ¼ residueðB;AÞ
Here, B and A are the vectors consisting of coefficients for the numerator and denominator
polynomials, BðzÞ and AðzÞ, respectively. Notice that BðzÞ and AðzÞ are the polynomials with
increasing positive powers of z.

BðzÞ
AðzÞ ¼ b0z

M þ b1z
M�1 þ b2z

M�2 þ/þ bM
zN þ a1zN�1 þ a2z�2 þ/þ aN

The function returns the residues in vector R, corresponding poles in vector P, and polynomial
coefficients (if any) in vector K. The expansion format is shown as

BðzÞ
AðzÞ ¼ r1

z� p1
þ r2
z� p2

þ/þ k0 þ k1z
�1 þ/

For a pole pj of multiplicity m, the partial fraction includes the following terms:

BðzÞ
AðzÞ ¼ /þ rj

z� pj
þ rjþ1

ðz� pjÞ2
þ/þ rjþm

ðz� pjÞm þ/þ k0 þ k1z
�1 þ/

EXAMPLE 5.12
Find the partial expansion for each of the following z-transform functions:

a. X ðzÞ ¼ 1

ð1� z�1Þð1� 0:5z�1Þ
b. Y ðzÞ ¼ z2ðz þ 1Þ

ðz � 1Þðz2 � z þ 0:5Þ
c. X ðzÞ ¼ z2

ðz � 1Þðz � 0:5Þ2

Solution:

a. From MATLAB, we can show the denominator polynomial as
» conv([1 L1],[1 L0.5])
D [
1.0000 L1.5000 0.5000

This leads to

X ðzÞ ¼ 1�
1� z�1

��
1� 0:5z�1

� ¼ 1

1� 1:5z�1 þ 0:5�2
¼ z2

z2 � 1:5z þ 0:5

and

X ðzÞ
z

¼ z

z2 � 1:5z þ 0:5
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From MATLAB, we have
» [R,P,K][residue([1 0],[1 L1.5 0.5])
R [
2
L1
P [
1.0000
0.5000
K [
[]
»

Then the expansion is written as

X ðzÞ ¼ 2z

z � 1
� z

z � 0:5

b. From the MATLAB entry
» N[conv([1 0 0],[1 1])
N [
1 1 0 0
» D[conv([1 L1], [1 L1 0.5])
D [
1.0000 L2.0000 1.5000 L0.5000

we get

Y ðzÞ ¼ z2
�
z þ 1

��
z � 1

��
z2 � z þ 0:5

� ¼ z3 þ z2

z3 � 2z2 þ 1:5z � 0:5

and

Y ðzÞ
z

¼ z2 þ z

z3 � 2z2 þ 1:5z � 0:5

Using the MATLAB residue function yields

» [R,P,K][residue([1 1 0],[1 L2 1.5 L0.5])
R [
4.0000
L1.5000 L 0.5000i
L1.5000 D 0.5000i
P [
1.0000
0.5000 D 0.5000i
0.5000 L 0.5000i
K [
[]
»

Then the expansion is shown below

X ðzÞ ¼ Bz

z � p1
þ Az

z � p
þ A�z

z � p�
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where B ¼ 4; p1 ¼ 1;

A ¼ �1:5� 0:5j; p ¼ 0:5þ 0:5j;

A� ¼ �1:5þ 0:5j; and p ¼ 0:5� 0:5j

c. Similarly, if we use
» D[conv(conv([1 L1], [1 L0.5]),[1 L0.5])
D [
1.0000 L2.0000 1.2500 L0.2500

then

X ðzÞ ¼ z2

ðz � 1Þðz � 0:5Þ2
¼ z2

z3 � 2z2 þ 1:25z � 0:25

and we yield

X ðzÞ
z

¼ z

z3 � 2z2 þ 1:25z � 0:25

From MATLAB, we obtain

» [R,P,K][residue([1 0],[1 L2 1.25 L0.25])
R [
4.0000
L4.0000
L1.0000
P [
1.0000
0.5000
0.5000
K [
[]
»

Using the previous results leads to

X ðzÞ ¼ 4z

z � 1
� 4z

z � 0:5
� z

ðz � 0:5Þ2

5.4 SOLUTION OF DIFFERENCE EQUATIONS USING THE Z-TRANSFORM
To solve a difference equation with initial conditions, we have to deal with time-shifted sequences such
as yðn� 1Þ, yðn� 2Þ,., yðn� mÞ, and so on. Let us examine the z-transform of these terms. Using the
definition of the z-transform, we have
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Zðyðn� 1ÞÞ ¼ PN
n¼ 0

y
�
n� 1

�
z�n

¼ y
�� 1

�þ y
�
0
�
z�1 þ y

�
1
�
z�2 þ/

¼ y
�� 1

�þ z�1
�
y
�
0
�þ y

�
1
�
z�1 þ y

�
2
�
z�2 þ/

�
It holds that

Zðyðn� 1ÞÞ ¼ y
�� 1

�þ z�1Y
�
z
�

(5.10)

Similarly, we have

Zðyðn� 2ÞÞ ¼ PN
n¼ 0

y
�
n� 2

�
z�n

¼ y
�� 2

�þ y
�� 1

�
z�1 þ y

�
0
�
z�2 þ y

�
1
�
z�3 þ/

¼ y
�� 2

�þ y
�� 1

�
z�1 þ z�2

�
y
�
0
�þ y

�
1
�
z�1 þ y

�
2
�
z�2 þ/

�
Zðyðn� 2ÞÞ ¼ y

�� 2
�þ y

�� 1
�
z�1 þ z�2Y

�
z
�

(5.11)

Zðyðn� mÞÞ ¼ yð�mÞ þ yð�mþ 1Þz�1 þ/þ yð�1Þz�ðm�1Þ þ z�mYðzÞ (5.12)

where yð�mÞ, yð�mþ 1Þ,., yð�1Þ are the initial conditions. If all initial conditions are considered to
be zero, that is,

yð � mÞ ¼ yð � mþ 1Þ ¼ /yð � 1Þ ¼ 0 (5.13)

then Equation (5.12) becomes

Zðyðn� mÞÞ ¼ z�mY
�
z
�

(5.14)

which is the same as the shift theorem in Equation (5.3).
The following two examples serve as illustrations of applying the z-transform to find the solutions of
difference equations. The procedure is as follows:

1. Apply the z-transform to the difference equation.
2. Substitute the initial conditions.
3. Solve for the difference equation in the z-transform domain.
4. Find the solution in the time domain by applying the inverse z-transform.

EXAMPLE 5.13
A digital signal processing (DSP) system is described by the difference equation

y
�
n
�� 0:5y

�
n � 1

� ¼ 5ð0:2Þnu�n�
Determine the solution when the initial condition is given by yð�1Þ ¼ 1.
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Solution:
Applying the z-transform on both sides of the difference equation and using Equation (5.12), we have

Y ðzÞ � 0:5ðyð�1Þ þ z�1Y ðzÞÞ ¼ 5Z ð0:2nuðnÞÞ

Substituting the initial condition and Z ð0:2nuðnÞÞ ¼ Z ð0:2nuðnÞÞ ¼ z=ðz � 0:2Þ, we achieve

Y ðzÞ � 0:5ð1þ z�1Y ðzÞÞ ¼ 5z=ðz � 0:2Þ

Simplification leads to

Y ðzÞ � 0:5z�1Y ðzÞ ¼ 0:5þ 5z=ðz � 0:2Þ

Factoring out Y ðzÞ and combining the right-hand side of the equation, it follows that

Y ðzÞð1� 0:5z�1Þ ¼ ð5:5z � 0:1Þ=ðz � 0:2Þ

Then we obtain

Y ðzÞ ¼ ð5:5z � 0:1Þ�
1� 0:5z�1

��
z � 0:2

� ¼ zð5:5z � 0:1Þ
ðz � 0:5Þðz � 0:2Þ

Using the partial fraction expansion method leads to

Y ðzÞ
z

¼ 5:5z � 0:1

ðz � 0:5Þðz � 0:2Þ ¼ A

z � 0:5
þ B

z � 0:2

where

A ¼ ðz � 0:5ÞY ðzÞ
z






z¼0:5

¼ 5:5z � 0:1

z � 0:2






z¼0:5

¼ 5:5� 0:5� 0:1

0:5� 0:2
¼ 8:8333

B ¼ ðz � 0:2ÞY ðzÞ
z






z¼0:2

¼ 5:5z � 0:1

z � 0:5






z¼0:2

¼ 5:5� 0:2� 0:1

0:2� 0:5
¼ �3:3333

Thus

Y ðzÞ ¼ 8:8333z

ðz � 0:5Þ þ
�3:3333z

ðz � 0:2Þ

which gives the solution as

y
�
n
� ¼ 8:3333ð0:5Þnu�n�� 3:3333ð0:2Þnu�n�

EXAMPLE 5.14
A relaxed (zero initial conditions) DSP system is described by a difference equation

yðnÞ þ 0:1yðn � 1Þ � 0:2yðn � 2Þ ¼ xðnÞ þ xðn � 1Þ
a. Determine the impulse response yðnÞ due to the impulse sequence xðnÞ ¼ dðnÞ.
b. Determine the system response yðnÞ due to the unit step function excitation, where uðnÞ ¼ 1 for n � 0.
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Solution:

a. Applying the z-transform on both sides of the difference equation and using Equation (5.3) or Equation (5.14),
we obtain

Y ðzÞ þ 0:1Y ðzÞz�1 � 0:2Y ðzÞz�2 ¼ X ðzÞ þ X ðzÞz�1 (5.15)

Factoring out YðzÞ on the left side and substituting X ðzÞ ¼ Z ðdðnÞÞ ¼ 1 to the right side in the Equation (5.15)
we get

Y ðzÞð1þ 0:1z�1 � 0:2z�2Þ ¼ 1ð1þ z�1Þ

Then YðzÞ can be expressed as

Y ðzÞ ¼ 1þ z�1

1þ 0:1z�1 � 0:2z�2

To obtain the impulse response, which is the inverse z-transform of the transfer function, we multiply the
numerator and denominator by z2.

Thus

Y ðzÞ ¼ z2 þ z

z2 þ 0:1z � 0:2
¼ zðz þ 1Þ

ðz � 0:4Þðz þ 0:5Þ

Using the partial fraction expansion method leads to

Y ðzÞ
z

¼ z þ 1

ðz � 0:4Þðz þ 0:5Þ ¼ A

z � 0:4
þ B

z þ 0:5

where

A ¼ ðz � 0:4ÞY ðzÞ
z






z¼0:4

¼ z þ 1

z þ 0:5






z¼0:4

¼ 0:4þ 1

0:4þ 0:5
¼ 1:5556

B ¼ ðz þ 0:5ÞY ðzÞ
z






z¼�0:5

¼ z þ 1

z � 0:4






z¼�0:5

¼ �0:5þ 1

�0:5� 0:4
¼ �0:5556

Thus

Y ðzÞ ¼ 1:5556z

ðz � 0:4Þ þ
�0:5556z

ðz þ 0:5Þ

which gives the impulse response

y
�
n
� ¼ 1:5556ð0:4Þnu�n�� 0:5556ð � 0:5Þnu�n�

b. To obtain the response due to a unit step function, the input sequence is set to be

xðnÞ ¼ uðnÞ

and the corresponding z-transform is given by

X ðzÞ ¼ z

z � 1

5.4 Solution of Difference Equations Using the z-Transform 155



Notice that

Y ðzÞ þ 0:1Y ðzÞz�1 � 0:2Y ðzÞz�2 ¼ X ðzÞ þ X ðzÞz�1

Then the z-transform of the output sequence yðnÞ can be obtained as

Y ðzÞ ¼
� z

z � 1

�� 1þ z�1

1þ 0:1z�1 � 0:2z�2

	
¼ z2ðz þ 1Þ

ðz � 1Þðz � 0:4Þðz þ 0:5Þ

Using the partial fraction expansion method as before gives

Y ðzÞ ¼ 2:2222z

z � 1
þ �1:0370z

z � 0:4
þ �0:1852z

z þ 0:5

and the system response is found by using Table 5.1:

y
�
n
� ¼ 2:2222u

�
n
�� 1:0370ð0:4Þnu�n�� 0:1852ð � 0:5Þnu�n�

5.5 SUMMARY
1. The one-sided (unilateral) z-transform, which can be used to transform the causal sequence to the

z-transform domain, was defined.
2. The lookup table of the z-transform determines the z-transform for a simple causal sequence, or the

causal sequence from a simple z-transform function.
3. The important properties of the z-transform, such as linearity, the shift theorem, and

convolution were introduced. The shift theorem can be used to solve a difference equation.
The z-transform of a digital convolution of two digital sequences is equal to the product of
their z-transforms.

4. Methods to determine the inverse of the z-transform, such as partial fraction expansion, invert the
complicated z-transform function, which can have first-order real poles, multiple-order real poles,
and first-order complex poles assuming that the z-transform function is proper. The MATLAB
techniques to determine the inverse were introduced.

5. The z-transform can be applied to solve linear difference equations with nonzero initial conditions
and zero initial conditions.

5.6 PROBLEMS
5.1. Find the z-transform for each of the following sequences:

a. xðnÞ ¼ 4uðnÞ
b. xðnÞ ¼ ð�0:7ÞnuðnÞ
c. xðnÞ ¼ 4e�2nuðnÞ
d. xðnÞ ¼ 4ð0:8Þncosð0:1pnÞuðnÞ
e. xðnÞ ¼ 4e�3nsinð0:1pnÞuðnÞ
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5.2. Using the properties of the z-transform, find the z-transform for each of the following

a. xðnÞ ¼ uðnÞ þ ð0:5ÞnuðnÞ
b. xðnÞ ¼ e�3ðn�4Þcosð0:1pðn� 4ÞÞuðn� 4Þ, where uðn� 4Þ ¼ 1 for n � 4 while

uðn� 4Þ ¼ 0 for n<4

5.3. Find the z-transform for each of the following sequences:

a. xðnÞ ¼ 3uðn� 4Þ
b. xðnÞ ¼ 2ð�0:2ÞnuðnÞ
c. xðnÞ ¼ 5e�2ðn�3Þuðn� 3Þ
d. xðnÞ ¼ 6ð0:6Þncosð0:2pnÞuðnÞ
e. xðnÞ ¼ 4e�3ðn�1Þsinð0:2pðn� 1ÞÞuðn� 1Þ.

5.4. Using the properties of the z-transform, find the z-transform for each of the following
sequences:

a. xðnÞ ¼ �2uðnÞ � ð0:75ÞnuðnÞ
b. xðnÞ ¼ e�2ðn�3Þsinð0:2pðn� 3ÞÞuðn� 3Þ, where uðn� 3Þ ¼ 1 for n � 3 while

uðn� 3Þ ¼ 0 for n < 3

5.5. Given two sequences

x1ðnÞ ¼ 5dðnÞ � 2dðn� 2Þ and x2ðnÞ ¼ 3dðn� 3Þ

a. determine the z-transform of the convolution of the two sequences using the convolution
property of z-transform

XðzÞ ¼ X1ðzÞX2ðzÞ

b. determine the convolution by the inverse z-transform

x
�
n
� ¼ Z�1ðX1ðzÞX2ðzÞÞ

from the result in (a).

5.6. Using Table 5.1 and the z-transform properties, find the inverse z-transform for each of the
following functions:

a. XðzÞ ¼ 4� 10z

z� 1
� z

zþ 0:5

b. XðzÞ ¼ �5z

ðz� 1Þ þ
10z

ðz� 1Þ2 þ
2z

ðz� 0:8Þ2

c. XðzÞ ¼ z

z2 þ 1:2zþ 1

d. XðzÞ ¼ 4z�4

z� 1
þ z�1

ðz� 1Þ2 þ z�8 þ z�5

z� 0:5
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5.7. Given two sequences

x1ðnÞ ¼ �2dðnÞ þ 5dðn� 2Þ and x2ðnÞ ¼ 4dðn� 4Þ

a. determine the z-transform of convolution of the two sequences using the convolution
property of z-transform

XðzÞ ¼ X1ðzÞX2ðzÞ

b. determine the convolution by the inverse z-transform

x
�
n
� ¼ Z�1ðX1ðzÞX2ðzÞÞ

from the result in (a).

5.8. Using Table 5.1 and z-transform properties, find the inverse z-transform for each of the
following functions:

a. XðzÞ ¼ 5� 7z

zþ 1
� 3z

z� 0:5

b. XðzÞ ¼ �3z

ðz� 0:5Þ þ
8z

ðz� 0:8Þ þ
2z

ðz� 0:8Þ2

c. XðzÞ ¼ 3z

z2 þ 1:414zþ 1

d. XðzÞ ¼ 5z�5

z� 1
� z�2

ðz� 1Þ2 þ z�10 þ z�3

z� 0:75

5.9. Using the partial fraction expansion method, find the inverse of the following z-transforms:

a. XðzÞ ¼ 1

z2 � 0:3z� 0:24

b. XðzÞ ¼ z

ðz� 0:2Þðzþ 0:4Þ
c. XðzÞ ¼ z

ðzþ 0:2Þðz2 � zþ 0:5Þ
d. XðzÞ ¼ zðzþ 0:5Þ

ðz� 0:1Þ2ðz� 0:6Þ
5.10. A system is described by the difference equation

yðnÞ þ 0:5yðn� 1Þ ¼ 2ð0:8ÞnuðnÞ
Determine the solution when the initial condition is yð�1Þ ¼ 2.

5.11. Using the partial fraction expansion method, find the inverse of the following z-transforms:

a. XðzÞ ¼ 1

z2 þ 0:2zþ 0:2
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b. XðzÞ ¼ z

ðzþ 0:3Þðz� 0:5Þ
c. XðzÞ ¼ 5z

ðz� 0:75Þðz2 � zþ 0:5Þ
d. XðzÞ ¼ 2zðz� 0:4Þ

ðz� 0:2Þ2ðzþ 0:8Þ
5.12. A system is described by the difference equation

yðnÞ þ 0:2yðn� 1Þ ¼ 4ð0:3ÞnuðnÞ
Determine the solution when the initial condition is yð�1Þ ¼ 1.

5.13. A system is described by the difference equation

yðnÞ � 0:5yðn� 1Þ þ 0:06yðn� 2Þ ¼ ð0:4Þn�1uðn� 1Þ
Determine the solution when the initial conditions are yð�1Þ ¼ 1, and yð�2Þ ¼ 2.

5.14. Given the following difference equation with the inputeoutput relationship of a certain
initially relaxed system (all initial conditions are zero),

yðnÞ � 0:7yðn� 1Þ þ 0:1yðn� 2Þ ¼ xðnÞ þ xðn� 1Þ
a. find the impulse response sequence yðnÞ due to the impulse sequence dðnÞ;
b. find the output response of the system when the unit step function uðnÞ is applied.

5.15. A system is described by the difference equation

yðnÞ � 0:6yðn� 1Þ þ 0:08yðn� 2Þ ¼ ð0:5Þn�1uðn� 1Þ
Determine the solution when the initial conditions are yð�1Þ ¼ 2, and yð�2Þ ¼ 1.

5.16. Given the following difference equation with the inputeoutput relationship of a certain
initially relaxed system (all initial conditions are zero),

yðnÞ � 0:6yðn� 1Þ þ 0:25yðn� 2Þ ¼ xðnÞ þ xðn� 1Þ

a. find the impulse response sequence yðnÞ due to the impulse sequence dðnÞ;
b. find the output response of the system when the unit step function uðnÞ is applied.

5.17. Given the following difference equation with the inputeoutput relationship of a certain
initially relaxed DSP system (all initial conditions are zero),

yðnÞ � 0:4yðn� 1Þ þ 0:29yðn� 2Þ ¼ xðnÞ þ 0:5xðn� 1Þ
a. find the impulse response sequence yðnÞ due to the impulse sequence dðnÞ;
b. find the output response of the system when the unit step function uðnÞ is applied.
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5.18. Given the following difference equation with the inputeoutput relationship of a certain
initially relaxed DSP system (all initial conditions are zero),

yðnÞ � 0:2yðn� 1Þ þ 0:17yðn� 2Þ ¼ xðnÞ þ 0:3xðn� 1Þ
a. find the impulse response sequence yðnÞ due to the impulse sequence dðnÞ;
b. find the output response of the system when the unit step function uðnÞ is applied.
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OBJECTIVES:

This chapter illustrates digital filtering operations for a given input sequence; derives transfer functions
from the difference equations; analyzes the stability of the linear systems using the z-plane pole-zero plot;
and calculates the frequency responses of digital filters. Then the chapter further investigates realizations
of the digital filters, and examines spectral effects by filtering speech data using the digital filters.

6.1 THE DIFFERENCE EQUATION AND DIGITAL FILTERING
In this chapter, we begin with developing the filtering concept of digital signal processing (DSP)
systems. With the knowledge acquired in Chapter 5, dealing with the z-transform, we will learn how to
describe and analyze linear time-invariant systems. We also will become familiar with digital filtering
types and their realization structures.
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A DSP system (digital filter) is described in Figure 6.1.
Let xðnÞ and yðnÞ be a DSP system’s input and output, respectively. We can express the relationship

between the input and the output of a DSP system by the following difference equation:

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ
� a1yðn� 1Þ �/� aNyðn� NÞ (6.1)

where bi, 0 � i �M and aj, 1 � j � N, represent the coefficients of the system and n is the time index.
Equation (6.1) can also be written as

yðnÞ ¼
XM
i¼ 0

bixðn� iÞ �
XN
j¼ 1

ajyðn� jÞ (6.2)

From Equations (6.1) and (6.2), we observe that the DSP system output is the weighted summation of
the current input value xðnÞ, past values xðn� 1Þ, . , xðn�MÞ, and the past output sequence
yðn� 1Þ, . , yðn� NÞ. The system can be verified as linear, time-invariant, and causal. If the initial
conditions are specified, we can compute system output (time response) yðnÞ recursively. This process
is referred to as digital filtering. We will illustrate filtering operations in Examples 6.1 and 6.2.

EXAMPLE 6.1
Compute the system output

yðnÞ ¼ 0:5yðn � 2Þ þ xðn � 1Þ

for the first four samples using the following initial conditions:

a. initial conditions yð � 2Þ ¼ 1, yð � 1Þ ¼ 0, xð � 1Þ ¼ �1, and input xðnÞ ¼ ð0:5ÞnuðnÞ
b. zero initial conditions yð�2Þ ¼ 0, yð � 1Þ ¼ 0, xð � 1Þ ¼ 0, and input xðnÞ ¼ ð0:5ÞnuðnÞ
Solution:
According to Equation (6.1), we identify the system coefficients as

N ¼ 2;M ¼ 1; a1 ¼ 0; a2 ¼ �0:5; b0 ¼ 0; and b1 ¼ 1

a. Setting n ¼ 0, and using initial conditions, we obtain the input and output as

xð0Þ ¼ ð0:5Þ0uð0Þ ¼ 1
yð0Þ ¼ 0:5yð � 2Þ þ xð � 1Þ ¼ 0:5$1þ ð � 1Þ ¼ � 0:5

Setting n ¼ 1, and using the initial condition yð � 1Þ ¼ 0, we achieve

xð1Þ ¼ ð0:5Þ1uð1Þ ¼ 0:5
yð1Þ ¼ 0:5yð � 1Þ þ xð0Þ ¼ 0:5$0þ 1 ¼ 1:0

Digital filter
(digital filtering)

x(n) y(n)
Digital outputDigital input

FIGURE 6.1

DSP system with input and output.
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Similarly, using the past output yð0Þ ¼ � 0:5, we get

xð2Þ ¼ ð0:5Þ2uð2Þ ¼ 0:25
yð2Þ ¼ 0:5yð0Þ þ xð1Þ ¼ 0:5,ð � 0:5Þ þ 0:5 ¼ 0:25

and with yð1Þ ¼ 1:0, we yield

xð3Þ ¼ ð0:5Þ3uð3Þ ¼ 0:125
yð3Þ ¼ 0:5yð1Þ þ xð2Þ ¼ 0:5,1þ 0:25 ¼ 0:75

.........
Clearly, yðnÞ could be recursively computed for n > 3.
b. Setting n ¼ 0, we obtain

xð0Þ ¼ ð0:5Þ0uð0Þ ¼ 1
yð0Þ ¼ 0:5yð � 2Þ þ xð � 1Þ ¼ 0,1þ 0 ¼ 0

Setting n ¼ 1, we achieve

xð1Þ ¼ ð0:5Þ1uð1Þ ¼ 0:5
yð1Þ ¼ 0:5yð � 1Þ þ xð0Þ ¼ 0,0þ 1 ¼ 1

Similarly, with the past output yð0Þ ¼ 0, we determine

xð2Þ ¼ ð0:5Þ2uð2Þ ¼ 0:25
yð2Þ ¼ 0:5yð0Þ þ xð1Þ ¼ 0:5,0þ 0:5 ¼ 0:5

and with yð1Þ ¼ 1, we obtain

xð3Þ ¼ ð0:5Þ3uð3Þ ¼ 0:125
yð3Þ ¼ 0:5yð1Þ þ xð2Þ ¼ 0:5,1þ 0:25 ¼ 0:75

.........
Clearly, yðnÞ could be recursively computed for n > 3

EXAMPLE 6.2
Given the DSP system

yðnÞ ¼ 2xðnÞ � 4xðn � 1Þ � 0:5yðn � 1Þ � yðn � 2Þ

with initial conditions yð � 2Þ ¼ 1, yð � 1Þ ¼ 0, xð � 1Þ ¼ �1, and the input xðnÞ ¼ ð0:8ÞnuðnÞ, compute the
system response yðnÞ for 20 samples using MATLAB.

Solution:
Program 6.1 lists the MATLAB program for computing the system response yðnÞ. The top plot in Figure 6.2 shows
the input sequence. The middle plot displays the filtered output using the initial conditions, and the bottom plot
shows the filtered output for zero initial conditions. As we can see, the system outputs are different at the
beginning, but they approach the same value later.
Program 6.1. MATLAB program for Example 6.2.
% Example 6.2
% Compute y(n)¼2x(n)-4x(n-1)-0.5y(n-1)-0.5y(n-2)
% Nonzero initial conditions:
% y(-2)¼1, y(-1)¼0, x(-1) ¼-1, and x(n)¼(0.8)^n*u(n)
%
y ¼ zeros(1,20); % Set up a vector to store y(n)
y ¼ [ 1 0 y]; % Add initial condition of y(-2) and y(-1)
n¼0:1:19; % Compute time indexes
x¼(0.8).^n; % Compute 20 input samples of x(n)
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FIGURE 6.2

Plots of the input and system outputs yðnÞ for Example 6.2.

x ¼ [ 0 -1 x]; % Add initial condition of
x(-2)¼0 and x(-1)¼1

for n¼1:20
y(nþ2)¼ 2*x(nþ2)-4*x(nþ1)-0.5*y(nþ1)-0.5*y(n); % Compute 20 outputs of y(n)

end
n¼0:1:19;
subplot(3,1,1);stem(n,x(3:22));grid;ylabel(’Input x(n)’);xlabel(’Sample number’);
Subplot(3,1,2); stem(n,y(3:22)),grid;
xlabel(’Number of samples, n; part (a)’); ylabel(’Output y(n)’);
y(3:22) %Output y(n)
% Zero initial conditions:
% y(-2)¼0, y(-1)¼0, x(-1) ¼0, and x(n)¼1/(nþ1)
%
y ¼ zeros(1,20); % Set up a vector to store y(n)
y ¼ [ 0 0 y]; % Add zero initial conditions for y(-2) and y(-1)
n¼0:1:19; % Compute time indexes
x¼(0.8).^n; % Compute 20 input samples of x(n)
x ¼ [ 0 0 x]; % Add zero initial conditions for x(-2) and x(-1)
for n¼1:20
y(nþ2)¼ 2*x(nþ2)-4*x(nþ1)-0.5*y(nþ1)-0.5*y(n); % Compute 20 outputs of y(n)
end
n¼0:1:19
subplot(3,1,3); stem(n,y(3:22)),grid;

xlabel(’Number of samples, n; part (b)’); ylabel(’Output y(n)’);
y(3:22) %Output y(n)
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The MATLAB function filter(), developed using a direct-form II realization (which will be discussed
in a later section), can be used to operate digital filtering, and the syntax is

Zi[filtic(B, A, Yi, Xi)
y[filter(B, A, x, Zi)

where B and A are vectors for the coefficients bj and aj whose formats are

A ¼ ½ 1 a1 a2 / aN � and B ¼ ½ b0 b1 b2 / bM�

and x and y are the input data vector and output data vector, respectively.
Note that the filter function filtic() is a MATLAB function which is used to obtain initial states from

initial conditions in the difference equation. The initial states are required by the MATLAB filter
function filter() since it is implemented in a direct-form II. Hence, Zi contains initial states required for
operating MATLAB function filter(), that is,

Zi ¼ ½wð�1Þ wð�2Þ / �
which can be recovered by another MATLAB function filtic(). Xi and Yi are initial conditions with the
length of the greater of M or N, given by

Xi ¼ ½xð�1Þ xð�2Þ / � and Yi ¼ ½yð�1Þ yð�2Þ / �

For zero initial conditions in particular, the syntax is reduced to

y[filter(B, A, x)

Let us verify the filter operation results in Example 6.1 using the MATLAB functions. The MATLAB
codes and results for Example 6.1(a) with the nonzero initial conditions are listed as

» B¼ [0 1]; A¼ [1 0 �0.5];
» x¼ [1 0.5 0.25 0.125];
» Xi¼ [�1 0];Yi¼[0 1];
» Zi¼ filtic(B, A, Yi, Xi);
» y¼ filter(B, A, x, Zi)
y ¼
� 0.5000 1.0000 0.2500 0.7500
»

For the case of zero initial conditions in Example 6.1(b), the MATLAB codes and results are

» B¼ [0 1]; A¼ [1 0 �0.5];
» x¼ [1 0.5 0.25 0.125];
» y¼ filter(B, A, x)
y ¼
0 1.0000 0.5000 0.7500
»

As we expected, the filter outputs match the ones in Example 6.1.
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6.2 DIFFERENCE EQUATION AND TRANSFER FUNCTION
To proceed in this section, Equation (6.1) is rewritten as

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ
� a1yðn� 1Þ �/� aNyðn� NÞ

With an assumption that all initial conditions of this system are zero, and with XðzÞ and YðzÞ denoting
the z-transforms of xðnÞ and yðnÞ, respectively, taking the z-transform of Equation (6.1) yields

YðzÞ ¼ b0XðzÞ þ b1XðzÞz�1 þ/þ bMXðzÞz�M

� a1YðzÞz�1 �/� aNYðzÞz�N
(6.3)

Rearranging Equation (6.3), we obtain

HðzÞ ¼ YðzÞ
XðzÞ ¼ b0 þ b1z

�1 þ/þ bMz
�M

1þ a1z�1 þ/þ aNz�N
¼ BðzÞ

AðzÞ (6.4)

where HðzÞ is defined as the transfer function with its numerator and denominator polynomials defined
below:

BðzÞ ¼ b0 þ b1z
�1 þ/þ bMz

�M (6.5)

AðzÞ ¼ 1þ a1z
�1 þ/þ aNz

�N (6.6)

Clearly the z-transfer function is defined as

ratio ¼ z-transform of the output

z-transform of the input

In DSP applications, given the difference equation, we can develop the z-transfer function and
represent the digital filter in the z-domain as shown in Figure 6.3. Then the stability and frequency
response can be examined based on the developed transfer function.

EXAMPLE 6.3
A DSP system is described by the following difference equation:

yðnÞ ¼ xðnÞ � xðn � 2Þ � 1:3yðn � 1Þ � 0:36yðn � 2Þ

( ) ( )

z-transform input z-transform output

Digital filter transfer function

FIGURE 6.3

Digital filter transfer function.
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Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator polynomial BðzÞ.
Solution:
Taking the z-transform on both sides of the previous difference equation, we obtain

Y ðzÞ ¼ X ðzÞ � X ðzÞz�2 � 1:3Y ðzÞz�1 � 0:36Y ðzÞz�2

Moving the last two terms to the left side of the difference equation and factoring Y ðzÞ on the left side and X ðzÞ on
the right side, we obtain

Y ðzÞð1þ 1:3z�1 þ 0:36z�2Þ ¼ ð1� z�2ÞX ðzÞ

Therefore, the transfer function, which is the ratio of Y ðzÞ over X ðzÞ, can be found to be

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 1� z�2

1þ 1:3z�1 þ 0:36z�2

From the derived transfer function HðzÞ, we can obtain the denominator polynomial and numerator polynomial as

AðzÞ ¼ 1þ 1:3z�1 þ 0:36z�2

and

BðzÞ ¼ 1� z�2

The difference equation and its transfer function, as well as the stability issue of the linear time-invariant system,
will be discussed in the following sections

EXAMPLE 6.4
A digital system is described by the following difference equation:

yðnÞ ¼ xðnÞ � 0:5xðn � 1Þ þ 0:36xðn � 2Þ

Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator polynomial BðzÞ.
Solution:
Taking the z-transform on both sides of the previous difference equation, we obtain

Y ðzÞ ¼ X ðzÞ � 0:5X ðzÞz�2 þ 0:36X ðzÞz�2

Therefore, the transfer function, that is the ratio of Y ðzÞ to X ðzÞ, can be found as

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 1� 0:5z�1 þ 0:36z�2

From the derived transfer function HðzÞ, it follows that

AðzÞ ¼ 1

BðzÞ ¼ 1� 0:5z�1 þ 0:36z�2
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In DSP applications, the given transfer function of a digital system can converted into a difference
equation for DSP implementation. The following example illustrates the procedure.

EXAMPLE 6.5
Convert each of the following transfer functions into its difference equation.

a. HðzÞ ¼ z2 � 1

z2 þ 1:3z þ 0:36

b. HðzÞ ¼ z2 � 0:5z þ 0:36

z2

Solution:
a. Dividing the numerator and denominator by z2 to obtain the transfer function whose numerator and denominator
polynomials have the negative power of z, it follows that

HðzÞ ¼ ðz2 � 1Þ=z2
ðz2 þ 1:3z þ 0:36Þ=z2 ¼ 1� z�2

1þ 1:3z�1 þ 0:36z�2

We write the transfer function using the ratio of Y ðzÞ to X ðzÞ :

Y ðzÞ
X ðzÞ ¼ 1� z�2

1þ 1:3z�1 þ 0:36z�2

Then we have

Y ðzÞð1þ 1:3z�1 þ 0:36z�2Þ ¼ X ðzÞð1� z�2Þ

By distributing Y ðzÞ and X ðzÞ, we yield

Y ðzÞ þ 1:3z�1Y ðzÞ þ 0:36z�2Y ðzÞ ¼ X ðzÞ � z�2X ðzÞ

Applying the inverse z-transform and using the shift property in Equation (5.3) of Chapter 5, we get

yðnÞ þ 1:3yðn � 1Þ þ 0:36yðn � 2Þ ¼ xðnÞ � xðn � 2Þ

Writing the output yðnÞ in terms of inputs and past outputs leads to

yðnÞ ¼ xðnÞ � xðn � 2Þ � 1:3yðn � 1Þ � 0:36yðn � 2Þ

b. Similarly, dividing the numerator and denominator by z2, we obtain

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ ðz2 � 0:5z þ 0:36Þ=z2

z2=z2
¼ 1� 0:5z�1 þ 0:36z�2

Thus

Y ðzÞ ¼ X ðzÞð1� 0:5z�1 þ 0:36z�2Þ

By distributing X ðzÞ, we yield

Y ðzÞ ¼ X ðzÞ � 0:5z�1X ðzÞ þ 0:36z�2X ðzÞ

Applying the inverse z-transform with using the shift property in Equation (5.3), we obtain

yðnÞ ¼ xðnÞ � 0:5xðn � 1Þ þ 0:36xðn � 2Þ

168 CHAPTER 6 Digital Signal Processing Systems



The transfer function HðzÞ can be factored into the pole-zero form:

HðzÞ ¼ b0ðz � z1Þðz � z2Þ/ðz � zMÞ
ðz � p1Þðz � p2Þ/ðz � pNÞ

(6.7)

where the zeros zi can be found by solving roots of the numerator polynomial, while the poles pi can be solved for
the roots of the denominator polynomial.

EXAMPLE 6.6
Consider the following transfer functions:

HðzÞ ¼ 1� z�2

1þ 1:3z�1 þ 0:36z�2

Convert it into the pole-zero form.

Solution:
We first multiply the numerator and denominator polynomials by z2 to achieve the advanced form in which both
numerator and denominator polynomials have positive powers of z, that is,

HðzÞ ¼ ð1� z�2Þz2
ð1þ 1:3z�1 þ 0:36z�2Þz2 ¼ z2 � 1

z2 þ 1:3z þ 0:36

Letting z2 � 1 ¼ 0, we get z ¼ 1 and z ¼ �1. Setting z2 þ 1:3z þ 0:36 ¼ 0 leads to z ¼ �0:4 and z ¼ �0:9.
We then can write numerator and denominator polynomials in the factored form to obtain the pole-zero form:

HðzÞ ¼ ðz � 1Þðz þ 1Þ
ðz þ 0:4Þðz þ 0:9Þ

6.2.1 Impulse Response, Step Response, and System Response

The impulse response hðnÞ of the DSP system HðzÞ can be obtained by solving its difference equation
using a unit impulse input dðnÞ. With the help of the z-transform and noticing that XðzÞ ¼ ZfdðnÞg1,
we yield

hðnÞ ¼ Z�1fHðzÞXðzÞg ¼ Z�1fHðzÞg (6.8)

Similarly, for a step input, we can determine step response assuming zero initial conditions. Letting

XðzÞ ¼ Z½uðnÞ� ¼ z

z� 1

the step response can be found as

yðnÞ ¼ Z�1

�
HðzÞ z

z� 1

�
(6.9)

Furthermore, the z-transform of the general system response is given by

YðzÞ ¼ HðzÞXðzÞ (6.10)
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If we know the transfer function HðzÞ and z-transform of the input XðzÞ, we are able to determine the
system response yðnÞ by finding the inverse z-transform of the output YðzÞ :

yðnÞ ¼ Z�1fYðzÞg (6.11)

EXAMPLE 6.7
Given a transfer function depicting a DSP system

HðzÞ ¼ z þ 1

z � 0:5

determine

a. the impulse response hðnÞ,
b. step response yðnÞ, and
c. system response yðnÞ if the input is given as xðnÞ ¼ ð0:25ÞnuðnÞ.
Solution:
a. The transfer function can be rewritten as

HðzÞ
z

¼ z þ 1

zðz � 0:5Þ ¼ A

z
þ B

z � 0:5

where

A ¼ z þ 1

ðz � 0:5Þ
����
z¼0

¼ �2 and B ¼ z þ 1

z

����
z¼0:5

¼ 3

Thus we have

HðzÞ
z

¼ �2

z
þ 3

z � 0:5

and

HðzÞ ¼
�
� 2

z
þ 3

z � 0:5

�
z ¼ �2þ 3z

z � 0:5

By taking the inverse z-transform as shown in Equation (6.8), we yield the impulse response

hðnÞ ¼ �2dðnÞ þ 3ð0:5ÞnuðnÞ

b. For the step input xðnÞ ¼ uðnÞ and its z-transform X ðzÞ ¼ z

z � 1
, we can determine the z-transform of the step

response as

Y ðzÞ ¼ HðzÞX ðzÞ ¼ z þ 1

z � 0:5

z

z � 1

Applying the partial fraction expansion leads to

Y ðzÞ
z

¼ z þ 1

ðz � 0:5Þðz � 1Þ ¼ A

z � 0:5
þ B

z � 1

170 CHAPTER 6 Digital Signal Processing Systems



where

A ¼ z þ 1

z � 1

����
z¼0:5

¼ �3 and B ¼ z þ 1

z � 0:5

����
z¼1

¼ 4

The z-transform step response is therefore

Y ðzÞ ¼ �3z

z � 0:5
þ 4z

z � 1

Applying the inverse z-transform table yields the step response as

yðnÞ ¼ �3ð0:5ÞnuðnÞ þ 4uðnÞ

c. To determine the system output response, we first find the z-transform of the input xðnÞ,

X ðzÞ ¼ Zfð0:25ÞnuðnÞg ¼ z

z � 0:25

Then Y ðzÞ can be obtained via Equation (6.10), that is,

Y ðzÞ ¼ HðzÞX ðzÞ ¼ z þ 1

z � 0:5
$

z

z � 0:25
¼ zðz þ 1Þ

ðz � 0:5Þðz � 0:25Þ

Using the partial fraction expansion, we have

Y ðzÞ
z

¼ ðz þ 1Þ
ðz � 0:5Þðz � 0:25Þ ¼

�
A

z � 0:5
þ B

z � 0:25

�
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FIGURE 6.4

Impulse, step, and system response in Example 6.7.
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Y ðzÞ ¼
�

6z

z � 0:5
þ �5z

z � 0:25

�

Using Equation (6.11) and Table 5.1 in Chapter 5, we finally yield

yðnÞ ¼ Z�1fY ðzÞg ¼ 6ð0:5ÞnuðnÞ � 5ð0:25ÞnuðnÞ

The impulse response for (a), step response for (b), and system response for (c) are each plotted in Figure 6.4.

6.3 THE Z-PLANE POLE-ZERO PLOT AND STABILITY
A very useful tool to analyze digital systems is the z-plane pole-zero plot. This graphical technique
allows us to investigate characteristics of the digital system shown in Figure 6.1, including the system
stability. In general, a digital transfer function can be written in the pole-zero form as shown in
Equation (6.7), and we can plot the poles and zeros on the z-plane. The z-plane is depicted in
Figure 6.5 and has the following features:

1. The horizontal axis is the real part of the variable z, and the vertical axis represents the imaginary
part of the variable z.

2. The z-plane is divided into two parts by a unit circle.
3. Each pole is marked on z-plane using the cross symbol x, while each zero is plotted using the small

circle symbol o.

Let’s investigate the z-plane pole-zero plot of a digital filter system via the following example.

FIGURE 6.5

z-plane and pole-zero plot.
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EXAMPLE 6.8
Given the digital transfer function

HðzÞ ¼ z�1 � 0:5z�2

1þ 1:2z�1 þ 0:45z�2

plot poles and zeros.

Solution:
Converting the transfer function to its advanced form by multiplying the numerator and denominator by z2, it
follows that

HðzÞ ¼ ðz�1 � 0:5z�2Þz2
ð1þ 1:2z�1 þ 0:45z�2Þz2 ¼ z � 0:5

z2 þ 1:2z þ 0:45

By setting z2 þ 1:2z þ 0:45 ¼ 0 and z � 0:5 ¼ 0, we obtain two poles

p1 ¼ �0:6þ j0:3
p2 ¼ p�

1 ¼ �0:6� j0:3

and a zero z1 ¼ 0:5, which are plotted on the z-plane shown in Figure 6.6. According to the form of Equation
(6.7), we also yield the pole-zero form as

HðzÞ ¼ z�1 � 0:5z�2

1þ 1:2z�1 þ 0:45z�2
¼ ðz � 0:5Þ

ðz þ 0:6� j0:3Þðz þ 0:6þ j0:3Þ

With zeros and poles plotted on the z-plane, we are able to study system stability. We first establish
the relationship between the s-plane in the Laplace domain and the z-plane in the z-transform domain,
as illustrated in Figure 6.7.

FIGURE 6.6

The z-plane pole-zero plot of Example 6.8.
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As shown in Figure 6.7, the sampled signal, which is not quantized, with a sampling period of T is
written as

xsðtÞ ¼
XN
n¼ 0

xðnTÞdðt � nTÞ ¼ xð0ÞdðtÞ þ xðTÞdðt � TÞ þ xð2TÞdðt � 2TÞ þ/ (6.12)

Taking the Laplace transform and using the Laplace shift property as

Lðdðt � nTÞÞ ¼ e�nTs (6.13)

leads to

XsðsÞ ¼
XN
n¼ 0

xðnTÞe�nTs ¼ xð0Þe�0�Ts þ xðTÞe�Ts þ xð2TÞe�2Ts þ/ (6.14)

Compare Equation (6.14) with the definition of a one-sided z-transform of the data sequence xðnÞ from
analog-to-digital conversion (ADC):

XðzÞ ¼ ZðxðnÞÞ ¼
XN
n¼ 0

xðnÞz�n ¼ xð0Þz�0 þ xð1Þz�1 þ xð2Þz�2 þ/ (6.15)

Clearly, we see the relationship of the sampled system in the Laplace domain and its digital system in
the z-transform domain by the following mapping:

z ¼ esT (6.16)

Substituting s ¼ �a� ju into Equation (6.16), it follows that z ¼ e�aT�juT . In the polar form, we
have

z ¼ e�aT:� uT (6.17)

Equations (6.16) and (6.17) give the following important conclusions.

FIGURE 6.7

Relationship between Laplace transform and z-transform.
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If a > 0, this means jzj ¼ e�aT < 1. Then the left-hand side half plane (LHHP) of the s-plane
is mapped to the inside of the unit circle of the z-plane. When a ¼ 0, this causes jzj ¼ e�aT ¼ 1.
Thus the ju axis of the s-plane is mapped on the unit circle of the z-plane, as shown in Figure 6.8.
Obviously, the right-hand half plane (RHHP) of the s-plane is mapped to the outside of the unit
cycle in the z-plane. A stable system means that for a given bounded input, the system output must
be bounded. Similar to the analog system, the digital system requires that all poles plotted on the
z-plane must be inside the unit circle. We summarize the rules for determining the stability of
a DSP system as follows:

1. If the outmost pole(s) of the z-transfer function HðzÞ describing the DSP system is (are) inside the
unit circle on the z-plane pole-zero plot, then the system is stable.

2. If the outmost pole(s) of the z-transfer function HðzÞ is (are) outside the unit circle on the z-plane
pole-zero plot, the system is unstable.

3. If the outmost pole(s) is (are) first-order pole(s) of the z-transfer functionHðzÞ and on the unit circle
on the z-plane pole-zero plot, then the system is marginally stable.

4. If the outmost pole(s) is (are) multiple-order pole(s) of the z-transfer function HðzÞ and on the unit
circle on the z-plane pole-zero plot, then the system is unstable.

5. The zeros do not affect the system stability.

Notice that the following facts apply to a stable system (bounded-in/bounded-out [BIBO] stability
discussed in Chapter 3):

1. If the input to the system is bounded, then the output of the system will also be bounded, or the
impulse response of the system will go to zero in a finite number of steps.

2. An unstable system is one where the output of the system will grow without bound due to any
bounded input, initial condition, or noise, or the impulse response will grow without bound.

3. The impulse response of a marginally stable system stays at a constant level or oscillates between
two finite values.

Examples illustrating these rules are shown in Figure 6.9.

FIGURE 6.8

Mapping between s-plane and z-plane.
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EXAMPLE 6.9
The following transfer functions describe digital systems.

a. HðzÞ ¼ z þ 0:5

ðz � 0:5Þðz2 þ z þ 0:5Þ
b. HðzÞ ¼ z2 þ 0:25

ðz � 0:5Þðz2 þ 3z þ 2:5Þ

FIGURE 6.9

Stability illustrations.

176 CHAPTER 6 Digital Signal Processing Systems



c. HðzÞ ¼ z þ 0:5

ðz � 0:5Þðz2 þ 1:4141z þ 1Þ
d. HðzÞ ¼ z2 þ z þ 0:5

ðz � 1Þ2ðz þ 1Þðz � 0:6Þ

For each, sketch the z-plane pole-zero plot and determine the stability status for the digital system.

Solution:
a. A zero is located at z ¼ �0:5.

Poles: z ¼ 0:5, jz j ¼ 0:5 < 1; z ¼ �0:5� j0:5,

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0:5Þ2 þ ð�0:5Þ2

q
¼ 0:707 < 1.

The plot of poles and a zero is shown in Figure 6.10. Since the outmost poles are inside the unit circle, the system
is stable.
b. Zeros are z ¼ � j0:5.

Poles: z ¼ 0:5, jz j ¼ 0:5 < 1; z ¼ �1:5� j0:5

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:5Þ2 þ ð�0:5Þ2

q
¼ 1:5811 > 1.

The plot of poles and zeros is shown in Figure 6.10. Since we have two poles at z ¼ �1:5� j 0:5 that are outside
the unit circle, the system is unstable.
c. A zero is located at z ¼ �0:5.

(a)

(c) (d)

(b)

FIGURE 6.10

Pole-zero plots for Example 6.9.
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Poles: z ¼ 0:5, jzj ¼ 0:5 < 1; z ¼ �0:707� j0:707,

jz j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:707Þ2 þ ð�0:707Þ2

q
¼ 1.

The zero and poles are plotted in Figure 6.10. Since the outmost poles are first order at z ¼ �0:707� j 0:707
and are on the unit circle, the system is marginally stable.
d. Zeros are z ¼ �0:5� j 0:5.

Poles: z ¼ 1, jz j ¼ 1; z ¼ 1, jzj ¼ 1; z ¼ �1, jzj ¼ 1;, z ¼ 0:6
jz j ¼ 0:6 < 1.

The zeros and poles are plotted in Figure 6.10. Since the outmost pole is a multiple order (second order) pole at
z ¼ 1 and is on the unit circle, the system is unstable.

6.4 DIGITAL FILTER FREQUENCY RESPONSE
From the Laplace transfer function, we can achieve the analog filter steady-state frequency response
HðjuÞ by substituting s ¼ ju into the transfer function HðsÞ. That is,

HðsÞjs¼ju ¼ HðjuÞ
Then we can study the magnitude frequency response jHðjuÞj and phase response:HðjuÞ. Similarly,
in a DSP system, using the mapping in Equation (6.16), we substitute z ¼ esT

��
s¼ju

¼ ejuT into the
z-transfer function HðzÞ to acquire the digital frequency response, which is converted into the
magnitude frequency response

��HðejuTÞ�� and phase response:jHðejuTÞj. That is,
HðzÞjz¼ejuT ¼ HðejuTÞ ¼ ��HðejuTÞ��:HðejuTÞ (6.18)

Let us introduce a normalized digital frequency in radians in the digital domain:

U ¼ uT (6.19)

Then the digital frequency response in Equation (6.18) becomes

HðejUÞ ¼ HðzÞ��
z¼ejU

¼ ��HðejUÞ��:HðejUÞ (6.20)

The formal derivation for Equation (6.20) can be found in Appendix D.
Now we verify the frequency response via the following simple digital filter. Consider a digital

filter with a sinusoidal input of amplitude K (Figure 6.11).
We can determine the system output yðnÞ, which consists of the transient response ytrðnÞ and the

steady-state response yssðnÞ. We find the z-transform output as

FIGURE 6.11

System transient and steady-state frequency responses.
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YðzÞ ¼
�
0:5zþ 0:5

z

�
Kz sinU

z2 � 2z cosUþ 1
(6.21)

To perform the inverse z-transform to find the system output, we further rewrite Equation (6.21) as

YðzÞ
z

¼
�
0:5zþ 0:5

z

�
K sinU

ðz� ejUÞðz� e�jUÞ ¼ A

z
þ B

z� ejU
þ B�

z� e�jU

where A, B and the complex conjugate B� are the constants for the partial fractions. Applying the
partial fraction expansion leads to

A ¼ 0:5K sinU

B ¼ 0:5zþ 0:5

z

����
z¼ejU

K

2j
¼ ��HðejUÞ��ej:HðejUÞK

2j

Notice that the first part of constant B is a complex function, which is obtained by substituting z ¼
ejU into the filter z-transfer function. We can also express the complex function in terms of the polar
form:

0:5zþ 0:5

z

����
z¼ejU

¼ 0:5þ 0:5z�1
��
z¼ejU

¼ HðzÞjz¼ejU ¼ HðejUÞ ¼ ��HðejUÞ��ej:HðejUÞ

where HðejUÞ ¼ 0:5þ 0:5e�jU. We call this complex function the steady-state frequency response.
Based on the complex conjugate property, we get another residue as

B� ¼ ��HðejUÞ��e�j:HðejUÞ K

�j2

The z-transform system output is then given by

YðzÞ ¼ Aþ Bz

z� ejU
þ B�z
z� e�jU

Taking the inverse z-transform, we achieve the following system transient and steady-state responses:

yðnÞ ¼ 0:5K sinUdðnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ytrðnÞ

þ ��HðejUÞ��ej:HðejUÞK
j2
ejnUuðnÞ þ ��HðejUÞ��e�j:HðejUÞ K

�j2
e�jnUuðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

yssðnÞ

Simplifying the response yields the form

yðnÞ ¼ 0:5K sinUdðnÞ þ ��HðejUÞ��K ejnUþj:HðejUÞuðnÞ � e�jnU�j:HðejUÞuðnÞ
j2

We can further combine the last term using Euler’s formula to express the system response as

yðnÞ ¼ 0:5K sinUdðnÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
ytrðnÞwill decay to zero after the first sample

þ ��HðejUÞ��K sin ðnUþ:HðejUÞÞuðnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
yssðnÞ
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Finally, the steady-state response is identified as

yssðnÞ ¼ K
��HðejUÞ�� sin ðnUþ:HðejUÞÞuðnÞ

For this particular filter, the transient response exists for only the first sample in the system response.
By substituting n ¼ 0 into yðnÞ and after simplifying algebra, we achieve the response for the first
output sample:

yð0Þ ¼ ytrð0Þ þ yssð0Þ ¼ 0:5K sin ðUÞ � 0:5K sin ðUÞ ¼ 0

Note that the first output sample of the transient response cancels the first output sample of the steady-
state response, so the combined first output sample has a value of zero for this particular filter. The
system response reaches the steady-state response after the first output sample. At this point, we can
conclude that

Steady-state magnitude frequency response ¼ Peak amplitude of steady state response at U

Peak amplitude of sinusoidal input at U

¼
��HðejUÞ��K

K
¼ ��HðejUÞ��

Steady-state phase frequency response ¼ Phase difference ¼ :HðejUÞ
Figure 6.12 shows the system response with sinusoidal inputs at U ¼ 0:25p, U ¼ 0:5p, and
U ¼ 0:75p, respectively.

Next, we examine the properties of the filter frequency response HðejUÞ. From Euler’s identity and
the trigonometric identity, we know that

ejðUþk2pÞ ¼ cos ðUþ k2pÞ þ j sin ðUþ k2pÞ
¼ cosUþ j sinU ¼ ejU

where k is an integer taking values of k ¼ 0; �1; �2;/. Then the frequency response has the
following property (assuming all input sequences are real):

1. Periodicity
a. Frequency response: HðejUÞ ¼ HðejðUþk2pÞÞ
b. Magnitude frequency response:

��HðejUÞ�� ¼ jHðejðUþk2pÞÞj
c. Phase response: :HðejUÞ ¼ :HðejUþk2pÞ

The second property is given without proof (see proof in Appendix D):

2. Symmetry
a. Magnitude frequency response:

��Hðe�jUÞ�� ¼ jHðejUÞj
b. Phase response: :Hðe�jUÞ ¼ �:HðejUÞ

Since the maximum frequency in a DSP system is the folding frequency, fs=2, where fs ¼ 1=T ,
and T designates the sampling period, the corresponding maximum normalized frequency of the
system frequency can be calculated as
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U ¼ uT ¼ 2p
fs
2
� T ¼ p radians (6.22)

The frequency response HðejUÞ for jUjip consists of the image replicas of HðejUÞ for jUj � p and will
be removed via the reconstruction filter later. Hence, we need to evaluate HðejUÞ for only the positive
normalized frequency range from U ¼ 0 to U ¼ p radians. The frequency, in Hz, can be determined
by

f ¼ U

2p
fs (6.23)

The magnitude frequency response is often expressed in decibels, defined as��HðejUÞ��
dB

¼ 20 log10ð
��HðejUÞ��	 (6.24)

The DSP system stability, magnitude response, and phase response are investigated via the following
examples.

EXAMPLE 6.10
Given the digital system

yðnÞ ¼ 0:5xðnÞ þ 0:5xðn � 1Þ

with a sampling rate of 8,000 Hz, determine the frequency response.
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FIGURE 6.12

The digital filter responses to different input sinusoids.
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Solution:
Taking the z-transform on both sides on the difference equation leads to

Y ðzÞ ¼ 0:5X ðzÞ þ 0:5z�1X ðzÞ

Then the transfer function describing the system is easily found to be

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 0:5þ 0:5z�1

Substituting z ¼ ejU, we obtain the frequency response as

HðejUÞ ¼ 0:5þ 0:5e�jU

¼ 0:5þ 0:5 cos ðUÞ � j0:5 sin ðUÞ:

Therefore, the magnitude frequency response and phase response are given by���HðejUÞ
��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5þ 0:5cos ðUÞÞ2 þ ð0:5 sin ðUÞÞ2

q

and

:HðejUÞ ¼ tan�1

� �0:5 sin ðUÞ
0:5þ 0:5 cos ðUÞ

�

Several points for the magnitude response and phase response are calculated and shown in Table 6.1. According to
the data, we plot the frequency response and phase response of the DSP system in Figure 6.13.
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FIGURE 6.13

Frequency responses of the digital filter in Example 6.10.
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It is observed that when the frequency increases, the magnitude response decreases. The DSP system
acts like a digital lowpass filter, and its phase response is linear.

We can also verify the periodicity for
��HðejUÞ�� and :HðejUÞ when U ¼ 0:25pþ 2p:

��Hðejð0:25pþ2pÞÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5þ 0:5 cos ð0:25pþ 2pÞÞ2 þ ð0:5 sin ð0:25pþ 2pÞÞ2

q
¼ 0:924 ¼ ��Hðej0:25pÞ��

:Hðejð0:25pþ2pÞÞ ¼ tan�1

� �0:5 sin ð0:25pþ 2pÞ
0:5þ 0:5 cos ð0:25pþ 2pÞ

�
¼ �22:50 ¼ :Hðej0:25pÞ:

For U ¼ �0:25p, we can verify the symmetry property as

��Hðe�j0:25pÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5þ 0:5 cos ð�0:25pÞÞ2 þ ð0:5 sin ð�0:25pÞÞ2

q
¼ 0:924 ¼ ��Hðej0:25pÞ��

:Hðe�j0:25pÞ ¼ tan�1

� �0:5 sin ð�0:25pÞ
0:5þ 0:5 cos ð�0:25pÞ

�
¼ 22:50 ¼ �:Hðej0:25pÞ

The properties can be observed in Figure 6.14, where the frequency range is chosen from U ¼ �2p to
U ¼ 4p radians. As shown in the figure, the magnitude and phase responses are periodic with a period
of 2p. For a period between U ¼ �p to U ¼ p, the magnitude responses for the portion U ¼ �p to
U ¼ 0 and the portionU ¼ 0 toU ¼ p are the same, while the phase responses are opposite. Since the
magnitude and phase responses calculated for the range fromU ¼ 0 toU ¼ p are sufficient to present
frequency response information, this range is only required for generating the frequency response plots.

Again, note that the phase plot shows a sawtooth shape instead of a linear straight line for this
particular filter. This is due to the phase wrapping at U ¼ 2p radians since ejðUþk2pÞ ¼ ejU is used
in the calculation. However, the phase plot shows that the phase is linear in the range from U ¼ 0
to U ¼ p radians.

Table 6.1 Frequency Response Calculations for Example 6.10

U (radians) f[
U

2p
fs (Hz)

��HðejUÞ�� ��HðejUÞ��
dB

:HðejUÞ

0 0 1.000 0 dB 00

0:25p 1,000 0.924 �0.687 dB �22:50

0:50p 2,000 0.707 �3.012 dB �45:000

0:75p 3,000 0.383 �8.336 dB �67:500

1:00p 4,000 0.000 �N �900
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EXAMPLE 6.11
Given a digital system

yðnÞ ¼ xðnÞ � 0:5yðn � 1Þ

with a sampling rate of 8,000 Hz, determine the frequency response.

Solution:
Taking the z-transform on both sides of the difference equation leads to

Y ðzÞ ¼ X ðzÞ � 0:5z�1Y ðzÞ

Then the transfer function describing the system is easily found to be

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 1

1þ 0:5z�1
¼ z

z þ 0:5

Substituting z ¼ ejU, we have the frequency response as

HðejUÞ ¼ 1

1þ 0:5e�jU

¼ 1

1þ 0:5 cos ðUÞ � j0:5 sin ðUÞ
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FIGURE 6.14

Periodicity of the magnitude response and phase response in Example 6.10.
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Therefore, the magnitude frequency response and phase response are given by���H

ejU

���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 0:5 cos ðUÞÞ2þð0:5 sin ðUÞÞ2

q

and

:HðejUÞ ¼ �tan�1

� �0:5 sin ðUÞ
1þ 0:5 cos ðUÞ

�

Several points for the magnitude response and phase response are calculated and shown in Table 6.2. The
magnitude response and phase response of the DSP system are roughly plotted in Figure 6.15 in accordance with
the obtained data.

0 0.5 1 1.5 2 2.5 3
-10

0

10

20

30

40

Frequency (radians)

P
ha

se
 re

sp
on

se
 (d

eg
re

es
)

0 0.5 1 1.5 2 2.5 3
-10

-5

0

5

10

Frequency (radians)

M
ag

ni
tu

de
 re

sp
on

se
 (d

B
)

FIGURE 6.15

Frequency responses of the digital filter in Example 6.11.

Table 6.2 Frequency Response Calculations in Example 6.11

U (radians) f[
U

2p
fs (Hz)

��HðejUÞ�� ��HðejUÞ��
dB

:HðejUÞ

0 0 0.670 �3.479 dB 00

0:25p 1,000 0.715 �2.914 dB 14:640

0:50p 2,000 0.894 �0.973 dB 26:570

0:75p 3,000 1.357 2.652 dB 28:680

1:00p 4,000 2.000 6.021 dB 00
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From Table 6.2 and Figure 6.15, we can see that when the frequency increases, the magnitude
response increases. The DSP system actually performs digital highpass filtering.

Notice that if all the coefficients ai for i ¼ 0; 1;/;M in Equation (6.1) are zeros, Equation (6.2) is
reduced to

yðnÞ ¼ PM
i¼ 0

bixðn� iÞ

¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bKxðn�MÞ
(6.25)

Notice that bi is the ith impulse response coefficient. Also, sinceM is a finite positive integer, bi in this
particular case is a finite set, HðzÞ ¼ BðzÞ; note that the denominator AðzÞ ¼ 1. Such systems are
called finite impulse response (FIR) systems. If not all ai in Equation (6.1) are zeros, the impulse
response hðiÞ would consist of an infinite number of coefficients. Such systems are called infinite
impulse response (IIR) systems. The z-transform of the IIR hðiÞ, in general, is given by

HðzÞ ¼ BðzÞ
AðzÞ

where AðzÞs1.

6.5 BASIC TYPES OF FILTERING
The basic filter types can be classified into four categories: lowpass, highpass, . bandpass, and
bandstop. Each of them finds a specific application in digital signal processing. One of the objectives in
applications may involve the design of digital filters. In general, the filter is designed based on the
specifications primarily for the passband, stopband, and transition band of the filter frequency
response. The filter passband is the frequency range with the amplitude gain of the filter response being
approximately unity. The filter stopband is defined as the frequency range over which the filter
magnitude response is attenuated to eliminate the input signal whose frequency components are within
that range. The transition band denotes the frequency range between the passband and stopband.

1 p

1- p

s

1.0

0 p s

Passband Transition Stopband

FIGURE 6.16

Magnitude response of the normalized lowpass filter.
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The design specifications of the lowpass filter are illustrated in Figure 6.16, where the low-
frequency components are passed through the filter while the high-frequency components are atten-
uated. As shown in Figure 6.16, Up and Us are the passband cutoff frequency and the stopband cutoff
frequency, respectively; dp is the design parameter to specify the ripple (fluctuation) of the frequency
response in the passband; and ds specifies the ripple of the frequency response in the stopband.

The highpass filter keeps high-frequency components and rejects low-frequency components. The
magnitude frequency response for the highpass filter is demonstrated in Figure 6.17.

The bandpass filter attenuates both low- and high-frequency components while keeping the middle-
frequency components, as shown in Figure 6.18.

As illustrated in Figure 6.18, UpL and UsL are the lower passband cutoff frequency and lower
stopband cutoff frequency, respectively. UpH and UsH are the upper passband cutoff frequency and
upper stopband cutoff frequency, respectively. dp is the design parameter to specify the ripple of the
frequency response in the passband, while ds specifies the ripple of the frequency response in the
stopband.
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FIGURE 6.17

Magnitude response of the normalized highpass filter.
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FIGURE 6.18

Magnitude response of the normalized bandpass filter.
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Finally, the bandstop (band reject or notch) filter shown in Figure 6.19 rejects the middle-frequency
components and accepts both the low- and the high-frequency components.

As a matter of fact, all kinds of digital filters are implemented using FIR or IIR systems.
Furthermore, the FIR and IIR systems can each be realized by various filter configurations, such as
direct forms, cascade forms, and parallel forms. Such topics will be included in the next section.

Given a transfer function, the MATLAB function freqz() can be used to determine the frequency
response. The syntax is given by

[h, w] [ freqz(B, A, N)

where the parameters are defined as follows:

h ¼ an output vector containing frequency response
w ¼ an output vector containing normalized frequency values distributed in the range from 0 to
p radians
B ¼ an input vector for numerator coefficients
A ¼ an input vector for denominator coefficients
N ¼ the number of normalized frequency points used for calculating the frequency response

Let’s consider Example 6.12.

EXAMPLE 6.12
Consider the following digital transfer function:

a. HðzÞ ¼ z

z � 0:5

b. HðzÞ ¼ 1� 0:5z�1

c. HðzÞ ¼ 0:5z2 � 0:32

z2 � 0:5z þ 0:25

d. HðzÞ ¼ 1� 0:9z�1 þ 0:81z�2

1� 0:6z�1 þ 0:36z�2
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FIGURE 6.19

Magnitude of the normalized bandstop filter.
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1. Plot the poles and zeros on the z-plane.
2. Use the MATLAB function freqz() to plot the magnitude frequency response and phase response for each

transfer function.
3. Identify the corresponding filter type (e.g., lowpass, highpass, bandpass, or bandstop).

Solution:
1. The pole-zero plot for each transfer function is demonstrated in Figure 6.20. The transfer functions of (a) and (c)
need to be converted into the standard form (delay form) required by the MATLAB function freqz(), in which both
numerator and denominator polynomials have negative powers of z. Hence, we obtain

HðzÞ ¼ z

z � 0:5
¼ 1

1� 0:5z�1

HðzÞ ¼ 0:5z2 � 0:32

z2 � 0:5z þ 0:25
¼ 0:5� 0:32z�2

1� 0:5z�1 þ 0:25z�2

while the transfer functions of (b) and (d) are already in their standard forms (delay forms).
2. The MATLAB program for plotting the magnitude frequency response and the phase response for each case is
listed in Program 6.2.
3. From the plots in Figures 6.21Ae6.21D of magnitude frequency responses for all cases, we can conclude that
case (a) is a low pass filter, (b) is a high pass filter, (c) is a bandpass filter, and (d) is a bandstop (band reject) filter.

(a)

(b)

(c)

(d)

FIGURE 6.20

Pole-zero plots of Example 6.12.
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FIGURE 6.21A

Plots of frequency responses for Example 6.12 for (a).
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FIGURE 6.21B

Plots of frequency responses for Example 6.12 for (b).
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FIGURE 6.21C

Plots of frequency responses for Example 6.12 for (c).
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FIGURE 6.21D

Plots of frequency responses for Example 6.12 for (d).
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Program 6.2. MATLAB program for Example 6.12.
% Example 6.12
% Plot the frequency response and phase response
% Case a

figure (1)
[h w] ¼ freqz([1],[1 -0.5],1024); % Calculate frequency response
phi¼180*unwrap(angle(h))/pi;
subplot(2,1,1), plot(w,abs(h)),grid; xlabel(’Frequency (radians)’),

ylabel(’Magnitude’)
subplot(2,1,2), plot(w,phi),grid; xlabel(’Frequency (radians)’), ylabel(’Phase
(degrees)’)

% Case b
figure (2)
[h w] ¼ freqz([1 -0.5],[1],1024); % Calculate frequency response
phi¼180*unwrap(angle(h))/pi;
subplot(2,1,1), plot(w,abs(h)),grid;xlabel(’Frequency (radians)’),

ylabel(’Magnitude’)
subplot(2,1,2), plot(w,phi),grid; xlabel(’Frequency (radians)’), ylabel(’Phase

(degrees)’)
% Case c
figure (3)
[h w] ¼ freqz([0.5 0 -0.32],[1 -0.5 0.25],1024); % Calculate frequency response
phi¼180*unwrap(angle(h))/pi;

subplot(2,1,1), plot(w,abs(h)),grid;
xlabel(’Frequency (radians)’),ylabel(’Magnitude’)
subplot(2,1,2), plot(w,phi),grid;
xlabel(’Frequency (radians)’), ylabel(’Phase (degrees)’)
% Case d
figure (4)
[h w] ¼ freqz([1 -0.9 0.81], [1 -0.6 0.36],1024); % Calculate frequency response
phi¼180*unwrap(angle(h))/pi;
subplot(2,1,1), plot(w,abs(h)),grid; xlabel(’Frequency (radians)’),
ylabel(’Magnitude’)
subplot(2,1,2), plot(w,phi),grid; xlabel(’Frequency (radians)’), ylabel(’Phase
(degrees)’)
%

6.6 REALIZATION OF DIGITAL FILTERS
In this section, basic realization methods for digital filters are discussed. Digital filters described by the
transfer function HðzÞ may be generally realized into the following forms:

• Direct-form I
• Direct-form II
• Cascade
• Parallel

(The reader can explore various lattice realizations in the textbook by Stearns and Hush [1990].)
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6.6.1 Direct-Form I Realization

As we know, a digital filter transfer function, HðzÞ, is given by

HðzÞ ¼ BðzÞ
AðzÞ ¼ b0 þ b1z

�1 þ/þ bMz
�M

1þ a1z�1 þ/þ aNz�N
(6.26)

Let xðnÞ and yðnÞ be the digital filter input and output, respectively. We can express the relationship in
z-transform domain as

YðzÞ ¼ HðzÞXðzÞ (6.27)

where XðzÞ and YðzÞ are the z-transforms of xðnÞ and yðnÞ, respectively. If we substitute Equation
(6.26) into HðzÞ in Equation (6.27), we have

YðzÞ ¼
�
b0 þ b1z

�1 þ/þ bMz
�M

1þ a1z�1 þ/þ aNz�N

�
XðzÞ (6.28)

Taking the inverse of the z-transform of Equation (6.28), we yield the relationship between input xðnÞ
and output yðnÞ in the time domain, as follows:

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ
�a1yðn� 1Þ � a2yðn� 2Þ �/� aNyðn� NÞ

(6.29)

This difference equation thus can be implemented by the direct-form I realization shown in
Figure 6.22(a). Figure 6.22(b) illustrates the realization of the second-order IIR filter (M ¼ N ¼ 2).
Note that the notation used in Figures 6.22(a) and (b) are defined in Figure 22(c) and will be applied for
discussion of other realizations.

Notice that any of the aj and bi can be zero, thus not all the paths need to exist for realization.

6.6.2 Direct-Form II Realization

Considering Equations (6.26) and (6.27) with N ¼ M, we can express

YðzÞ ¼ HðzÞXðzÞ ¼ BðzÞ
AðzÞXðzÞ ¼ BðzÞ

�
XðzÞ
AðzÞ

�

¼ ðb0 þ b1z
�1 þ/þ bMz

�MÞ
�

XðzÞ
1þ a1z�1 þ/þ aMz�M

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

WðzÞ

(6.30)
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Also, if we define a new z-transform function as

WðzÞ ¼ XðzÞ
1þ a1z�1 þ/þ aMz�M

(6.31)

we have

YðzÞ ¼ ðb0 þ b1z
�1 þ/þ bMz

�MÞWðzÞ (6.32)

The corresponding difference equations for Equations (6.31) and (6.32), respectively, become

wðnÞ ¼ xðnÞ � a1wðn� 1Þ � a2wðn� 2Þ �/� aMwðn�MÞ (6.33)

(a)

(b)

(c)

FIGURE 6.22

(a) Direct-form I realization; (b) direct-form I realization with M ¼ 2; (c) notation.
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and

yðnÞ ¼ b0wðnÞ þ b1wðn� 1Þ þ.þ bMwðn�MÞ (6.34)

Realization of Equations (6.33) and (6.34) produces another direct-form II realization, which is
demonstrated in Figure 6.23(a). Again, the corresponding realization of the second-order IIR filter is
described in Figure 6.23(b). Note that in Figure 6.23(a), the variables wðnÞ, wðn� 1Þ, wðn� 2Þ,.,
wðn�MÞ are different from the filter inputs xðn� 1Þ, xðn� 2Þ , ., xðn�MÞ.

6.6.3 Cascade (Series) Realization

An alternate way to filter realization is to cascade the factorized HðzÞ in the following form:

HðzÞ ¼ H1ðzÞ$H2ðzÞ/HkðzÞ (6.35)

where HkðzÞ is chosen to be the first- or second-order transfer function (section), which is defined by

HkðzÞ ¼ bk0 þ bk1z
�1

1þ ak1z�1
(6.36)

or

HkðzÞ ¼ bk0 þ bk1z
�1 þ bk2z

�2

1þ ak1z�1 þ ak2z�2
(6.37)

respectively. The block diagram of the cascade, or series, realization is depicted in Figure 6.24.

(a)

(b)

FIGURE 6.23

(a) Direct-form II realization; (b) direct-form II realization with M ¼ 2.
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6.6.4 Parallel Realization

Now we convert HðzÞ into the form

HðzÞ ¼ H1ðzÞ þ H2ðzÞ þ/þ HkðzÞ (6.38)

where HkðzÞ is defined as the first- or second-order transfer function (section) given by

HkðzÞ ¼ bk0
1þ ak1z�1

(6.39)

or

HkðzÞ ¼ bk0 þ bk1z
�1

1þ ak1z�1 þ ak2z�2
(6.40)

respectively. The resulting parallel realization is illustrated in the block diagram in Figure 6.25.

EXAMPLE 6.13
Given a second-order transfer function

HðzÞ ¼ 0:5ð1� z�2Þ
1þ 1:3z�1 þ 0:36z�2

perform the filter realizations and write difference equations using the following realizations:

a. direct-form I and direct-form II;
b. cascade form via first-order sections;
c. parallel form via first-order sections.

FIGURE 6.24

Cascade realization.

FIGURE 6.25

Parallel realization.
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Solution:
a. To perform the filter realizations using direct-form I and direct-form II, we rewrite the given second-order transfer
function as

HðzÞ ¼ 0:5� 0:5z�2

1þ 1:3z�1 þ 0:36z�2

and identify that

a1 ¼ 1:3; a2 ¼ 0:36; b0 ¼ 0:5; b1 ¼ 0; and b2 ¼ �0:5

Based on the realizations in Figure 6.22, we sketch the direct-form I realization in Figure 6.26.
The difference equation for the direct-form I realization is given by

yðnÞ ¼ 0:5xðnÞ � 0:5xðn � 2Þ � 1:3yðn � 1Þ � 0:36yðn � 2Þ

Using the direct-form II realization shown in Figure 6.23, we present the realization in Figure 6.27. The difference
equations for the direct-form II realization are expressed as

wðnÞ ¼ xðnÞ � 1:3wðn � 1Þ � 0:36wðn � 2Þ

yðnÞ ¼ 0:5wðnÞ � 0:5wðn � 2Þ

b. To achieve the cascade (series) form realization, we factor HðzÞ into two first-order sections to yield

HðzÞ ¼ 0:5ð1� z�2Þ
1þ 1:3z�1 þ 0:36z�2

¼ 0:5� 0:5z�1

1þ 0:4z�1

1þ z�1

1þ 0:9z�1

FIGURE 6.26

Direct-form I realization for Example 6.13.

FIGURE 6.27

Direct-form II realization for Example 6.13.
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where H1ðzÞ and H2ðzÞ are chosen to be

H1ðzÞ ¼ 0:5� 0:5z�1

1þ 0:4z�1

H2ðzÞ ¼ 1þ z�1

1þ 0:9z�1

Notice that the obtained H1ðzÞ andH2ðzÞ are not the unique selections for realization. For example, there is another

way of choosing H1ðzÞ ¼ 0:5� 0:5z�1

1þ 0:9z�1
and H2ðzÞ ¼ 1þ z�1

1þ 0:4z�1
to yield the same HðzÞ. Using the H1ðzÞ and

H2ðzÞwe have obtained, and with the direct-form II realization, we achieve the cascade form depicted in Figure 6.28.

The difference equations for the direct-form II realization have two cascaded sections, expressed as
Section 1:

w1ðnÞ ¼ xðnÞ � 0:4wðn � 1Þ

y1ðnÞ ¼ 0:5w1ðnÞ � 0:5w1ðn � 1Þ

Section 2:

w2ðnÞ ¼ y1ðnÞ � 0:9w2ðn � 1Þ

yðnÞ ¼ w2ðnÞ þ w2ðn � 1Þ

c. In order to yield the parallel form of realization, we need to make use of the partial fraction expansion, and we
first let

HðzÞ
z

¼ 0:5ðz2 � 1Þ
zðz þ 0:4Þðz þ 0:9Þ ¼ A

z
þ B

z þ 0:4
þ C

z þ 0:9

where

A ¼ z

�
0:5ðz2 � 1Þ

zðz þ 0:4Þðz þ 0:9Þ
�����

z¼0

¼ 0:5ðz2 � 1Þ
ðz þ 0:4Þðz þ 0:9Þ

����
z¼0

¼ �1:39

B ¼ ðz þ 0:4Þ
�

0:5ðz2 � 1Þ
zðz þ 0:4Þðz þ 0:9Þ

�����
z¼�0:4

¼ 0:5ðz2 � 1Þ
zðz þ 0:9Þ

����
z¼�0:4

¼ 2:1

C ¼
�
z þ 0:9

��
0:5

�
z2 � 1

	
zðz þ 0:4Þðz þ 0:9Þ

�����
z¼�0:9

¼ 0:5
�
z2 � 1

	
zðz þ 0:4Þ

����
z¼�0:9

¼ �0:21

FIGURE 6.28

Cascade realization for Example 6.13.
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Therefore

HðzÞ ¼ �1:39þ 2:1z

z þ 0:4
þ�0:21z

z þ 0:9
¼ �1:39þ 2:1

1þ 0:4z�1
þ �0:21

1þ 0:9z�1

Again, using the direct-form II realization for each section, we obtain the parallel realization in Figure 6.29.
The difference equations for the direct-form II realization have three parallel sections, expressed as

y1ðnÞ ¼ �1:39xðnÞ

w2ðnÞ ¼ xðnÞ � 0:4w2ðn � 1Þ

y2ðnÞ ¼ 2:1w2ðnÞ

w3ðnÞ ¼ xðnÞ � 0:9w3ðn � 1Þ

y3ðnÞ ¼ �0:21w3ðnÞ

yðnÞ ¼ y1ðnÞ þ y2ðnÞ þ y3ðnÞ

In practice, the second-order filter module with the direct-form I or direct-form II realization is
used. The high-order filter can be factored in the cascade form with the first- or second-order sections.
In cases where the first order-filter is required, we can still modify the second-order filter module by
setting the corresponding filter coefficients to be zero.

6.7 APPLICATION: SIGNAL ENHANCEMENT AND FILTERING
This section investigates applications of signal enhancement using a pre-emphasis filter and
speech filtering using a bandpass filter. Enhancement also includes biomedical signals such as
electrocardiogram (ECG) signals.

FIGURE 6.29

Parallel realization for Example 6.13.
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6.7.1 Pre-Emphasis of Speech

A speech signal may have frequency components that fall off at high frequencies. In some applications
such as speech coding, to avoid overlooking the high frequencies, the high frequency components
are compensated using pre-emphasis filtering. A simple digital filter used for such compensation is
given as

yðnÞ ¼ xðnÞ � axðn� 1Þ (6.41)

where a is the positive parameter to control the degree of pre-emphasis filtering and usually is chosen
to be less than 1. The filter described in Equation (6.41) is essentially a highpass filter. Applying
z-transform on both sides of Equation (6.41) and solving for the transfer function, we have

HðzÞ ¼ 1� az�1 (6.42)

The magnitude and phase responses adopting the pre-emphasis parameter a ¼ 0:9 and the sampling
rate fs ¼ 8;000 Hz are plotted in Figure 6.30A using MATLAB.

Figure 6.30B compares the original speech waveform and the pre-emphasized speech using the
filter in Equation (6.42). Again, we apply the fast Fourier transform (FFT) to estimate the spectrum of
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FIGURE 6.30A

Frequency responses of the pre-emphasis filter.
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the original speech and the spectrum of the pre-emphasized speech. The plots are displayed in
Figure 6.31.

From Figure 6.31, we can conclude that the filter does its job to boost the high-frequency
components and attenuate the low-frequency components. We can also try this filter with different
values of a to examine the degree of the pre-emphasis filtering of the digitally recorded speech. The
MATLAB list is in Program 6.3.
Program 6.3. MATLAB program for pre-emphasis of speech.

% MATLAB program for Figures 6.30 and 6.31
close all;clear all
fs¼8000; % Sampling rate
alpha ¼0.9; % Degree of pre-emphasis
figure(1);
freqz([1 -alpha],1,512,fs); % Calculate and display frequency response
load speech.dat
figure(2);
y¼filter([1 -alpha],1,speech); % Filtering speech
subplot(2,1,1),plot(speech);grid;
ylabel(’Speech samples’)
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FIGURE 6.30B

Original speech and pre-emphasized speech waveforms.
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title(’Speech: We lost the golden chain.’)
subplot(2,1,2),plot(y);grid
ylabel(’Filtered samples’)
xlabel(’Number of samples’);
title(’Preemphasized speech.’)
figure(3);
N¼length(speech); % Length of speech
Axk¼abs(fft(speech.*hamming(N)’))/N; % Two-sided spectrum of speech
Ayk¼abs(fft(y.*hamming(N)’))/N; % Two-sided spectrum of pre-emphasized speech
f¼[0:N/2]*fs/N;
Axk(2:N)¼2*Axk(2:N); % Get one-sided spectrum of speech
Ayk(2:N)¼2*Ayk(2:N); % Get one-sided spectrum of filtered speech
subplot(2,1,1),plot(f,Axk(1:N/2þ1));grid
ylabel(’Amplitude spectrum Ak’)
title(’Original speech’);
subplot(2,1,2),plot(f,Ayk(1:N/2þ1));grid
ylabel(’Amplitude spectrum Ak’)
xlabel(’Frequency (Hz)’);
title(’Preemphasized speech’);
%
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FIGURE 6.31

Amplitude spectral plots for the original speech and pre-emphasized speech.
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6.7.2 Bandpass Filtering of Speech

Bandpass filtering plays an important role in DSP applications. It can be used to pass the signals
according to the specified frequency passband and reject the frequency other than the passband
specification. Then the filtered signal can be further used for the signal feature extraction. Filtering can
also be applied to perform applications such as noise reduction, frequency boosting, digital audio
equalizing, and digital crossover, among others.

Let us consider the following digital fourth-order bandpass Butterworth filter with a lower cutoff
frequency of 1,000 Hz, an upper cutoff frequency of 1,400 Hz (that is, the bandwidth is 400 Hz), and
a sampling rate of 8,000 Hz:

HðzÞ ¼ 0:0201� 0:0402z�2 þ 0:0201z�4

1� 2:1192z�1 þ 2:6952z�2 � 1:6924z�3 þ 0:6414z�4
(6.43)

Converting the z-transfer function into the DSP difference equation yields

yðnÞ ¼ 0:0201xðnÞ � 0:0402xðn� 2Þ þ 0:0201xðn� 4Þ
þ2:1192yðn� 1Þ � 2:6952yðn� 2Þ þ 1:6924yðn� 3Þ � 0:6414yðn� 4Þ (6.44)

The filter frequency responses are computed and plotted in Figure 6.32Awith MATLAB. Figure 6.32B
shows the original speech and filtered speech, while Figure 6.32C displays the spectral plots for the
original speech and filtered speech.
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FIGURE 6.32A

Frequency responses of the designed bandpass filter.
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As shown in Figure 6.32C, the designed bandpass filter significantly reduces low-frequency
components, which are less than 1,000 Hz, and the high-frequency components above 1,400 Hz, while
letting the signals with the frequencies ranging from 1,000 Hz to 1,400 Hz pass through the filter.
Similarly, we can design and implement other types of filters, such as lowpass, highpass, bandpass, and
band reject (bandstop) to filter the signals and examine the performance of their designs. MATLAB
implementation details are given in Program 6.4.
Program 6.4. MATLAB program for bandpass filtering of speech.

fs¼8000; % Sampling rate
freqz([0.0201 0.00 -0.0402 0 0.0201],[1 -2.1192 2.6952 -1.6924 0.6414],512,fs);
axis([0 fs/2 -40 1]); % Frequency response of bandpass filter
figure
load speech.dat
y¼filter([0.0201 0.00 -0.0402 0.0201],[1 -2.1192 2.6952 -1.6924 0.6414],speech);
subplot(2,1,1),plot(speech); grid; % Filtering speech
ylabel(’Origibal Samples’)
title(’Speech: We lost the golden chain.’)
subplot(2,1,2),plot(y);grid
xlabel(’Number of Samples’);ylabel(’Filtered Samples’)
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Plots of the original speech and filtered speech.
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title(’Bandpass filtered speech.’)
figure
N¼length(speech);
Axk¼abs(fft(speech.*hamming(N)’))/N; % One-sided spectrum of speech
Ayk¼abs(fft(y.*hamming(N)’))/N; % One-sided spectrum of filtered speech
f¼[0:N/2]*fs/N;
Axk(2:N)¼2*Axk(2:N);Ayk(2:N)¼2*Ayk(2:N); % One-sided spectra
subplot(2,1,1),plot(f,Axk(1:N/2þ1));grid
ylabel(’Amplitude spectrum Ak’)
title(’Original speech’);
subplot(2,1,2),plot(f,Ayk(1:N/2þ1));grid
ylabel(’Amplitude spectrum Ak’);xlabel(’Frequency (Hz)’);
title(’Bandpass filtered speech’);

6.7.3 Enhancement of ECG Signal Using Notch Filtering

A notch filter is a bandstop filter with a very narrow bandwidth. It can be applied to enhance an ECG
signal that is corrupted during the data acquisition stage, where the signal is exposed to 60-Hz
interference induced from the power line. Let us consider the following digital second-order notch
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FIGURE 6.32C

Amplitude spectra of the original speech and bandpass filtered speech.
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filter with a notch frequency of 60 Hz where the digital system has a sampling frequency of 500 Hz. We
obtain a notch filter (details can be found in Chapter 8) as follows:

HðzÞ ¼ 1� 1:4579z�1 þ z�2

1� 1:3850z�1 þ 0:9025z�2
(6.45)

The DSP difference equation is expressed as

yðnÞ ¼ xðnÞ � 1:4579xðn� 1Þ þ 1:3850yðn� 1Þ � 0:9025yðn� 2Þ (6.46)

The frequency responses are computed and plotted in Figure 6.33. Comparisons of the raw ECG signal
corrupted by 60-Hz interference with the enhanced ECG signal for both the time domain and
frequency domain are displayed in Figures 6.34 and 6.35, respectively. As we can see, the notch filter
completely removes the 60-Hz interference.

6.8 SUMMARY
1. The digital filter (DSP system) is represented by a difference equation, which is linear and time

invariant.
2. The filter output depends on the filter current input, past input(s), and past output(s) in general.

Given arbitrary inputs and nonzero or zero initial conditions, operating the difference equation
can generate the filter output recursively.

0 50 100 150 200 250
-100

-50

0

50

100

Frequency (Hz)

P
ha

se
 (d

eg
re

es
)

0 50 100 150 200 250
-60

-40

-20

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

FIGURE 6.33

Notch filter frequency responses.
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3. System responses such as the impulse response and step response can be determined analytically
using the z-transform.

4. The transfer function can be obtained by applying z-transform to the difference equation to
determine the ratio of the output z-transform over the input z-transform. A digital filter (DSP
system) can be represented by its transfer function.

5. System stability can be studied using a very useful tool, a z-plane pole-zero plot.
6. The frequency response of the DSP system was developed and illustrated to investigate the

magnitude and phase responses. In addition, the FIR (finite impulse response) and IIR (infinite
impulse response) systems were defined.

7. Digital filters and their specifications, such as lowpass, highpass, bandpass, and bandstop, were
reviewed.

8. A digital filter can be realized using standard realization methods such as direct-form I; direct-form
II; cascade, or series form; and parallel form.

9. Digital processing of speech using the pre-emphasis filter and bandpass filter was investigated to
study spectral effects of the processed digital speech. The pre-emphasis filter boosts the high-
frequency components, while bandpass filtering keeps the midband frequency components and
rejects other lower- and upper-band frequency components.
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The corrupted ECG signal and the enhanced ECG signal.
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6.9 PROBLEMS

6.1. Given the difference equation

yðnÞ ¼ xðnÞ � 0:5yðn� 1Þ
a. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ

and initial condition yð � 1Þ ¼ 1;

b. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ and
zero initial condition yð � 1Þ ¼ 0

6.2. Given the difference equation

yðnÞ ¼ 0:5xðn� 1Þ þ 0:6yðn� 1Þ
a. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ

and initial conditions xð � 1Þ ¼ �1, and yð � 1Þ ¼ 1;

b. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ and
zero initial conditions xð � 1Þ ¼ 0, and yð � 1Þ ¼ 0.
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6.3. Given the difference equation

yðnÞ ¼ xðn� 1Þ � 0:75yðn� 1Þ � 0:125yðn� 2Þ
a. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ

and initial conditions: xð � 1Þ ¼ �1, yð � 2Þ ¼ 2, and yð � 1Þ ¼ 1;

b. calculate the system response yðnÞ for n ¼ 0; 1;.; 4 with the input xðnÞ ¼ ð0:5ÞnuðnÞ and
zero initial conditions: xð � 1Þ ¼ 0, yð�2Þ ¼ 0, and yð � 1Þ ¼ 0.

6.4. Given the difference equation

yðnÞ ¼ 0:5xðnÞ þ 0:5xðn� 1Þ
a. find the HðzÞ;
b. determine the impulse response yðnÞ if the input xðnÞ ¼ 4dðnÞ;
c. determine the step response yðnÞ if the input xðnÞ ¼ 10uðnÞ.

6.5. Given the difference equation,

yðnÞ ¼ xðnÞ � 0:5yðn� 1Þ
a. find the HðzÞ;
b. determine the impulse response yðnÞ if the input xðnÞ ¼ dðnÞ;
c. determine the step response yðnÞ if the input xðnÞ ¼ uðnÞ.

6.6. A digital system is described by the following difference equation:

yðnÞ ¼ xðnÞ � 0:25xðn� 2Þ � 1:1yðn� 1Þ � 0:28yðn� 2Þ
Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator poly-
nomial BðzÞ.

6.7. A digital system is described by the following difference equation:

yðnÞ ¼ 0:5xðnÞ þ 0:5xðn� 1Þ � 0:6yðn� 2Þ
Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator poly-
nomial BðzÞ.

6.8. A digital system is described by the following difference equation:

yðnÞ ¼ 0:25xðn� 2Þ þ 0:5yðn� 1Þ � 0:2yðn� 2Þ
Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator poly-
nomial BðzÞ.

6.9. A digital system is described by the following difference equation:

yðnÞ ¼ xðnÞ � 0:3xðn� 1Þ þ 0:28xðn� 2Þ
Find the transfer function HðzÞ, the denominator polynomial AðzÞ, and the numerator

polynomial BðzÞ.
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6.10. Convert each of the following transfer functions into difference equations:

a. HðzÞ ¼ 0:5þ 0:5z�1

b. HðzÞ ¼ 1

1� 0:3z�1

6.11. Convert each of the following transfer functions into difference equations:

a. HðzÞ ¼ 0:1þ 0:2z�1 þ 0:3z�2

b. HðzÞ ¼ 0:5� 0:5z�2

1� 0:3z�1 þ 0:8z�2

6.12. Convert each of the following transfer functions into difference equations:

a. HðzÞ ¼ z2 � 0:25

z2 þ 1:1zþ 0:18

b. HðzÞ ¼ z2 � 0:1zþ 0:3

z3

6.13. Convert each of the following transfer functions into pole-zero form:

a. HðzÞ ¼ z2 þ 2zþ 1

z2 þ 5zþ 6

b HðzÞ ¼ 1� 0:16z�2

1þ 0:7z�1 þ 0:1z�2

c HðzÞ ¼ z2 þ 4zþ 5

z3 þ 2z2 þ 6z

6.14. A transfer function depicting a discrete-time system is given by

HðzÞ ¼ 10ðzþ 1Þ
ðzþ 0:75Þ

a. Determine the impulse response hðnÞ and step response.

b. Determine the system response yðnÞ if the input is xðnÞ ¼ ð0:25ÞnuðnÞ.
6.15. Given each of the following transfer functions that describe digital systems, sketch the z-

plane pole-zero plot and determine the stability for each digital system.

a. HðzÞ ¼ z� 0:5

ðzþ 0:25Þðz2 þ zþ 0:8Þ
b. HðzÞ ¼ z2 þ 0:25

ðz� 0:5Þðz2 þ 4zþ 7Þ
c. HðzÞ ¼ zþ 0:95

ðzþ 0:2Þðz2 þ 1:414zþ 1Þ
d. HðzÞ ¼ z2 þ zþ 0:25

ðz� 1Þðzþ 1Þ2ðz� 0:36Þ
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6.16. Given the digital system

yðnÞ ¼ 0:5xðnÞ þ 0:5xðn� 2Þ
with a sampling rate of 8,000 Hz,

a. determine the frequency response;

b. calculate and plot the magnitude and phase frequency responses;

c. determine the filter type based the magnitude frequency response.

6.17. Given the digital system,

yðnÞ ¼ 0:5xðn� 1Þ þ 0:5xðn� 2Þ
with a sampling rate of 8,000 Hz,

a. determine the frequency response;

b. calculate and plot the magnitude and phase frequency responses;

c. determine the filter type based the magnitude frequency response.

6.18. For the digital system

yðnÞ ¼ 0:5xðnÞ þ 0:5yðn� 1Þ
with a sampling rate of 8,000 Hz,

a. determine the frequency response;

b. calculate and plot the magnitude and phase frequency responses;

c. determine the filter type based the magnitude frequency response.

6.19. For the digital system

yðnÞ ¼ xðnÞ � 0:5yðn� 2Þ
with a sampling rate of 8,000 Hz,

a. determine the frequency response;

b. calculate and plot the magnitude and phase frequency responses;

c. determine the filter type based the magnitude frequency response.

6.20. Given the difference equation

yðnÞ ¼ xðnÞ � 2$ cos ðaÞxðn� 1Þ þ xðn� 2Þ þ 2g$ cos ðaÞ � g2

where g ¼ 0:8 and a ¼ 600,

a. find the transfer function HðzÞ;
b. plot the poles and zeros on the z-plan with the unit circle;

c. determine the stability of the system from the pole-zero plot;

d. calculate the amplitude (magnitude) response of HðzÞ;
e. calculate the phase response of HðzÞ.
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6.21. For the difference equations

a. yðnÞ ¼ 0:5xðnÞ þ 0:5xðn� 1Þ
b yðnÞ ¼ 0:5xðnÞ � 0:5xðn� 1Þ
c. yðnÞ ¼ 0:5xðnÞ þ 0:5xðn� 2Þ
d. yðnÞ ¼ 0:5xðnÞ � 0:5xðn� 2Þ

1. find HðzÞ;
2. calculate the magnitude response;

3. specify the filtering type based on the calculated magnitude response.

6.22. Given an IIR system expressed as

yðnÞ ¼ 0:5xðnÞ þ 0:2yðn� 1Þ; yð � 1Þ ¼ 0

a. find HðzÞ;
b. find the system response yðnÞ due to the input xðnÞ ¼ ð0:5ÞnuðnÞ.

6.23. Given the IIR system

yðnÞ ¼ 0:5xðnÞ � 0:7yðn� 1Þ � 0:1yðn� 2Þ

with zero initial conditions,
a. find HðzÞ;
b. find the unit step response.

6.24. Given the first-order IIR system

HðzÞ ¼ 1þ 2z�1

1� 0:5z�1

realize HðzÞ and develop the difference equations using the following forms:

a. direct-form I;

b. direct-form II.

6.25. Given the filter

HðzÞ ¼ 1� 0:9z�1 � 0:1z�2

1þ 0:3z�1 � 0:04z�2

realize HðzÞ and develop difference equations using the following forms:

a. direct-form I;

b. direct-form II;
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c. cascade (series) form via the first-order sections;

d. parallel form via the first-order sections.

6.26. Given the pre-emphasis filters:

HðzÞ ¼ 1� 0:5z�1

HðzÞ ¼ 1� 0:7z�1

HðzÞ ¼ 1� 0:9z�1

a. write the difference equation for each;

b. determine which emphasizes high frequency components most.

6.9.1 MATLAB Problems

6.27. Given a filter

H
�
z
	 ¼ 1þ 2z�1 þ z�2

1� 0:5z�1 þ 0:25z�2

use MATLAB to plot

a. its magnitude frequency response;

b. its phase response.

6.28. Given a difference equation

yðnÞ ¼ xðn� 1Þ � 0:75yðn� 1Þ � 0:125yðn� 2Þ
a. use the MATLAB functions filter() and filtic() to calculate the system response yðnÞ for

n ¼ 0; 1;.; 4 with the input of xðnÞ ¼ ð0:5ÞnuðnÞ and initial conditions xð � 1Þ ¼ �1,
yð � 2Þ ¼ 2, and yð � 1Þ ¼ 1;

b. use the MATLAB function filter() to calculate the system response yðnÞ for
n ¼ 0; 1;.; 4 with the input of xðnÞ ¼ ð0:5ÞnuðnÞ and zero initial conditions
xð � 1Þ ¼ 0, yð�2Þ ¼ 0, and yð � 1Þ ¼ 0.

6.29. Given a filter

HðzÞ ¼ 1� z�1 þ z�2

1� 0:9z�1 þ 0:81z�2

a. plot the magnitude frequency response and phase response using MATLAB;

b. specify the type of filtering;

c. find the difference equation;
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d. perform filtering, that is, calculate yðnÞ for the first 1,000 samples for each of the
following inputs and plot the filter outputs using MATLAB, assuming that all initial
conditions are zeros and the sampling rate is 8,000 Hz:

xðnÞ ¼ cos

�
p,103

n

8;000

�

xðnÞ ¼ cos

�
8

3
p,103

n

8;000

�

xðnÞ ¼ cos

�
6p,103

n

8; 000

�

e. repeat (d) using the MATLAB function filter().

6.30. Repeat (d) in Problem 6.29 using direct-form II structure.

6.9.2 MATLAB Projects

6.31. Sound effects of pre-emphasis filtering:

A pre-emphasis filter is shown in Figure 6.36 with a selective parameter 0 � a < 1, which
controls the degree of pre-emphasis filtering. Assuming the system has a sampling rate of
8,000 Hz, plot the frequency responses for a ¼ 0, a ¼ 0:4, a ¼ 0:8, a ¼ 0:95, a ¼ 0:99,
respectively. For each case, apply the pre-emphasis filter to the given speech (“speech.dat”)
and discuss the sound effects.

6.32. Echo generation (sound regeneration):

Echo is the repetition of sound due to sound wave reflection from the objects. It can easily be
generated using an FIR filter such as that in Figure 6.37, where jaj < 1 is an attenuation

FIGURE 6.37

A single echo generator using an FIR filter.

FIGURE 6.36

A pre-emphasis filter.
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factor and R the delay of the echo. The echo signal is generated by the sum of a delayed
version of sound with the attenuation of a and the nondelayed version.

However, a single echo generator may not be useful, so a multiple-echo generator using an
IIR filter is usually applied, as shown in Figure 6.38.

a. Assuming the system has a sampling rate of 8,000 Hz, plot the IIR filter frequency
responses for the following cases: a ¼ 0:5 and R ¼ 1; a ¼ 0:6 and R ¼ 4; a ¼ 0:7 and
R ¼ 10, and characterize the frequency responses.

b. Implement the multiple-echo generator using the following code:

y¼filter([1], [1 zeros(1, R-1) alpha], x)

Following that, evaluate the sound effects of the speech file (“speech.dat”) for the following
cases: a ¼ 0:5 and R ¼ 500 (62.5 ms); a ¼ 0:7 and R ¼ 1000 (125 ms); a ¼ 0:5,
R ¼ 2000 (250 ms); and a ¼ 0:5, R ¼ 4000 (500 ms).

FIGURE 6.38

A multiple-echo generator using an IIR filter.
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OBJECTIVES:

This chapter introduces principles of the finite impulse response (FIR) filter design and investigates design
methods such as the Fourier transform method, window method, frequency sampling method, and optimal
design method. Then the chapter illustrates how to apply the designed FIR filters to solve real-world
problems such as noise reduction and digital crossover for audio applications.

7.1 FINITE IMPULSE RESPONSE FILTER FORMAT
In this chapter, we describe techniques for designing finite impulse response (FIR) filters. An FIR filter
is completely specified by the following input–output relationship:

yðnÞ ¼ PK
i¼ 0

bixðn� iÞ

¼ b0 xðnÞ þ b1xðn� 1Þ þ b2xðn� 2Þ þ/þ bKxðn� KÞ
(7.1)
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where bi represents FIR filter coefficients and K þ 1 denotes the FIR filter length. Applying the
z-transform on both sides on Equation (7.1) leads to

YðzÞ ¼ b0XðzÞ þ b1z
�1XðzÞ þ/þ bKz

�KXðzÞ (7.2)

Factoring out XðzÞ on the right-hand side of Equation (7.2) and then dividing XðzÞ on both sides, we
have the transfer function, which depicts the FIR filter, as

HðzÞ ¼ YðzÞ
XðzÞ ¼ b0 þ b1z

�1 þ/þ bKz
�K (7.3)

The following example serves to illustrate the notations used in Equations (7.1) and (7.3) numerically.

EXAMPLE 7.1
Given the FIR filter

yðnÞ ¼ 0:1xðnÞ þ 0:25xðn � 1Þ þ 0:2xðn � 2Þ

determine the transfer function, filter length, nonzero coefficients, and impulse response.

Solution:
Applying the z-transform on both sides of the difference equation yields

Y ðzÞ ¼ 0:1X ðzÞ þ 0:25X ðzÞz�1 þ 0:2X ðzÞz�2

Then the transfer function is found to be

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 0:1þ 0:25z�1 þ 0:2z�2

The filter length is K þ 1 ¼ 3, and the identified coefficients are

b0 ¼ 0:1; b1 ¼ 0:25 and b2 ¼ 0:2

Taking the inverse z-transform of the transfer function, we have

hðnÞ ¼ 0:1dðnÞ þ 0:25dðn � 1Þ þ 0:2dðn � 2Þ

This FIR filter impulse response has only three terms.

The foregoing example is to help us understand the FIR filter format. We can conclude the
following:

1. The transfer function in Equation (7.3) has a constant term, all the other terms have negative
powers of z, and all the poles are at the origin on the z-plane. Hence, the stability of the filter is
guaranteed. Its impulse response has only a finite number of terms.

2. TheFIRfilter operations involve onlymultiplying thefilter inputs by their corresponding coefficients
and accumulating them; the implementation of this filter type in real time is straightforward.

From the FIR filter format, the design objective is to obtain bi coefficients for the FIR filter such that
the magnitude frequency response of the FIR filter HðzÞ will approximate the desired magnitude
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frequency response, such as that of a lowpass, highpass, bandpass, or bandstop filter. The following
sections will introduce design methods to calculate the FIR filter coefficients.

7.2 FOURIER TRANSFORM DESIGN
We begin with an ideal lowpass filter with a normalized cutoff frequency Uc, whose magnitude
frequency response in terms of the normalized digital frequency U is plotted in Figure 7.1 and is
characterized by

HðejUÞ ¼
(

1; 0 � jUj � Uc

0; Uc � jUj � p
(7.4)

Since the frequency response is periodic with a period ofU ¼ 2p radians, as we discussed in Chapter 6,
we can extend the frequency response of the ideal filter HðejUÞ, as shown in Figure 7.2.

The periodic frequency response can be approximated using a complex Fourier series expansion
(see Appendix B) in terms of the normalized digital frequency U, that is,

HðejUÞ ¼
XN

n¼�N

cne
�ju0nU (7.5)

and the Fourier coefficients are given by

cn ¼ 1

2p

Zp
�p

HðejUÞeju0nUdU for �N < n < N (7.6)

FIGURE 7.1

Frequency response of an ideal lowpass filter.

FIGURE 7.2

Periodicity of the ideal lowpass frequency response.
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Notice that we obtain Equations (7.5) and (7.6) simply by treating the Fourier series expansion in the
time domain with the time variable t replaced by the normalized digital frequency variable U. The
fundamental frequency is easily found to be

u0 ¼ 2p=ðperiod of waveformÞ ¼ 2p=2p ¼ 1 (7.7)

Substituting u0 ¼ 1 into Equation (7.6) and introducing hðnÞ ¼ cn, called the desired impulse
response of the ideal filter, we obtain the Fourier transform design as

hðnÞ ¼ 1

2p

Zp
-p

HðejUÞejUndU for �N < n < N (7.8)

Now, let us look at the possible z-transfer function. If we substitute ejU ¼ z and u0 ¼ 1 back to
Equation (7.5), we yield a z-transfer function in the following format:

HðzÞ ¼ PN
n¼�N

hðnÞz�n

/þ hð�2Þz2 þ hð�1Þz1 þ hð0Þ þ hð1Þz�1 þ hð2Þz�2 þ/

(7.9)

This is a noncausal FIR filter. We will deal with this later in this section. Using the Fourier transform
design shown in Equation (7.8), the desired impulse response approximation of the ideal lowpass filter
is solved as

For n ¼ 0 hðnÞ ¼ 1

2p

Zp
-p

HðejUÞejU�0dU

¼ 1

2p

ZUc

�Uc

1dU ¼ Uc

p

For ns0 hðnÞ ¼ 1

2p

Zp
-p

HðejUÞejUndU ¼ 1

2p

ZUc

�Uc

ejUndU

¼ ejnU

2pjn

����
Uc

�Uc

¼ 1

pn

ejnUc � e�jnUc

2j
¼ sinðUcnÞ

pn
(7.10)

The desired impulse response hðnÞ is plotted versus the sample number n in Figure 7.3.
Theoretically, hðnÞ in Equation (7.10) exists for�N < n < N and is symmetrical about n ¼ 0; that

is, hðnÞ ¼ hð � nÞ. The amplitude of the impulse response sequence hðnÞ becomes smaller when n
increases in both directions. The FIR filter designmust first be completed by truncating the infinite-length
sequence hðnÞ to achieve the 2M þ 1 dominant coefficients using the coefficient symmetry, that is,

HðzÞ ¼ hðMÞzM þ/þ hð1Þz1 þ hð0Þ þ hð1Þz�1 þ/þ hðMÞz�M

220 CHAPTER 7 Finite Impulse Response Filter Design



The obtained filter is a noncausal z-transfer function of the FIR filter, since the filter transfer function
contains terms with the positive powers of z, which in turn means that the filter output depends on the
future filter inputs. To remedy the noncausal z-transfer function, we delay the truncated impulse
response hðnÞ by M samples to yield the following causal FIR filter:

HðzÞ ¼ b0 þ b1z
�1 þ/þ b2Mð2MÞz�2M (7.11)

n

h(n)

0

FIGURE 7.3

Impulse response of an ideal digital lowpass filter.

Table 7.1 Summary of Ideal Impulse Responses for Standard FIR Filters

Filter Type Ideal Impulse Response hðnÞ (noncausal FIR coefficients)

Lowpass: hðnÞ ¼

8>><
>>:

Uc

p
for n ¼ 0

sinðUcnÞ
np

for ns0

�M � n � M

Highpass: hðnÞ ¼

8>><
>>:

p� Uc

p
for n ¼ 0

�sinðUcnÞ
np

for ns0

�M � n � M

Bandpass: hðnÞ ¼

8>><
>>:

UH � UL

p
for n ¼ 0

sinðUHnÞ
np

� sinðULnÞ
np

for ns0

�M � n � M

Bandstop: hðnÞ ¼

8>><
>>:

p� UH þ UL

p
for n ¼ 0

�sinðUHnÞ
np

þ sinðULnÞ
np

for ns0
�M � n � M

Causal FIR filter coefficients: shifting hðnÞ to the right by M samples.
Transfer function:

HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2 þ/b2Mz
�2M

where bn ¼ hðn �MÞ,n ¼ 0;1;/; 2M.
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where the delay operation is given by

bn ¼ hðn�MÞ for n ¼ 0; 1;/; 2M (7.12)

Similarly, we can obtain the design equations for other types of FIR filters, such as highpass, bandpass,
and bandstop, using their ideal frequency responses and Equation (7.8). The derivations are omitted
here. Table 7.1 gives a summary of all the formulas for FIR filter coefficient calculations.

The following example illustrates the coefficient calculation for the lowpass FIR filter.

EXAMPLE 7.2

a. Calculate the filter coefficients for a 3-tap FIR lowpass filter with a cutoff frequency of 800 Hz and a sampling
rate of 8,000 Hz using the Fourier transform method.

b. Determine the transfer function and difference equation of the designed FIR system.
c. Compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2;3p=4; and p radians.

Solution:
a. Calculating the normalized cutoff frequency leads to

Uc ¼ 2pfcTs ¼ 2p� 800=8;000 ¼ 0:2p radians

Since 2M þ 1 ¼ 3 in this case, using the equation in Table 7.1 results in

hð0Þ ¼ Uc

p
for n ¼ 0

hðnÞ ¼ sinðUcnÞ
np

¼ sinð0:2pnÞ
np

for ns1

The computed filter coefficients via the previous expression are listed as:

hð0Þ ¼ 0:2p

p
¼ 0:2

hð1Þ ¼ sin½0:2p� 1�
1� p

¼ 0:1871

Using the symmetry leads to

hð�1Þ ¼ hð1Þ ¼ 0:1871

Thus delaying hðnÞ by M ¼ 1 sample using Equation (7.12) gives

b0 ¼ hð0� 1Þ ¼ hð�1Þ ¼ 0:1871

b1 ¼ hð1� 1Þ ¼ hð0Þ ¼ 0:2

b2 ¼ hð2� 1Þ ¼ hð1Þ ¼ 0:1871

b. The transfer function is achieved as

HðzÞ ¼ 0:1871þ 0:2z�1 þ 0:1871z�2

Using the technique described in Chapter 6, we have

Y ðzÞ
X ðzÞ ¼ HðzÞ ¼ 0:1871þ 0:2z�1 þ 0:1871z�2
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Multiplying X(z) leads to

Y ðzÞ ¼ 0:1871X ðzÞ þ 0:2z�1X ðzÞ þ 0:1871z�2X ðzÞ

Applying the inverse z-transform on both sides, the difference equation is yielded as

yðnÞ ¼ 0:1871xðnÞ þ 0:2xðn � 1Þ þ 0:1871xðn � 2Þ

c. The magnitude frequency response and phase response can be obtained using the technique introduced in
Chapter 6. Substituting z ¼ ejU into HðzÞ, it follows that

HðejUÞ ¼ 0:1871þ 0:2e�jU þ 0:1871e�j2U

Factoring term e�jU and using the Euler formula ejx þ e�jx ¼ 2 cos ðxÞ, we achieve

HðejUÞ ¼ e�jUð0:1871ejU þ 0:2þ 0:1871e�jUÞ
¼ e�jUð0:2þ 0:3742 cos ðUÞÞ

Then the magnitude frequency response and phase response are found to be���HðejUÞ
��� ¼ j0:2þ 0:3472 cos Uj

and

:HðejUÞ ¼
(

�U if 0:2þ 0:3472 cos U > 0

�Uþ p if 0:2þ 0:3472 cos U < 0

Details of the magnitude calculations for several typical normalized frequencies are listed in Table 7.2.

Due to the symmetry of the coefficients, the obtained FIR filter has a linear phase response as
shown in Figure 7.4. The sawtooth shape is produced by the contribution of the negative sign of the real
magnitude term 0:2þ 0:3742 cosU in the 3-tap filter frequency response, that is,

HðejUÞ ¼ e�jUð0:2þ 0:3742 cos UÞ

In general, the FIR filter with symmetric coefficients has a linear phase response (linear function of U)
as follows:

:HðejUÞ ¼ �MU þ possible phase of 180� (7.13)

Table 7.2 Frequency Response Calculation in Example 7.2

U radians f [ U fs / (2p) Hz 0.2 D 0.3742 cos U
��HðejUÞ�� ��HðejUÞjdB

:HðejUÞ
degree

0 0 0.5742 0.5742 �4.82 0

p=4 1000 0.4646 0.4646 �6.66 �45

p=2 2000 0.2 0.2 �14.0 �90

3p=4 3000 �0.0646 0.0646 �23.8 45

p 4000 �0.1742 0.1742 �15.2 0
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Next, we see that the 3-tap FIR filter does not give an acceptable magnitude frequency response.
To explore this response further, Figure 7.5 displays the magnitude and phase responses of 3-tap

(M ¼ 1) and 17-tap (M ¼ 8) FIR lowpass filters with a normalized cutoff frequency Uc ¼ 0:2p
radians. The calculated coefficients for the 17-tap FIR lowpass filter are listed in Table 7.3.

We can make the following observations at this point:

1. The oscillations (ripples) exhibited in the passband (main lobe) and stopband (side lobes) of the
magnitude frequency response constitute the Gibbs effect. The Gibbs oscillatory behavior
originates from the abrupt truncation of the infinite impulse response in Equation (7.11). To
remedy this problem, window functions will be used and will be discussed in the next section.

2. Using a larger number of the filter coefficients will produce the sharp roll-off characteristic of the
transition band but may cause increased time delay and increase computational complexity for
implementing the designed FIR filter.

3. The phase response is linear in the passband. This is consistent with Equation (7.13), which means
that all frequency components of the filter input within the passband are subjected to the same time
delay at the filter output. This is a requirement for applications in audio and speech filtering, where
phase distortion needs to be avoided. Note that we impose a linear phase requirement, that is, the
FIR coefficients are symmetric about the middle coefficient, and the FIR filter order is an odd
number. If the design methods cannot produce the symmetric coefficients or generate anti-
symmetric coefficients (Proakis and Manolakis, 1996), the resultant FIR filter does not have the
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FIGURE 7.4

Magnitude frequency response in Example 7.2.
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linear phase property. (Linear phase even-order FIR filters and FIR filters using the anti-symmetry
of coefficients are discussed in Proakis and Manolakis [1996].)

To further probe the linear phase property, we consider a sinusoidal sequence xðnÞ ¼ A sin ðnUÞ as the
FIR filter input, with the output expected to be

yðnÞ ¼ AjHjsinðnUþ fÞ
where f ¼ �MU. Substituting f ¼ �MU into y(n) leads to

yðnÞ ¼ AjHjsin½Uðn�MÞ�
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FIGURE 7.5

Magnitude and phase frequency responses of the lowpass FIR filters with 3 coefficients (dash-dotted line) and 17

coefficients (solid line).

Table 7.3 17-Tap FIR Lowpass Filter Coefficients in Example 7.2 ( M ¼ 8)

b0 ¼ b16 ¼ �0.0378 b1 ¼ b15 ¼ �0.0432
b2 ¼ b14 ¼ �0.0312 b3 ¼ b13 ¼ 0.0000
b4 ¼ b12 ¼ 0.0468 b5 ¼ b11 ¼ 0.1009
b6 ¼ b10 ¼ 0.1514 b7 ¼ b9 ¼ 0.1871b8 ¼ 0.2000
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This clearly indicates that within the passband, all frequency components passing through the FIR
filter will have the same constant delay at the output, which equalsM samples. Hence, phase distortion
is avoided.

Figure 7.6 verifies the linear phase property using an FIR filter with 17 taps. Two sinusoids of the
normalized digital frequencies 0:05p and 0:15p radians, respectively, are used as inputs. These two
input signals are within the passband, so their magnitudes are not changed. As shown in Figure 7.6,
beginning at the ninth sample the output matches the input, which is delayed by eight samples for
each case.

What would happen if the filter phase were nonlinear? This can be illustrated using the following
combined sinusoids as the filter input:

xðnÞ ¼ x1ðnÞ þ x2ðnÞ ¼ sinð0:05pnÞuðnÞ � 1

3
sin ð0:15pnÞuðnÞ

The original xðnÞ is the top plot shown in Figure 7.7. If the linear phase response of a filter is
considered, such as f ¼ �MU0, where M ¼ 8 in our illustration, we have the filtered output as

y1ðnÞ ¼ sin ½0:05pðn� 8Þ� � 1

3
sin ½0:15pðn� 8Þ�
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FIGURE 7.6

Illustration of FIR filter linear phase property (constant delay of eight samples).
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The linear phase effect is shown in the middle plot of Figure 7.7. We see that y1ðnÞ is the eight-sample
delayed version of xðnÞ. However, considering a unit gain filter with a phase delay of 90 degrees for all
the frequency components, we obtain the filtered output as

y2ðnÞ ¼ sinð0:05pn� p=2Þ � 1

3
sinð0:15pn� p=2Þ

where the first term has a phase shift of 10 samples (see sin½0:05pðn� 10Þ�), while the second term

has a phase shift of 10=3 samples

�
see

1

3
sin

�
0:15p

�
n� 10

3

���
. Certainly, we do not have the

linear phase feature. The signal y2ðnÞ plotted in Figure 7.7 shows that the waveform shape is
different from that of the original signal xðnÞ, and hence has significant phase distortion. This phase
distortion is audible for audio applications and can be avoided by using an FIR filter, which has the
linear phase feature.

We now have finished discussing the coefficient calculation for the FIR lowpass filter, which has
a good linear phase property. To explain the calculation of filter coefficients for the other types of filters
and examine the Gibbs effect, we look at another simple example.
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FIGURE 7.7

Comparison of linear and nonlinear phase responses.
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EXAMPLE 7.3

a. Calculate the filter coefficients for a 5-tap FIR bandpass filter with a lower cutoff frequency of 2,000 Hz and an
upper cutoff frequency of 2,400 Hz and a sampling rate of 8,000 Hz.

b. Determine the transfer function and plot the frequency responses with MATLAB.

Solution:
a. Calculating the normalized cutoff frequencies leads to

UL ¼ 2pfL=fs ¼ 2p� 2;000=8;000 ¼ 0:5p radians

UH ¼ 2pfH=fs ¼ 2p� 2;400=8;000 ¼ 0:6p radians

Since 2M þ 1 ¼ 5 in this case, using the equation in Table 7.1 yields

hðnÞ ¼

8>>><
>>>:

UH � UL

p
n ¼ 0

sinðUHnÞ
np

� sinðULnÞ
np

ns0 �2 � n � 2

(7.14)

Calculations for noncausal FIR coefficients are listed as

hð0Þ ¼ UH � UL

p
¼ 0:6p� 0:5p

p
¼ 0:1

The other computed filter coefficients via Equation (7.14) are

hð1Þ ¼ sin½0:6p� 1�
1� p

� sin½0:5p� 1�
1� p

¼ �0:01558

hð2Þ ¼ sin½0:6p� 2�
2� p

� sin½0:5p� 2�
2� p

¼ �0:09355

Using symmetry leads to

hð�1Þ ¼ hð1Þ ¼ �0:01558

hð�2Þ ¼ hð2Þ ¼ �0:09355

Thus, delaying hðnÞ by M ¼ 2 samples gives

b0 ¼ b4 ¼ �0:09355

b1 ¼ b3 ¼ �0:01558; and b2 ¼ 0:1

b. The transfer function is achieved as

HðzÞ ¼ �0:09355� 0:01558z�1 þ 0:1z�2 � 0:01558z�3 � 0:09355z�4

To complete Example 7.3, the magnitude frequency response plotted in terms of
��HðejUÞ��

dB
¼ 20log10jHðejUÞj

using MATLAB Program 7.1 is displayed in Figure 7.8.
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Program 7.1. MATLAB program for Example 7.3.

% Example 7.3
% MATLAB program to plot frequency response
%
[hz,w]¼freqz([-0.09355 -0.01558 0.1 -0.01558 -0.09355], [1], 512);
phi¼180*unwrap(angle(hz))/pi;
subplot(2,1,1), plot(w,20*log10(abs(hz))),grid;
xlabel(’Frequency (radians)’);
ylabel(’Magnitude Response (dB)’)
subplot(2,1,2), plot(w, phi); grid;
xlabel(’Frequency (radians)’);
ylabel(’Phase (degrees)’);

To summarize Example 7.3, the magnitude frequency response demonstrates the Gibbs oscillatory
behavior existing in the passband and stopband. The peak of the main lobe in the passband is dropped
from 0 dB to approximately �10 dB, while for the stopband, the lower side lobe in the magnitude
response plot swings approximately between –18 dB and –70 dB, and the upper side lobe swings
between�25 dB and�68 dB. As we have pointed out, this is due to the abrupt truncation of the infinite
impulse sequence hðnÞ. The oscillations can be reduced by increasing the number of coefficients and
using a window function, which will be studied next.
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Frequency responses for Example 7.3.
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7.3 WINDOW METHOD
In this section, the window method (Fourier transform design with window functions) is developed to
remedy the undesirable Gibbs oscillations in the passband and stopband of the designed FIR filter.
Recall that the Gibbs oscillations originate from the abrupt truncation of the infinite-length coeffi-
cient sequence. Then it is natural to seek a window function, which is symmetrical and can gradually
weight the designed FIR coefficients down to zeros at both ends for the range �M � n � M.
Applying the window sequence to the filter coefficients gives

hwðnÞ ¼ hðnÞ$wðnÞ
where wðnÞ designates the window function. Common window functions used in the FIR filter design
are as follows:

1. Rectangular window:

wrecðnÞ ¼ 1; �M � n � M (7.15)

2. Triangular (Bartlett) window:

wtriðnÞ ¼ 1� jnj
M
; �M � n � M (7.16)

3. Hanning window:

whanðnÞ ¼ 0:5þ 0:5 cos
�np
M

�
;�M � n � M (7.17)

4. Hamming window:

whamðnÞ ¼ 0:54þ 0:46 cos
�np
M

�
;�M � n � M (7.18)

5. Blackman window:

wblackðnÞ ¼ 0:42þ 0:5 cos
�np
M

�
þ 0:08 cos

�
2np

M

�
; �M � n � M (7.19)

In addition, there is another popular window function, called the Kaiser window (detailed
information can be found in Oppenheim, Shaffer, and Buck [1999]). As we expected, the rect-
angular window function has a constant value of 1 within the window, and hence only does
truncation. For comparison, shapes of the other window functions from Equations (7.16) to (7.19)
are plotted in Figure 7.9 for the case of 2M þ 1 ¼ 81.

We apply the Hamming window function in Example 7.4.
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EXAMPLE 7.4
Given the calculated filter coefficients

hð0Þ ¼ 0:25; hð � 1Þ ¼ hð1Þ ¼ 0:22508; hð � 2Þ ¼ hð2Þ ¼ 0:15915; hð � 3Þ ¼ hð3Þ ¼ 0:07503

a. apply the hamming window function to obtain windowed coefficients hw ðnÞ;
b. plot the impulse response hðnÞ and windowed impulse response hw ðnÞ.
Solution:
a. Since M ¼ 3, applying Equation (7.18) leads to the window sequence

whamð � 3Þ ¼ 0:54þ 0:46 cos

��3� p

3

�
¼ 0:08

whamð � 2Þ ¼ 0:54þ 0:46 cos

��2� p

3

�
¼ 0:31

whamð � 1Þ ¼ 0:54þ 0:46 cos

��1� p

3

�
¼ 0:77

whamð0Þ ¼ 0:54þ 0:46 cos

�
0� p

3

�
¼ 1
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Shapes of window functions for the case of 2M þ 1 ¼ 81. “o” line, triangular window; “þ” line, Hanning

window; solid line, Hamming window; dashed line, Blackman window.
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whamð1Þ ¼ 0:54þ 0:46 cos

�
1� p

3

�
¼ 0:77

whamð2Þ ¼ 0:54þ 0:46 cos

�
2� p

3

�
¼ 0:31

whamð3Þ ¼ 0:54þ 0:46 cos

�
3� p

3

�
¼ 0:08

Applying the Hamming window function and its symmetric property to the filter coefficients, we get

hw ð0Þ ¼ hð0Þ$whamð0Þ ¼ 0:25� 1 ¼ 0:25

hw ð1Þ ¼ hð1Þ$whamð1Þ ¼ 0:22508� 0:77 ¼ 0:17331 ¼ hw ð�1Þ

hw ð2Þ ¼ hð2Þ$whamð2Þ ¼ 0:15915� 0:31 ¼ 0:04934 ¼ hw ð � 2Þ

hw ð3Þ ¼ hð3Þ$whamð3Þ ¼ 0:07503� 0:08 ¼ 0:00600 ¼ hw ð�3Þ

b. Noncausal impulse responses hðnÞ and hw ðnÞ are plotted in Figure 7.10.
We observe that the Hamming window does its job and weights the FIR filter coefficients to zero gradually at

both ends. Hence, we can expect a reduced Gibbs effect in the magnitude frequency response.
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Plots of FIR noncausal coefficients and windowed FIR coefficients in Example 7.4.
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Now lowpass FIR filter design via the window method can be achieved. The design procedure
includes three steps. The first step is to obtain the truncated impulse response hðnÞ, where�M � n�M;
then we multiply the obtained sequence hðnÞ by the selected window data sequence to yield the
windowed noncausal FIR filter coefficients hwðnÞ; the final step is to delay the windowed noncausal
sequence hwðnÞ byM samples to obtain the causal FIR filter coefficients, bn ¼ hwðn�MÞ. The design
procedure of the FIR filter via windowing is summarized as follows:

1. Obtain the FIR filter coefficients hðnÞ via the Fourier transform method (Table 7.1).
2. Multiply the generated FIR filter coefficients by the selected window sequence

hwðnÞ ¼ hðnÞwðnÞ; n ¼ �M;/0; 1;/;M (7.20)

where wðnÞ is chosen to be one of the window functions listed in Equations (7.15) to (7.19).
3. Delay the windowed impulse sequence hwðnÞ by M samples to get the windowed FIR filter

coefficients

bn ¼ hwðn�MÞ; for n ¼ 0; 1;/; 2M (7.21)

Let us study the following design examples.

EXAMPLE 7.5

a. Design a 3-tap FIR lowpass filter with a cutoff frequency of 800 Hz and a sampling rate of 8,000 Hz using the
Hamming window function.

b. Determine the transfer function and difference equation of the designed FIR system.
c. Compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2;3p=4; and p radians.

Solution:
a. The normalized cutoff frequency is calculated as

Uc ¼ 2pfcTs ¼ 2p� 800=8;000 ¼ 0:2p radians

Since 2M þ 1 ¼ 3 in this case, FIR coefficients obtained by using the equation in Table 7.1 are listed as

hð0Þ ¼ 0:2 and hð�1Þ ¼ hð1Þ ¼ 0:1871

(see Example 7.2). Applying the Hamming window function defined in Equation (7.18), we have

whamð0Þ ¼ 0:54þ 0:46 cos

�
0p

1

�
¼ 1

whamð1Þ ¼ 0:54þ 0:46 cos

�
1� p

1

�
¼ 0:08

Using the symmetry of the window function gives

whamð�1Þ ¼ whamð1Þ ¼ 0:08

The windowed impulse response is calculated as

hw ð0Þ ¼ hð0Þwhamð0Þ ¼ 0:2� 1 ¼ 0:2
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hw ð1Þ ¼ hð1Þwhamð1Þ ¼ 0:1871� 0:08 ¼ 0:01497

hw ð�1Þ ¼ hð�1Þwhamð�1Þ ¼ 0:1871� 0:08 ¼ 0:01497

Thus delaying hw ðnÞ by M ¼ 1 sample gives

b0 ¼ b2 ¼ 0:01496 and b1 ¼ 0:2

b. The transfer function is

HðzÞ ¼ 0:01497þ 0:2z�1 þ 0:01497z�2

Using the technique described in Chapter 6, we have

Y ðzÞ
X ðzÞ ¼ HðzÞ ¼ 0:01497þ 0:2z�1 þ 0:01497z�2

Multiplying X(z) leads to

Y ðzÞ ¼ 0:01497X ðzÞ þ 0:2z�1X ðzÞ þ 0:01497z�2X ðzÞ

Applying the inverse z-transform on both sides, the difference equation is obtained as

yðnÞ ¼ 0:01497xðnÞ þ 0:2xðn � 1Þ þ 0:01497xðn � 2Þ

c. The magnitude frequency response and phase response can be obtained using the technique introduced in
Chapter 6. Substituting z ¼ ejU into HðzÞ, it follows that

HðejUÞ ¼ 0:01497þ 0:2e�jU þ 0:01497e�j2U

¼ e�jUð0:01497ejU þ 0:2þ 0:01497e�jUÞ

Using Euler’s formula leads to

HðejUÞ ¼ e�jUð0:2þ 0:02994 cos UÞ

Then the magnitude frequency response and phase response are found to be

���HðejUÞ
��� ¼ j0:2þ 0:2994 cos Uj

Table 7.4 Frequency Response Calculation in Example 7.5

U radians
f[Ufs=ð2pÞ
Hz

0:2D0:02994 cos U
��HðejUÞ�� ��HðejUÞ��

dB
dB :HðejUÞ

degrees

0 0 0.2299 0.2299 �12.77 0

p=4 1,000 0.1564 0.2212 �13.11 �45

p=2 2,000 0.2000 0.2000 �13.98 �90

3p=4 3,000 0.1788 0.1788 �14.95 �135

p 4,000 0.1701 0.1701 �15.39 �180
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and

:HðejUÞ ¼
(

�U if 0:2þ 0:02994 cos U > 0

�Uþ p if 0:2þ 0:02994 cos U < 0

The calculation details of the magnitude response for several normalized values are listed in Table 7.4.
Figure 7.11 shows the plots of the frequency responses.

EXAMPLE 7.6

a. Design a 5-tap FIR band reject (bandstop) filter with a lower cutoff frequency of 2,000 Hz, an upper cutoff
frequency of 2,400 Hz, and a sampling rate of 8,000 Hz using the Hamming window method.

b. Determine the transfer function.

Solution:
a. Calculating the normalized cutoff frequencies leads to

UL ¼ 2pfLT ¼ 2p� 2;000=8;000 ¼ 0:5p radians
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The frequency responses in Example 7.5.
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UH ¼ 2pfHT ¼ 2p� 2;400=8;000 ¼ 0:6p radians

Since 2M þ 1 ¼ 5 in this case, using the equation in Table 7.1 yields

hðnÞ ¼

8>>><
>>>:

p� UH þ UL

p
n ¼ 0

�sinðUHnÞ
np

þ sinðULnÞ
np

ns0 �2 � n � 2

When n ¼ 0, we have

hð0Þ ¼ p� UH þ UL

p
¼ p� 0:6pþ 0:5p

p
¼ 0:9

The other computed filter coefficients for the previous expression are listed below:

hð1Þ ¼ sin½0:5p� 1�
1� p

� sin½0:6p� 1�
1� p

¼ 0:01558

hð2Þ ¼ sin½0:5p� 2�
2� p

� sin½0:6p� 2�
2� p

¼ 0:09355

Using symmetry leads to

hð�1Þ ¼ hð1Þ ¼ 0:01558

hð�2Þ ¼ hð2Þ ¼ 0:09355

Applying the Hamming window function in Equation (7.18), we have

whamð0Þ ¼ 0:54þ 0:46 cos

�
0� p

2

�
¼ 1:0

whamð1Þ ¼ 0:54þ 0:46 cos

�
1� p

2

�
¼ 0:54

whamð2Þ ¼ 0:54þ 0:46 cos

�
2� p

2

�
¼ 0:08

Using the symmetry of the window function gives

whamð�1Þ ¼ whamð1Þ ¼ 0:54

whamð�2Þ ¼ whamð2Þ ¼ 0:08

The windowed impulse response is calculated as

hw ð0Þ ¼ hð0Þwhamð0Þ ¼ 0:9� 1 ¼ 0:9
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hw ð1Þ ¼ hð1Þwhamð1Þ ¼ 0:01558� 0:54 ¼ 0:00841

hw ð2Þ ¼ hð2Þwhamð2Þ ¼ 0:09355� 0:08 ¼ 0:00748

hw ð�1Þ ¼ hð�1Þwhamð�1Þ ¼ 0:00841

hw ð�2Þ ¼ hð�2Þwhamð�2Þ ¼ 0:00748

Thus, delaying hw ðnÞ by M ¼ 2 samples gives

b0 ¼ b4 ¼ 0:00748; b1 ¼ b3 ¼ 0:00841; and b2 ¼ 0:9

b. The transfer function is

HðzÞ ¼ 0:00748þ 0:00841z�1 þ 0:9z�2 þ 0:00841z�3 þ 0:00748z�4

The following design examples are demonstrated using MATLAB programs. The MATLAB
function firwd(N, Ftype, WnL, WnH, Wtype) is listed in the “MATLAB Programs” section at the
end of this chapter. Table 7.5 lists comments to show how the function is used.

Table 7.5 Illustration of the MATLAB Function for FIR Filter Design Using Window Methods

function B¼firwd(N,Ftype,WnL,WnH,Wtype)

% B ¼ firwd(N,Ftype,WnL,WnH,Wtype)

% FIR filter design using the window function method.

% Input parameters:

% N: the number of the FIR filter taps.

% Note: It must be odd number.

% Ftype: the filter type

% 1. Lowpass filter

% 2. Highpass filter

% 3. Bandpass filter

% 4. Band reject (Bandstop) filter

% WnL: lower cutoff frequency in radians. Set WnL¼0 for the highpass filter.

% WnH: upper cutoff frequency in radians. Set WnH¼0 for the lowpass filter.

% Wtypw: window function type

% 1. Rectangular window

% 2. Triangular window

% 3. Hanning window

% 4. Hamming window

% 5. Blackman window
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EXAMPLE 7.7

a. Design a lowpass FIR filter with 25 taps using the MATLAB program listed in the “MATLAB Programs” section
at the end of this chapter. The cutoff frequency of the filter is 2,000 Hz, assuming a sampling frequency of
8,000 Hz. The rectangular window and Hamming window functions are used for each design.

b. Plot the frequency responses along with those obtained using the rectangular window and Hamming window for
comparison.

c. List the FIR filter coefficients for each window design method.

Solution:
a. With a given sampling rate of 8,000 Hz, the normalized cutoff frequency can be found as

Uc ¼ 2;000� 2p

8;000
¼ 0:5p radians

Now we are ready to design FIR filters via the MATLAB program. The function firwd(N, Ftype, WnL, WnH, Wtype)
listed in the “MATLAB Programs” section at the end of this chapter, has five input parameters, which are described
as follows:

• “N” is the number of specified filter coefficients (the number of filter taps).
• “Ftype” denotes the filter type, that is, input “1” for the lowpass filter design, input “2” for the highpass filter

design, input “3” for the bandpass filter design, and input “4” for the band reject filter design.
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FIGURE 7.12

Frequency responses using the rectangular and Hamming windows.
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• “WnL” and “WnH” are the lower and upper cutoff frequency inputs, respectively. Note that WnH ¼ 0 when
specifying WnL for the lowpass filter design, while WnL¼ 0 when specifying WnH for the highpass filter design.

• “Wtype” specifies the window data sequence to be used in the design, that is, input “1” for the rectangular
window, input “2” for the triangular window, input “3” for the Hanning window, input “4” for the Hamming
window, and input “5” for the Blackman window.

b. The following program (Program 7.2) is used to generate FIR filter coefficients using the rectangular window. Its
frequency responses will be plotted together with the results of the FIR filter design obtained using the Hamming
window, as shown in Program 7.3.

Program 7.2. MATLAB program for Example 7.7.

% Example 7.7
% MATLAB program to generate FIR coefficients
% using the rectangular window.
%
N¼25; Ftype¼1; WnL¼0.5*pi; WnH¼0; Wtype¼1;
B¼firwd(N,Ftype,WnL,WnH,Wtype);

Program 7.3. MATLAB program for Example 7.7.

%Figure 7.12
% MATLAB program to create Figure 7.12
%
N¼25; Ftype¼1; WnL¼0.5*pi; WnH¼0; Wtype¼1;fs¼8000;
%design using the rectangular window;
Brec¼firwd(N,Ftype,WnL,WnH,Wtype);
N¼25; Ftype¼1; WnL¼0.5*pi; WnH¼0; Wtype¼4;
%design using the Hamming window;
Bham¼firwd(N,Ftype,WnL,WnH,Wtype);
[hrec,f]¼freqz(Brec,1,512,fs);
[hham,f]¼freqz(Bham,1,512,fs);
prec¼180*unwrap(angle(hrec))/pi;
pham¼180*unwrap(angle(hham))/pi;
subplot(2,1,1);

Table 7.6 FIR Filter Coefficients in Example 7.7 (rectangular and Hamming windows)

B: FIR Filter Coefficients (Rectangular
Window)

Bham: FIR Filter Coefficients (Hamming
Window)

b0 ¼ b24 ¼ 0.000000
b1 ¼ b23 ¼ �0.028937
b2 ¼ b22 ¼ 0.000000
b3 ¼ b21 ¼ 0.035368
b4 ¼ b20 ¼ 0.000000
b5 ¼ b19 ¼ �0.045473
b6 ¼ b18 ¼ 0.000000
b7 ¼ b17 ¼ 0.063662
b8 ¼ b16 ¼ 0.000000
b9 ¼ b15 ¼ -0.106103
b10 ¼ b14 ¼ 0.000000
b11 ¼ b13 ¼ 0.318310
b12 ¼ 0.500000

b0 ¼ b24 ¼ 0.000000
b1 ¼ b23 ¼ �0.002769
b2 ¼ b22 ¼ 0.000000
b3 ¼ b21 ¼ 0.007595
b4 ¼ b20 ¼ 0.000000
b5 ¼ b19 ¼ �0.019142
b6 ¼ b18 ¼ 0.000000
b7 ¼ b17 ¼ 0.041957
b8 ¼ b16 ¼ 0.000000
b9 ¼ b15 ¼ �0.091808
b10 ¼ b14 ¼ 0.000000
b11 ¼ b13 ¼ 0.313321
b12 ¼ 0.500000
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plot(f,20*log10(abs(hrec)),’-.’,f,20*log10(abs(hham)));grid
axis([0 4000 -100 10]);
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Response (dB)’);
subplot(2,1,2);
plot(f,prec,’-.’,f,pham);grid
xlabel(’Frequency (Hz)’); ylabel(’Phase (degrees)’);

For comparison, the frequency responses achieved from the rectangular window and the Hamming window are
plotted in Figure 7.12, where the dash-dotted line indicates the frequency response via the rectangular window,
and the solid line indicates the frequency response via the Hamming window.

c. The FIR filter coefficients for both methods are listed in Table 7.6.
For comparison with other window functions, Figure 7.13 shows the magnitude frequency responses

using the Hanning, Hamming, and Blackman windows, with 25 taps and a cutoff frequency of 2,000 Hz.
The Blackman window offers the lowest side lobe, but with an increased width of the main lobe. The
Hamming window and Hanning have a similar narrow width of the main lobe, but the Hamming window
accommodates a lower side lobe than the Hanning window. Next, we will study how to choose a window in
practice.

Applying the window to remedy the Gibbs effect will change the characteristics of the magnitude
frequency response of the FIR filter, as the width of the main lobe becomes wider and more attenuation
of the side lobes occurs.
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Comparisons of magnitude frequency responses for the Hanning, Hamming, and Blackman windows.
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Next, we illustrate the design for customer specifications in practice. Given the required stopband
attenuation and passband ripple specifications shown in Figure 7.14, where the lowpass filter speci-
fications are given for illustrative purposes, the appropriate window can be selected based on the
performance of the window functions listed in Table 7.7. For example, the Hamming window offers
a passband ripple of 0.0194 dB and stopband attenuation of 53 dB. With the selected Hamming
window and the normalized transition band defined in Table 7.7,

Df ¼ ��fstop � fpass
��.fs (7.22)

FIGURE 7.14

Lowpass filter frequency domain specifications.

TABLE 7.7 FIR Filter Length Estimation Using Window Functions
(normalized transition width Df ¼ jfstop � fpassj=fs)

Window Type
Window Function
wðnÞ,LM£n£M Window Length N

Passband
Ripple (dB)

Stopband
Attenuation (dB)

Rectangular 1 N ¼ 0:9=Df 0.7416 21

Hanning 0:5þ 0:5 cos
�pn
M

�
N ¼ 3:1=Df 0.0546 44

Hamming 0:54þ 0:46 cos
�pn
M

�
N ¼ 3:3=Df 0.0194 53

Blackman 0:42þ 0:5 cos
�np
M

�

þ0:08 cos

�
2np

M

�
N ¼ 5:5=Df 0.0017 74
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the filter length using the Hamming window can be determined by

N ¼ 3:3

Df
(7.23)

Note that the passband ripple is defined as

dpdB ¼ 20$log10ð1þ dpÞ (7.24)

while the stopband attenuation is defined as

dsdB ¼ �20 log 10ðdsÞ (7.25)

The cutoff frequency used for the design will be chosen at the middle of the transition band, as
illustrated for the lowpass filter case shown in Figure 7.14.

As a rule of thumb, the cutoff frequency used for design is determined by

fc ¼ ð fpass þ fstopÞ=2 (7.26)

Note that Equation (7.23) and formulas for other window lengths in Table 7.7 are empirically derived
based on the normalized spectral transition width of each window function. The spectrum of each
window function appears to be shaped like the lowpass filter magnitude frequency response with
ripples in the passband and side lobes in the stopband. The passband frequency edge of the spectrum
is the frequency where the magnitude just begins to drop below the passband ripple and where the
stop frequency edge is at the peak of the first side lobe in the spectrum. With the passband ripple and
stopband attenuation specified for a particular window, the normalized transition width of the
window is in inverse proportion to the window length N multiplied by a constant. For example, the
normalized spectral transition Df for the Hamming window is 3:3=N. Hence, matching the FIR filter
transition width with the transition width of the window spectrum gives the filter length estimation
listed in Table 7.7.

The following examples illustrate the determination of each filter length and cutoff frequency/
frequencies for the design of lowpass, highpass, bandpass, and bandstop filters. Application of each
designed filter to the processing of speech data is included, along with an illustration of filtering effects
in both the time domain and frequency domain.

EXAMPLE 7.8
A lowpass FIR filter has the following specifications:

Passband 0e1,850 Hz
Stopband 2,150e4,000 Hz
Stopband attenuation 20 dB
Passband ripple 1 dB
Sampling rate 8,000 Hz

Determine the FIR filter length and the cutoff frequency to be used in the design equation.
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Solution:
The normalized transition band as defined in Equation (7.22) and Table 7.7 is given by

Df ¼ j2;150� 1;850j=8;000 ¼ 0:0375

Again, based on Table 7.7, selecting the rectangular window will result in a passband ripple of 0.74 dB and
stopband attenuation of 21 dB. Thus, this window selection would satisfy the design requirement for a passband
ripple of 1 dB and stopband attenuation of 20 dB. Next, we determine the length of the filter as

N ¼ 0:9=Df ¼ 0:9=0:0375 ¼ 24

We choose the odd number N ¼ 25. The cutoff frequency is determined by (1,850þ2,150)/2¼2,000 Hz. Such
a filter has been designed in Example 7.7, its filter coefficients are listed in Table 7.6, and its frequency responses
can be found in Figure 7.12 (dashed lines).

Now we look at the time domain and frequency domain results from filtering a speech signal by using the
lowpass filter we have just designed. Figure 7.15A shows the original speech and lowpass filtered speech. The
spectral comparison is given in Figure 7.15B, where, as we can see, the frequency components beyond 2 kHz are
filtered. The lowpass filtered speech would sound muffled.
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FIGURE 7.15A

Original speech and processed speech using the lowpass filter.
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We will continue to illustrate the determination of the filter length and cutoff frequency for other
types of filters via the following examples.

EXAMPLE 7.9
Design a highpass FIR filter with the following specifications:

Stopband 0e1,500 Hz
Passband 2,500e4,000 Hz
Stopband attenuation 40 dB
Passband ripple 0.1 dB
Sampling rate 8,000 Hz

Solution:
Based on the specification, the Hanning window will do the job since it has a passband ripple of 0.0546 dB and
stopband attenuation of 44 dB.

Then
Df ¼ j1;500� 2;500j=8;000 ¼ 0:125
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FIGURE 7.15B

Spectral plots of the original speech and processed speech by the lowpass filter.
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Table 7.8 FIR Filter Coefficients in Example 7.9 (Hanning window)

Bhan: FIR Filter Coefficients (Hanning Window)

b0 ¼ b24 ¼ 0.000000 b1 ¼ b23 ¼ 0.000493

b2 ¼ b22 ¼ 0.000000 b3 ¼ b21 ¼ �0.005179

b4 ¼ b20 ¼ 0.000000 b5 ¼ b19 ¼ 0.016852

b6 ¼ b18 ¼ 0.000000 b7 ¼ b17 ¼ �0.040069

b8 ¼ b16 ¼ 0.0000000 b9 ¼ b15 ¼ 0.090565

b10 ¼ b14 ¼ 0.000000 b11 ¼ b13 ¼ �0.312887

b12 ¼ 0.500000
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FIGURE 7.16

Frequency responses of the designed highpass filter using the Hanning window.
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N ¼ 3:1=Df ¼ 24:2 ðchoose N ¼ 25Þ

Hence, we choose 25 filter coefficients using the Hanning window method. The cutoff frequency is
(1,500þ2,500)/2¼2,000 Hz. The normalized cutoff frequency can be easily found as

Uc ¼ 2;000� 2p

8;000
¼ 0:5p radians

Notice that 2M þ 1 ¼ 25. The application program and design results are listed in Program 7.4 and
Table 7.8.

Program 7.4. MATLAB program for Example 7.9

%Figure 7.16(Example 7.9)
% MATLAB program to create Figure 7.16
%
N¼25; Ftype¼2; WnL¼0; WnH¼0.5*pi; Wtype¼3;fs¼8000;
Bhan¼firwd(N,Ftype,WnL,WnH,Wtype);
freqz(Bhan,1,512,fs);
axis([0 fs/2 -120 10]);

The corresponding frequency responses of the designed highpass FIR filter are displayed in Figure 7.16.
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FIGURE 7.17A

Original speech and processed speech using the highpass filter.
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Comparisons are given in Figure 7.17A, where the original speech and processed speech using the highpass
filter are plotted, respectively. The high-frequency components of speech generally contain a small amount of
energy. Figure 7.17B displays the spectral plots, where clearly the frequency components lower than 1.5 kHz are
filtered. The processed speech would sound crisp.

EXAMPLE 7.10
Design a bandpass FIR filter with the following specifications:

Lower stopband 0e500 Hz
Passband 1,600e2,300 Hz
Upper stopband 3,500e4,000 Hz
Stopband attenuation 50 dB
Passband ripple 0.05 dB
Sampling rate 8,000 Hz

Solution:

Df1 ¼ j1;600� 500j=8;000 ¼ 0:1375 and Df2 ¼ j3;500� 2;300j=8;000 ¼ 0:15

N1 ¼ 3:3=0:1375 ¼ 24 and N2 ¼ 3:3=0:15 ¼ 22
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FIGURE 7.17B

Spectral comparison of the original speech and processed speech using the highpass filter.
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We select N ¼ 25 for the number of filter coefficients and using the Hamming window method, we next obtain

f1 ¼ ð1;600þ 500Þ=2 ¼ 1;050 Hz and f2 ¼ ð3;500þ 2;300Þ=2 ¼ 2;900 Hz

The normalized lower and upper cutoff frequencies are calculated as

UL ¼ 1;050� 2p

8;000
¼ 0:2625p radians

UH ¼ 2;900� 2p

8;000
¼ 0:725p radians

and N ¼ 2M þ 1 ¼ 25. The design results are shown using the MATLAB program in Program 7.5.

Program 7.5. MATLAB program for Example 7.10.

%Figure 7.18(Example 7.10)
% MATLAB program to create Figure 7.18
%
N¼25; Ftype¼3; WnL¼0.2625*pi; WnH¼0.725*pi; Wtype¼4;fs¼8000;
Bham¼firwd(N,Ftype,WnL,WnH,Wtype);
freqz(Bham,1,512,fs);
axis([0 fs/2 -130 10]);

Figure 7.18 depicts the frequency responses of the designed bandpass FIR filter. Table 7.9 lists the designed FIR
filter coefficients.
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FIGURE 7.18

Frequency responses of the designed bandpass filter using the Hamming window.
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For comparison, the original speech and bandpass filtered speech are plotted in Figure 7.19A, where the
bandpass frequency components contain a small portion of speech energy. Figure 7.19B shows a comparison
indicating that low and high frequencies are removed by the bandpass filter.

Table 7.9 FIR Filter Coefficients in Example 7.10 (Hamming Window)

Bham: FIR Filter Coefficients (Hamming Window)

b0 ¼ b24 ¼ 0.002680 b1 ¼ b23 ¼ �0.001175

b2 ¼ b22 ¼ �0.007353 b3 ¼ b21 ¼ 0.000674

b4 ¼ b20 ¼ �0.011063 b5 ¼ b19 ¼ 0.004884

b6 ¼ b18 ¼ 0.053382 b7 ¼ b17 ¼ �0.003877

b8 ¼ b16 ¼ 0.028520 b9 ¼ b15 ¼ �0.008868

b10 ¼ b14 ¼ �0.296394 b11 ¼ b13 ¼ 0.008172

b12 ¼ 0.462500
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FIGURE 7.19A

Original speech and processed speech using the bandpass filter.
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EXAMPLE 7.11
Design a bandstop FIR filter with the following specifications:

Lower cutoff frequency 1,250 Hz
Lower transition width 1,500 Hz
Upper cutoff frequency 2,850 Hz
Upper transition width 1,300 Hz
Stopband attenuation 60 dB
Passband ripple 0.02 dB
Sampling rate 8,000 Hz

Solution:
We can directly compute the normalized transition width:

Df1 ¼ 1;500=8;000 ¼ 0:1875 and Df2 ¼ 1;300=8;000 ¼ 0:1625

The filter lengths are determined using the Blackman windows as

N1 ¼ 5:5=0:1875 ¼ 29:33; and N2 ¼ 5:5=0:1625 ¼ 33:8
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FIGURE 7.19B

Spectral comparison of the original speech and processed speech using the bandpass filter.
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We choose N ¼ 35, an odd number. The normalized lower and upper cutoff frequencies are calculated as

UL ¼ 2p� 1;250

8;000
¼ 0:3125p radians

UH ¼ 2p� 2;850

8;000
¼ 0:7125p radians

and N ¼ 2M þ 1 ¼ 35. Using MATLAB, the design results are demonstrated in Program 7.6.

Program 7.6. MATLAB program for Example 7.11.

%Figure 7.20 (Example 7.11)
% MATLAB program to create Figure 7.20
%
N¼35; Ftype¼4; WnL¼0.3125*pi; WnH¼0.7125*pi; Wtype¼5;fs¼8000;
Bblack¼firwd(N,Ftype,WnL,WnH,Wtype);
freqz(Bblack,1,512,fs);
axis([0 fs/2 -120 10]);

Figure 7.20 shows the plot of the frequency responses of the designed bandstop filter. The designed filter
coefficients are listed in Table 7.10.

Comparisons of filtering effects are illustrated in Figures 7.21A and 7.21B. In Figure 7.21A, the original
speech and speech processed by the bandstop filter are plotted. The processed speech contains most of the energy
of the original speech because most of the energy of the speech signal exists in the low-frequency band.
Figure 7.21B verifies the filtering frequency effects. The requency components ranging from 2,000 Hz to 2,200
Hz have been completely removed.
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FIGURE 7.20

Frequency responses of the designed bandstop filter using the Blackman window.
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Table 7.10 FIR Filter Coefficients in Example 7.11 (Blackman Window)

Black: FIR Filter Coefficients (Blackman Window)

b0 ¼ b34 ¼ 0.000000 b1 ¼ b33 ¼ 0.000059

b2 ¼ b32 ¼ 0.000000 b3 ¼ b31 ¼ 0.000696

b4 ¼ b30 ¼ 0.001317 b5 ¼ b29 ¼ �0.004351

b6 ¼ b28 ¼ �0.002121 b7 ¼ b27 ¼ 0.000000

b8 ¼ b26 ¼ �0.004249 b9 ¼ b25 ¼ 0.027891

b10 ¼ b24 ¼ 0.011476 b11 ¼ b23 ¼ �0.036062

b12 ¼ b22 ¼ 0.000000 b13 ¼ b21 ¼ �0.073630

b14 ¼ b20 ¼ �0.020893 b15 ¼ b19 ¼ 0.285306

b16 ¼ b18 ¼ 0.014486 b17 ¼ 0.600000
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FIGURE 7.21A

Original speech and processed speech using the bandstop filter.
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7.4 APPLICATIONS: NOISE REDUCTION AND TWO-BAND
DIGITAL CROSSOVER
In this section, we will investigate noise reduction and digital crossover design using FIR filters.

7.4.1 Noise Reduction

One of the key digital signal processing (DSP) applications is noise reduction. In this application,
a digital FIR filter removes noise in a signal that is contaminated by noise existing in a broad
frequency range. For example, such noise often appears during the data acquisition process.
In real-world applications, the desired signal usually occupies a certain frequency range. We
can design a digital filter to remove frequency components other than the desired frequency
range.

In a data acquisition system, we record a 500 Hz sine wave at a sampling rate of 8,000 samples per
second. The signal is corrupted by broadband noise vðnÞ:

xðnÞ ¼ 1:4141$sinð2p$500n=8; 000Þ þ vðnÞ
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FIGURE 7.21B

Spectral comparison of the original speech and processed speech using the bandstop filter.
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The 500 Hz signal with noise and its spectrum are plotted in Figure 7.22, from which it is obvious that
the digital sine wave contains noise. The spectrum is also displayed to give a better understanding of
the noise frequency level. We can see that noise is broadband, existing from 0 Hz to the folding
frequency of 4,000 Hz. Assuming that the desired signal has a frequency range of only 0 to 800 Hz, we
can filter noise from 800 Hz and beyond. A lowpass filter would complete such a task. Then we
develop the filter specifications:

Passband frequency range: 0 Hz to 800 Hz with the passband ripple less than 0.02 dB
Stopband frequency range: 1 kHz to 4 kHz with 50 dB attenuation

As we will see, lowpass filtering will remove noise in the range 1,000 Hz to 4,000 Hz , and hence the
signal to noise power ratio will be improved.

Based on the specifications, we design an FIR filter with the Hamming window, a cutoff frequency
of 900 Hz, and an estimated filter length of 133 taps. The enhanced signal is depicted in Figure 7.23,
where the clean signal can be observed. The amplitude spectrum for the enhanced signal is also
plotted. As shown in the spectral plot, the noise level is negligible between 1 and 4 kHz. Notice that
since we use the higher-order FIR filter, the signal experiences a linear phase delay of 66 samples, as is
expected. We also see some transient response effects. However, the transient response effects will end
after the first 132 samples due to the length of the FIR filter. MATLAB implementation is given in
Program 7.7.
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FIGURE 7.22

Signal with noise and its spectrum.
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Program 7.7. MATLAB program for the application of noise filtering.

close all; clear all
fs¼8000; % Sampling rate
T¼1/fs; % Sampling period
v¼sqrt(0.1)*randn(1,250); % Generate Gaussian random noise
n¼0:1:249; % Indexes
x¼sqrt(2)*sin(2*pi*500*n*T)þv; % Generate 500-Hz plus noise
subplot(2,1,1);plot(n,x);
xlabel(’Number of samples’);ylabel(’Sample value’);grid;
N¼length(x);
f¼[0:N/2]*fs/N;
Axk¼2*abs(fft(x))/N;Axk(1)¼Axk(1)/2; % Calculate single side spectrum for x(n)
subplot(2,1,2); plot(f,Axk(1:N/2þ1));
xlabel(’Frequency (Hz)’); ylabel(’Amplitude jX(f)j ’);grid;
figure
Wnc¼2*pi*900/fs; % Determine the normalized digital cutoff
frequency
B¼firwd(133,1,Wnc,0,4); % Design FIR filter
y¼filter(B,1,x); % Perform digital filtering
Ayk¼2*abs(fft(y))/N;Ayk(1)¼Ayk(1)/2; % Single-side spectrum of the filtered data
subplot(2,1,1); plot(n,y);
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FIGURE 7.23

The clean signal and spectrum with noise removed.
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xlabel(’Number of samples’);ylabel(’Sample value’);grid;
subplot(2,1,2);plot(f,Ayk(1:N/2þ1)); axis([0 fs/2 0 1.5]);
xlabel(’Frequency (Hz)’); ylabel(’Amplitude jY(f)j ’);grid;

7.4.2 Speech Noise Reduction

In a speech recording system, we digitally record speech in a noisy environment at a sampling rate of
8,000 Hz. Assuming the recorded speech contains information within 1,800 Hz, we can design
a lowpass filter to remove the noise between 1,800 Hz and the Nyquist limit (the folding frequency of
4,000 Hz). The filter specifications are listed below:

Filter type: lowpass FIR filter
Passband frequency range: 0–1,800 Hz
Passband ripple: 0.02 dB
Stopband frequency range: 2,000–4,000 Hz
Stopband attenuation: 50 dB

According to these specifications, we can determine the following parameters for filter design:

Window type ¼ Hamming window
Number of filter taps ¼ 133
Lowpass cutoff frequency ¼ 1,900 Hz
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FIGURE 7.24A

Noisy speech and its spectrum.
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Figure 7.24A shows the plots of the recorded noisy speech and its spectrum. As we can see in the
noisy spectrum, the noise level is high and broadband. After applying the designed lowpass filter, we
plot the filtered speech and its spectrum shown in Figure 7.24B, where the clean speech is clearly
identified, while the spectrum shows that the noise components above 2 kHz have been completely
removed.

7.4.3 Noise Reduction in Vibration Signals

In a data acquisition system for vibration analysis, we captured a vibration signal using an acceler-
ometer sensor in the noisy environment. The sampling rate is 1,000 Hz. The captured signal is
significantly corrupted by a broadband noise. Vibration analysis requires the first dominant frequency
component in the range 35 to 50 Hz to be retrieved. We list the filter specifications below:

Filter type ¼ bandpass FIR filter
Passband frequency range ¼ 35–50 Hz
Passband ripple ¼ 0.02 dB
Stopband frequency ranges ¼ 0–15 and 70–500 Hz
Stopband attenuation: 50 dB
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FIGURE 7.24B

Enhanced speech and its spectrum.
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According to these specifications, we can determine the following parameters for the filter design:

Window type ¼ Hamming window
Number of filter taps ¼ 167
Low cutoff frequency ¼ 25 Hz
High cutoff frequency ¼ 65 Hz

Figure 7.25 displays the plots of the recorded noisy vibration signal and its spectrum. Figure 7.26
shows the retrieved vibration signal with noise reduction by a bandpass filter.

7.4.4 Two-Band Digital Crossover

In audio systems, there is often a situation where the application requires the entire audible range of
frequencies, but this is beyond the capability of any single speaker driver. So, we combine several
drivers, such as the speaker cone and horns, each covering a different frequency range, to reproduce the
full audio frequency range.

A typical two-band digital crossover can be designed as shown in Figure 7.27. There are two
speaker drivers. The woofer responds to low frequencies, and the tweeter responds to high frequencies.
The incoming digital audio signal is split into two bands by using a lowpass filter and a highpass filter
in parallel. We then amplify the separated audio signals and send them to their respective corre-
sponding speaker drivers. Hence, the objective is to design the lowpass filter and the highpass filter so
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FIGURE 7.25

Noisy vibration signal and its spectrum.
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that their combined frequency response is flat, while keeping transitions as sharp as possible to prevent
audio signal distortion in the transition frequency range. Although traditional crossover systems are
designed using active circuits (analog systems) or passive circuits, the digital crossover system
provides a cost-effective solution with programmability, flexibility, and high quality.

A crossover system has the following specifications:
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FIGURE 7.26

Retrieved vibration signal and its spectrum.
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FIGURE 7.27

Two-band digital crossover.
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Sampling rate ¼ 44,100 Hz
Crossover frequency ¼ 1,000 Hz (cutoff frequency)
Transition band ¼ 600 Hz to 1,400 Hz
Lowpass filter¼ passband frequency range from 0 to 600 Hz with a ripple of 0.02 dB and stopband
edge at 1,400 Hz with an attenuation of 50 dB
Highpass filter ¼ passband frequency range from 1.4 to 44.1 kHz with ripple of 0.02 dB and
stopband edge at 600 Hz with an attenuation of 50 dB

In the design of this crossover system, one possibility is to use an FIR filter, since it provides a linear
phase for the audio system. However, an infinite impulse response (IIR) filter (which will be dis-
cussed in the next chapter) is a possible alternative. Based on the transition band of 800 Hz and the
passband ripple and stopband attenuation requirements, the Hamming window is chosen for both
lowpass and highpass filters. We can determine the number of filter taps as 183, each with a cutoff
frequency of 1,000 Hz.

The frequency responses for the designed lowpass and highpass filters are given in Figure 7.28A;
the lowpass filter, highpass filter, and combined responses appear in Figure 7.28B. As we can see, the
crossover frequency for both filters is at 1,000 Hz, and the combined frequency response is perfectly
flat. The impulse responses (filter coefficients) for the lowpass and highpass filters are plotted in
Figure 7.28C.
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Magnitude frequency responses for lowpass filter and highpass filter.
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Magnitude frequency responses for both the lowpass and highpass filters, and the combined magnitude

frequency response for the digital audio crossover system.
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Impulse responses of both the FIR lowpass filter and the FIR highpass filter for the digital audio crossover system.
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7.5 FREQUENCY SAMPLING DESIGN METHOD
In addition to methods of Fourier transform design and Fourier transform with windowing discussed
in the previous section, frequency sampling is another alternative. The key feature of frequency
sampling is that the filter coefficients can be calculated based on the specified magnitudes of the
desired filter frequency response uniformly in the frequency domain. Hence, it has design flexibility.

To begin development, we let hðnÞ, for n ¼ 0; 1;/;N � 1, be the causal impulse response (FIR
filter coefficients) that approximates the FIR filter, and we let HðkÞ, for k ¼ 0; 1;/;N � 1, represent
the corresponding discrete Fourier transform (DFT) coefficients. We obtain HðkÞ by sampling the

desired frequency filter response HðkÞ ¼ HðejUkÞ at equally spaced instants in frequency domain, as
shown in Figure 7.29.

Then, according to the definition of the inverse DFT (IDFT), we can calculate the FIR coefficients:

hðnÞ ¼ 1

N

XN�1

k¼ 0

HðkÞW�kn
N ; for n ¼ 0; 1;/;N � 1 (7.27)

where

WN ¼ e�j2p
N ¼ cos

�
2p

N

�
� j sin

�
2p

N

�

We assume that the FIR filter has linear phase and the number of taps is N ¼ 2M þ 1. Equation (7.27)
can be significantly simplified as

FIGURE 7.29

Desired filter frequency response and sampled frequency response.
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hðnÞ ¼ 1

2M þ 1

(
H0 þ 2

XM
k¼ 1

Hkcos

�
2pkðn�MÞ
2M þ 1

�	
; for n ¼ 0; 1;/; 2M (7.28)

whereHk, for k ¼ 0; 1;/; 2M, represents the magnitude values specifying the desired filter frequency

response sampled at Uk ¼ 2pk

ð2M þ 1Þ. The derivation is detailed in Appendix E. The design procedure
is therefore simply summarized as follows:

1. Given the filter length of 2M þ 1, specify the magnitude frequency response for the normalized
frequency range from 0 to p:

Hk at Uk ¼ 2pk

ð2M þ 1Þ for k ¼ 0; 1;/;M (7.29)

2. Calculate the FIR filter coefficients:

bn ¼ hðnÞ ¼ 1

2M þ 1

(
H0 þ 2

XM
k¼ 1

Hkcos

�
2pkðn�MÞ
2M þ 1

�)
for n ¼ 0; 1;/;M (7.30)

3. Use symmetry (linear phase requirement) to determine the rest of coefficients:

hðnÞ ¼ hð2M � nÞ for n ¼ M þ 1;/; 2M (7.31)

Example 7.12 illustrates the design procedure.

EXAMPLE 7.12
Design a linear phase lowpass FIR filter with 7 taps and a cutoff frequency of Uc ¼ 0:3p radians using the
frequency sampling method.

Solution:
Since N ¼ 2M þ 1 ¼ 7 and M ¼ 3, the sampled frequencies are given by

Uk ¼ 2p

7
k radians; k ¼ 0;1;2;3

Next we specify the magnitude values Hk at the specified frequencies as follows:

for U0 ¼ 0 radians; H0 ¼ 1:0

for U1 ¼ 2

7
p radians; H1 ¼ 1:0

for U2 ¼ 4

7
p radians; H2 ¼ 0:0

for U3 ¼ 6

7
p radians; H3 ¼ 0:0
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Figure 7.30 shows the specifications.
Using Equation (7.30), we achieve

hðnÞ ¼ 1

7

(
1þ 2

X3
k ¼1

Hk cos ½2pkðn � 3Þ=7�
)
; n ¼ 0;1;/;3:

¼ 1

7
f1þ 2 cos ½2pðn � 3Þ=7�g

Thus, computing the FIR filter coefficients yields

hð0Þ ¼ 1

7
f1þ 2 cos ð �6p=7Þg ¼ � 0:11456

hð1Þ ¼ 1

7
f1þ 2 cos ð �4p=7Þg ¼ 0:07928

hð2Þ ¼ 1

7
f1þ 2 cos ð �2p=7Þg ¼ 0:32100

hð3Þ ¼ 1

7
f1þ 2 cos ð �0� p=7Þg ¼ 0:42857

By symmetry, we obtain the rest of the coefficients as follows:

hð4Þ ¼ hð2Þ ¼ 0:32100

hð5Þ ¼ hð1Þ ¼ 0:07928

hð6Þ ¼ hð0Þ ¼ �0:11456

The following two examples are devoted to illustrating the FIR filter design using the frequency samplingmethod. A
MATLAB program, firfs(N, Hk), is provided in the “MATLAB Programs” section at the end of this chapter (see its
usage in Table 7.11) to implement the design in Equation (7.30) with the input parameters of N ¼ 2M þ 1

FIGURE 7.30

Sampled values of the frequency response in Example 7.12.
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(number of taps) and a vector Hk containing the specified magnitude values Hk , k ¼ 0;1;/;M. Finally, the
MATLAB function will return the calculated FIR filter coefficients.

EXAMPLE 7.13

a. Design a linear phase lowpass FIR filter with 25 coefficients using the frequency sampling method. Let the
cutoff frequency be 2,000 Hz and assume a sampling frequency of 8,000 Hz.

b. Plot the frequency responses.
c. List the FIR filter coefficients.

Solution:
a. The normalized cutoff frequency for the lowpass filter is Uc ¼ uT ¼ 2p2000=8000 ¼ 0:5p radi-
ans,N ¼ 2M þ 1 ¼ 25, and the specified values of the sampled frequency response are chosen to be

Hk ¼ ½1 1 1 1 1 1 1 0 0 0 0 0 0�

MATLAB Program 7.8 produces the design results.

Program 7.8. MATLAB program for Example 7.13.

%Figure 7.31(Example 7.13)
% MATLAB program to create Figure 7.31
fs¼8000; % Sampling frequency
H1¼[1 1 1 1 1 1 1 0 0 0 0 0 0]; % Magnitude specifications
B1¼firfs(25,H1); % Design filter
[h1,f]¼freqz(B1,1,512,fs); % Calculate magnitude frequency response
H2¼[1 1 1 1 1 1 1 0.5 0 0 0 0 0]; % Magnitude specifications
B2¼firfs(25,H2); % Frequency response
[h2,f]¼freqz(B2,1,512,fs); % Calculate magnitude frequency response
p1¼180*unwrap(angle(h1))/pi;
p2¼180*unwrap(angle(h2))/pi
subplot(2,1,1); plot(f,20*log10(abs(h1)),’-.’,f,20*log10(abs(h2)));grid
axis([0 fs/2 -80 10]);
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Response (dB)’);
subplot(2,1,2); plot(f,p1,’-.’,f,p2);grid
xlabel(’Frequency (Hz)’); ylabel(’Phase (degrees)’);

Table 7.11 Illustrative Usage for MATLAB Function firfs(N, Hk)

function B¼firfs(N,Hk)

% B¼firls(N,Hk)

% FIR filter design using the frequency sampling method.

% Input parameters:

% N: the number of filter coefficients.

% note: N must be odd number.

% Hk: sampled frequency response for k¼0,1,2,.,M¼(N-1)/2.

% Output:

% B: FIR filter coefficients.
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FIGURE 7.31

Frequency responses using the frequency sampling method in Example 7.13.

Table 7.12 FIR Filter Coefficients in Example 7.13
(frequency sampling method)

B1: FIR Filter Coefficients
B2: FIR Filter
Coefficients

b0 ¼ b24 ¼ 0.027436 b0 ¼ b24 ¼ 0.001939

b1 ¼ b23 ¼ �0.031376 b1 ¼ b23 ¼ 0.003676

b2 ¼ b22 ¼ �0.024721 b2 ¼ b22 ¼ �0.012361

b3 ¼ b21 ¼ 0.037326 b3 ¼ b21 ¼ �0.002359

b4 ¼ b20 ¼ 0.022823 b4 ¼ b20 ¼ 0.025335

b5 ¼ b19 ¼ �0.046973 b5 ¼ b19 ¼ �0.008229

b6 ¼ b18 ¼ �0.021511 b6 ¼ b18 ¼ �0.038542

b7 ¼ b17 ¼ 0.064721 b7 ¼ b17 ¼ 0.032361

b8 ¼ b16 ¼ 0.020649 b8 ¼ b16 ¼ 0.049808

b9 ¼ b15 ¼ �0.106734 b9 ¼ b15 ¼ �0.085301

b10 ¼ b14 ¼ �0.020159 b10 ¼ b14 ¼ �0.057350

b11 ¼ b13 ¼ 0.318519 b11 ¼ b13 ¼ 0.311024

b12 ¼ 0.520000 b12 ¼ 0.560000
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b. The magnitude frequency response plotted using the dash-dotted line is displayed in Figure 7.31, where it
is observed that oscillations occur in the passband and stopband of the designed FIR filter. This is due to the
abrupt change of the specification in the transition band (between the passband and the stopband). To
reduce this ripple effect, the modified specification with a smooth transition band, Hk , k ¼ 0;1;/;13, is
used:

Hk ¼ ½1 1 1 1 1 1 1 0:5 0 0 0 0 0�

The improved magnitude frequency response is shown in Figure 7.31 via the solid line.
c. The calculated FIR coefficients for both filters are listed in Table 7.12.

EXAMPLE 7.14
a. Design a linear phase bandpass FIR filter with 25 coefficients using the frequency sampling method. Let the

lower and upper cutoff frequencies be 1,000Hz and 3,000 Hz, respectively, and assume a sampling frequency
of 8,000 Hz.

b. List the FIR filter coefficients.
c. Plot the frequency responses.

Solution:
a. First we calculate the normalized lower and upper cutoff frequencies for the bandpass filter; that is, UL ¼ 2p�
1;000=8;000 ¼ 0:25p radians and UH ¼ 2p� 3;000=8;000 ¼ 0:75p radians, respectively. The sampled
values of the bandpass frequency response are specified by the following vector:

Hk ¼ ½0 0 0 0 1 1 1 1 1 0 0 0 0�

For comparison, a second specification of Hk with a smooth transition band is used:

Hk ¼ ½0 0 0 0:5 1 1 1 1 1 0:5 0 0 0�

b. The MATLAB list is shown in Program 7.9. The generated FIR coefficients are listed in Table 7.13.

Program 7.9 MATLAB program for Example 7.14.

% Figure 7.32 (Example 7.14)
% MATLAB program to create Figure 7.32
%
fs¼8000;
H1¼[0 0 0 0 1 1 1 1 1 0 0 0 0]; % Magnitude specifications
B1¼firfs(25,H1); % Design filter
[h1,w]¼freqz(B1,1,512); % Calculate magnitude frequency response
H2¼[0 0 0 0.5 1 1 1 1 1 0.5 0 0 0]; % Magnitude spectrum
B2¼firfs(25,H2); % Design filter
[h2,w]¼freqz(B2,1,512); % Calculate magnitude frequency response
p1¼180*unwrap(angle(h1)’)/pi;
p2¼180*unwrap(angle(h2)’)/pi
subplot(2,1,1); plot(f,20*log10(abs(h1)),’-.’,f,20*log10(abs(h2)));grid
axis([0 fs/2 -100 10]);
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Response (dB)’);
subplot(2,1,2); plot(f,p1,’-.’,f,p2);grid
xlabel(’Frequency (Hz)’); ylabel(’Phase (degrees)’);
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Table 7.13 FIR Filter Coefficients in Example 7.14 (frequency sampling method)

B1: FIR Filter Coefficients B2: FIR Filter Coefficients

b0 ¼ b24 ¼ 0.055573 b0 ¼ b24 ¼ 0.001351

b1 ¼ b23 ¼ �0.030514 b1 ¼ b23 ¼ �0.008802

b2 ¼ b22 ¼ 0.000000 b2 ¼ b22 ¼ �0.020000

b3 ¼ b21 ¼ �0.027846 b3 ¼ b21 ¼ 0.009718

b4 ¼ b20 ¼ �0.078966 b4 ¼ b20 ¼ �0.011064

b5 ¼ b19 ¼ 0.042044 b5 ¼ b19 ¼ 0.023792

b6 ¼ b18 ¼ 0.063868 b6 ¼ b18 ¼ 0.077806

b7 ¼ b17 ¼ 0.000000 b7 ¼ b17 ¼ �0.020000

b8 ¼ b16 ¼ 0.094541 b8 ¼ b16 ¼ 0.017665

b9 ¼ b15 ¼ �0.038728 b9 ¼ b15 ¼ �0.029173

b10 ¼ b14 ¼ �0.303529 b10 ¼ b14 ¼ �0.308513

b11 ¼ b13 ¼ 0.023558 b11 ¼ b13 ¼ 0.027220

b12 ¼ 0.400000 b12 ¼ 0.480000
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FIGURE 7.32

Frequency responses using the frequency sampling method in Example 7.14.
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c. Similar to the preceding example, Figure 7.32 shows the frequency responses. Focusing on the magnitude
frequency responses depicted in Figure 7.32, the dash-dotted line indicates the magnitude frequency
response obtained without specifying the smooth transition band, while the solid line indicates the magnitude
frequency response achieved with the specification of the smooth transition band, resulting in the reduced
ripple effect.

Observations can be made from examining Examples 7.13 and 7.14. First, the oscillations (Gibbs
behavior) in the passband and stopband can be reduced at the expense of increasing the width of the
main lobe. Second, we can modify the specification of the magnitude frequency response with
a smooth transition band to reduce the oscillations and thus improve the performance of the FIR filter.
Third, the magnitude values Hk, k ¼ 0; 1;/;M in general can be arbitrarily specified. This indicates
that the frequency sampling method is more flexible and can be used to design the FIR filter with an
arbitrary specification of the magnitude frequency response.

7.6 OPTIMAL DESIGN METHOD
This section introduces the Parks–McClellan algorithm, which is one of the most popular optimal
design method used in the industry due to its efficiency and flexibility. The FIR filter design using the
Parks–McClellan algorithm is developed based on the idea of minimizing the maximum approxi-
mation error between a Chebyshev polynomial and the desired filter magnitude frequency response.
The details of this design development are beyond the scope of this text and can be found in Ambardar
(1999) and Porat (1997). We will outline the design criteria and notation and then focus on the design
procedure.

Given an ideal magnitude response HdðejuTÞ, the approximation error EðuÞ is defined as

EðuÞ ¼ WðuÞ½HðejuTÞ � HdðejuTÞ� (7.32)

where HðejuTÞ is the frequency response of the linear phase FIR filter to be designed, andWðuÞ is the
weight function for emphasizing certain frequency bands over others during the optimization process.
The goal is to minimize the error over the set of FIR coefficients:

minðmaxjEðuÞjÞ (7.33)

With the help of the Remez exchange algorithm, which is also beyond the scope of this book, we can
obtain the best FIR filter whose magnitude response has an equiripple approximation to the ideal
magnitude response. The achieved filters are optimal in the sense that the algorithms minimize the
maximum error between the desired frequency response and actual frequency response. These are
often called minimax filters.

Next, we establish the notation that will be used in the design procedure. Figure 7.33 shows the
characteristics of the FIR filter designed by the Parks–McClellan and Remez exchange algorithms. As
illustrated in the top graph of Figure 7.33, the passband frequency response and stopband frequency
response have equiripples. dp is used to specify the magnitude ripple in the passband, while ds
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specifies the stopband magnitude attenuation. In terms of dB value specification, we have
dpdB ¼ 20� log10ð1þ dpÞ and dsdB ¼ 20� log10ds.

The middle graph in Figure 7.33 describes the error between the ideal frequency response and the
actual frequency response. In general, the error magnitudes in the passband and stopband are
different. This makes optimization unbalanced, since the optimization process involves an entire
band. When the error magnitude in a band dominates the other(s), the optimization process may
deemphasize the contribution due to a small magnitude error. To make the error magnitudes
balanced, a weight function can be introduced. The idea is to weight a band with a bigger magnitude
error with a small weight factor and to weight a band with a smaller magnitude error with a big
weight factor. We use a weight factor Wp for weighting the passband error and Ws for weighting the
stopband error. The bottom graph in Figure 7.33 shows the weighted error, and clearly, the error
magnitudes on both bands are at the same level. Selection of the weighting factors is further
illustrated in the following design procedure.

Optimal FIR Filter Design Procedure for the Parks–McClellan Algorithm

1. Specify the band edge frequencies such as passband and stopband frequencies, passband ripple,
stopband attenuation, filter order, and sampling frequency of the DSP system.

2. Normalize band edge frequencies to the Nyquist limit (folding frequency ¼ fs=2) and specify the
ideal magnitudes.

FIGURE 7.33

(Top) Magnitude frequency response of an ideal lowpass filter and a typical lowpass filter designed using the

Parks–McClellan algorithm. (Middle) Error between the ideal and practical responses. (Bottom) Weighted error

between the ideal and practical responses.
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3. Calculate the absolute values of the passband ripple and stopband attenuation if they are given in
terms if dB values:

dp ¼ 10

�
dpdB

20

�
� 1 (7.34)

ds ¼ 10

�
dsdB

20

�
(7.35)

Then calculate the ratio and put it into fraction form:

dp

ds
¼ fraction form ¼ numerator

denominator
¼ Ws

Wp
(7.36)

Next, set the error weight factors for passband and stopband, respectively:

Ws ¼ numerator

Wp ¼ denominator (7.37)

4. Apply the Remez algorithm to calculate filter coefficients.
5. If the specifications are not met, then increase the filter order and repeat steps 1 to 4.

The following two examples are given to illustrate the design procedure.

EXAMPLE 7.15
Design a lowpass filter with the following specifications:

DSP system sampling rate ¼ 8,000 Hz
Passband ¼ 0e800 Hz
Stopband ¼ 1,000e4,000 Hz
Passband ripple ¼ 1 dB
Stopband attenuation ¼ 40 dB
Filter order ¼ 53

Solution:
From the specifications, we have two bands: a lowpass band and a stopband. We perform normalization and specify
ideal magnitudes as follows:

Folding frequency: fs=2 ¼ 8;000=2 ¼ 4;000 Hz
For 0 Hz: 0=4;000 ¼ 0 magnitude: 1
For 800 Hz: 800=4;000 ¼ 0:2 magnitude: 1
For 1,000 Hz: 1;000=4;000 ¼ 0:25 magnitude: 0
For 4,000 Hz: 4;000=4;000 ¼ 1 magnitude: 0

Next, let us determine the weights:
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dp ¼ 10

�
1

20

�
� 1 ¼ 0:1220

ds ¼ 10

��40

20

�
¼ 0:01

Then, applying Equation (7.36) gives
dp

ds
¼ 12:2z

12

1
¼ Ws

Wp

Hence, we have
Ws ¼ 12 andWp ¼ 1

We apply the remez() routine provided by MATLAB in Program 7.10. The filter coefficients are listed in Table 7.14.
Figure 7.34 shows the frequency responses.

Program 7.10. MATLAB program for Example 7.15.

%Figure 7.34 (Example 7.15)
% MATLAB program to create Figure 7.34
%
fs¼8000;
f¼[ 0 0.2 0.25 1]; % Edge frequencies
m¼[ 1 1 0 0] ; % Ideal magnitudes
w¼[ 1 12 ]; % Error weight factors
b¼remez(53,f,m,w); % (53þ1)Parks-McClellan algorithm and Remez exchange
format long
freqz(b,1,512,fs) % Plot the frequency response
axis([0 fs/2 -80 10]);

Clearly, the stopband attenuation is satisfied. We plot the details for the filter passband in Figure 7.35.

Table 7.14 FIR Filter Coefficients in Example 7.15

B: FIR Filter Coefficients (optimal design method)

b0 ¼ b53 ¼ �0.006075 b1 ¼ b52 ¼ �0.00197

b2 ¼ b51 ¼ 0.001277 b3 ¼ b50 ¼ 0.006937

b4 ¼ b49 ¼ 0.013488 b5 ¼ b48 ¼ 0.018457

b6 ¼ b47 ¼ 0.019347 b7 ¼ b46 ¼ 0.014812

b8 ¼ b45 ¼ 0.005568 b9 ¼ b44 ¼ �0.005438

b10 ¼ b43 ¼ �0.013893 b11 ¼ b42 ¼ �0.015887

b12 ¼ b41 ¼ �0.009723 b13 ¼ b40 ¼ 0.002789

b14 ¼ b39 ¼ 0.016564 b15 ¼ b38 ¼ 0.024947

b16 ¼ b37 ¼ 0.022523 b17 ¼ b36 ¼ 0.007886

b18 ¼ b35 ¼ �0.014825 b19 ¼ b34 ¼ �0.036522

b20 ¼ b33 ¼ �0.045964 b21 ¼ b32 ¼ �0.033866

b22 ¼ b31 ¼ 0.003120 b23 ¼ b30 ¼ 0.060244

b24 ¼ b29 ¼ 0.125252 b25 ¼ b28 ¼ 0.181826

b26 ¼ b27 ¼ 0.214670
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FIGURE 7.35

Frequency response details for passband in Example 7.15.

0 500 1000 1500 2000 2500 3000 3500 4000
-1500

-1000

-500

0

Frequency (Hertz)

P
ha

se
 (d

eg
re

es
)

0 500 1000 1500 2000 2500 3000 3500 4000
-80

-60

-40

-20

0

Frequency (Hertz)

M
ag

ni
tu

de
 re

sp
on

se
 (d

B
)

FIGURE 7.34

Frequency and phase responses for Example 7.15.
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As shown in Figure 7.35, the ripples in the passband are between �1 and 1 dB. Hence, all the specifications
are met. Note that if the specification is not satisfied, we will increase the order until the stopband attenuation and
passband ripple are met.

The next example illustrates bandpass filter design.

EXAMPLE 7.16
Design a bandpass filter with the following specifications:

DSP system sampling rate ¼ 8,000 Hz
Passband ¼ 1,000e1,600 Hz
Stopband ¼ 0e600 Hz and 2,000e4,000 Hz
Passband ripple ¼ 1 dB
Stopband attenuation ¼ 30 dB
Filter order ¼ 25

Solution:
From the specifications, we have three bands: a passband, a lower stopband, and an upper stopband. We perform
normalization and specify ideal magnitudes as follows:

Folding frequency: fs=2 ¼ 8;000=2 ¼ 4;000 Hz
For 0 Hz: 0=4;000 ¼ 0 magnitude: 0
For 600 Hz: 600=4;000 ¼ 0:15 magnitude: 0
For 1,000 Hz: 1;000=4;000 ¼ 0:25 magnitude: 1
For 1,600 Hz: 1;600=4;000 ¼ 0:4 magnitude: 1
For 2,000 Hz: 2;000=4;000 ¼ 0:5 magnitude: 0
For 4,000 Hz: 4;000=4;000 ¼ 1 magnitude: 0

Next, let us determine the weights:

dp ¼ 10



1
20

�
� 1 ¼ 0:1220

ds ¼ 10


�30
20

�
¼ 0:0316

Then applying Equation (7.36), we get

dp

ds
¼ 3:86z

39

10
¼ Ws

Wp

Hence, we have

Ws ¼ 39 andWp ¼ 10

We apply the Remez() routine provided by MATLAB and check performance in Program 7.11. Table 7.15 lists the
filter coefficients. The frequency responses are depicted in Figure 7.36.

Program 7.11. MATLAB program for Example 7.16.

%Figure 7.36(Example 7.16)
% MATLAB program to create Figure 7.36
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%
fs¼8000;
f¼[ 0 0.15 0.25 0.4 0.5 1]; % Edge frequencies
m¼[ 0 0 1 1 0 0]; % Ideal magnitudes
w¼[ 39 10 39 ]; % Error weight factors
format long
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FIGURE 7.36

Frequency and phase responses for Example 7.16.

Table 7.15 FIR Filter Coefficients in Example 7.16

B: FIR Filter Coefficients (optimal design method)

b0 ¼ b25 ¼ �0.022715 b1 ¼ b24 ¼ �0.012753

b2 ¼ b23 ¼ 0.005310 b3 ¼ b22 ¼ 0.009627

b4 ¼ b21 ¼ �0.004246 b5 ¼ b20 ¼ 0.006211

b6 ¼ b19 ¼ 0.057515 b7 ¼ b18 ¼ 0.076593

b8 ¼ b17 ¼ �0.015655 b9 ¼ b16 ¼ �0.156828

b10 ¼ b15 ¼ �0.170369 b11 ¼ b14 ¼ 0.009447

b12 ¼ b13 ¼ 0.211453

7.6 Optimal Design Method 275



b¼remez(25,f,m,w) % (25þ1) taps Parks-McClellan algorithm and Remez exchange
freqz(b,1,512,fs); % Plot the frequency response
axis([0 fs/2 �80 10])
Clearly, the stopband attenuation is satisfied. We also check the details for the passband as shown in

Figure 7.37.
As shown in Figure 7.37, the ripples in the passband between 1,000 Hz and 1,600 Hz are between �1 and

1 dB. Hence, all specifications are satisfied.

EXAMPLE 7.17
Now we show how the Remez exchange algorithm in Equation (7.32) is processed using a linear phase 3-tap FIR
filter represented as follows:

HðzÞ ¼ b0 þ b1z
�1 þ b0z

�2

The ideal frequency response specifications are shown in Figure 7.38(a), where the filter gain increases linearly
from a gain of 0.5 at U ¼ 0 radians to a gain of 1 at U ¼ p=4 radians. The band between U ¼ p=4 radians and
U ¼ p=2 radians is a transition band. Finally, the filter gain decreases linearly from the gain 0.75 at U ¼ p=2
radians to the gain of 0 at U ¼ p radians.

0 500 1000 1500 2000 2500 3000 3500 4000
-600

-400

-200

0

200

400

Frequency (Hertz)

P
ha

se
 (d

eg
re

es
)

0 500 1000 1500 2000 2500 3000 3500 4000
-2

-1

0

1

2

Frequency (Hertz)

M
ag

ni
tu

de
 re

sp
on

se
 (d

B
)

FIGURE 7.37

Frequency response details for passband in Example 7.16.
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For simplicity, we set all the weight factors to 1, that is, W ðUÞ ¼ 1. Equation (7.32) is simplified to

EðUÞ ¼ HðejUÞ � Hd ðejUÞ

Substituting z ¼ ejU into the transfer function HðzÞ gives

HðejUÞ ¼ b0 þ b1e
�jU þ b0e

�j2U

After simplification using Euler’s identity ejU þ e�jU ¼ 2 cos U, the filter frequency response is given by

HðejUÞ ¼ ejUðb1 þ 2b0 cos UÞ

Disregarding the linear phase shift term ejU for the time being, we have a Chebyshev real magnitude function
(there are a few other types as well):

HðejUÞ ¼ b1 þ 2b0 cos U

The alternation theorem (Ambardar, 1999; Porat, 1997) must be used. The alternation theorem states that given
a Chebyshev polynomial HðejUÞ to approximate the ideal magnitude response Hd ðejUÞ, we can find at leastM þ 2
(whereM ¼ 1 for our case) frequenciesU0,U1,.UMþ1, called the extremal frequencies, so that signs of the error
at the extremal frequencies alternate and the absolute error value at each extremal point reaches the maximum
absolute error, that is,

0 1 2 3 4
0

0.5

1

Normalized frequency

 S
el

ec
te

d 
po

in
ts

 o
n 

H
d

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

Normalized frequency

 E
m

ax
 a

t e
xt

re
m

al
 p

oi
nt

s

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Normalized frequency

 S
el

ec
te

d 
po

in
ts

 o
n 

H
d

0 1 2 3 4
-0.4

-0.2

0

0.2

0.4

Normalized frequency

 E
m

ax
 a

t e
xt

re
m

al
 p

oi
nt

s

will be selected
as an extremal
 point

equiripples

(a) (b)

(c) (d)

FIGURE 7.38

Determining the 3-tap FIR filter coefficients using the Remez algorithm in Example 7.17.
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EðUk Þ ¼ �EðUkþ1Þ for U0; U1;. UMþ1

and

jEðUk Þj ¼ Emax

But the alternation theorem does not tell us how to execute the algorithm. The Remez exchange algorithm actually
is employed to solve this problem. The equations and steps (Ambardar, 1999; Porat, 1997) are briefly summarized
for our illustrative example:

1. Given an order of N ¼ 2Mþ1, choose the initial extremal frequencies:

U0; U1; .; UMþ1 ðcan be uniformly distributed firstÞ
2. Solve the following equation to satisfy the alternate theorem:

� ð�1ÞkE ¼ W ðUk ÞðHd ðejUk Þ � HðejUk ÞÞ for U0; U1; .; UMþ1

Note that since HðejUÞ ¼ b1 þ 2b0 cos U, for example, the solution will include solving for three unknowns:
b0,b1, and Emax.

3. Determine the extremal points including band edges (can be more than M þ 2 points), and retain M þ 2
extremal points with the largest error values Emax.

4. Output the coefficients, if the extremal frequencies are not changed; otherwise, go to step 2 using the new set
of extremal frequencies.

Now let us apply the Remez exchange algorithm.
First Iteration

1. We use uniformly distributed extremal points U0 ¼ 0, U1 ¼ p=2, U2 ¼ p whose ideal magnitudes are
marked by the symbol “o” in Figure 7.38(a).

2. The alternation theorem requires �ð�1ÞkE ¼ Hd ðejUÞ � ðb1 þ 2b0 cos UÞ.
Applying extremal points yields the following three simultaneous equations with three unknowns: b0,b1,
and E :

�E ¼ 0:5� b1 � 2b0

E ¼ 0:75� b1

�E ¼ 0� b1 þ 2b0

8>><
>>:

We solve these three equations to get

b0 ¼ 0:125; b1 ¼ 0:5; E ¼ 0:25;HðejUÞ ¼ 0:5þ 0:25 cos U

3. We then determine the extremal points, including at the band edge, with their error values from Figure 7.38(b)
using the following error function:

EðUÞ ¼ Hd ðejUÞ � 0:5� 0:25 cos U

These extremal points are marked by symbol “o” and their error values are listed in Table 7.16.
4. Since the band edge U ¼ p=4 has an larger error than the others, it must be chosen as the extremal frequency.

After deleting the extremal point atU ¼ p=2, a new set of extremal points are found according the largest error
values as

U0 ¼ 0

U1 ¼ p=4
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U2 ¼ p

The ideal magnitudes at these three extremal points are given in Figure 7.38(c), that is, 0.5, 1, 0. Now let us
examine the second iteration.

Second Iteration

Applying the alternation theorem at the new set of extremal points, we have8><
>:

�E ¼ 0:5� b1 � 2b0

E ¼ 1� b1 � 1:4142b0

�E ¼ 0� b1 þ 2b0

Solving these three simultaneous equations leads to

b0 ¼ 0:125; b1 ¼ 0:537; E ¼ 0:287; and HðejUÞ ¼ 0:537þ 0:25 cos U

The error values at the extremal points and band edge are listed in Table 7.17 and shown in Figure 7.38(d), where
the determined extremal points are marked by the symbol “o”.

Since the extremal points have the same maximum error value of 0.287, they are U0 ¼ 0,U1 ¼ p=4, and
U2 ¼ p, which is unchanged. We stop the iteration and output the filter transfer function as

HðzÞ ¼ 0:125þ 0:537z�1 þ 0:125z�2

As shown in Figure 7.37(d), we obtain the equiripples of error at the extemal points U0 ¼ 0, U1 ¼ p=4, and
U2 ¼ p; their signs are alternating, and the maximum absolute error of 0.287 is obtained at each point. It takes
two iterations to determine the coefficients for this simplified example.

As we mentioned, the Parks–McClellan algorithm is one of the most popular filter design methods
in industry due to its flexibility and performance. However, there are two disadvantages. The filter
length has to be estimated by the empirical method. Once the frequency edges, magnitudes, and
weighting factors are specified, the Remez exchange algorithm cannot control the actual ripple
obtained from the design. We may often need to try a longer length of filter or different weight factors
to remedy situations where the ripple is unacceptable.

Table 7.16 Extremal Points and Band Edges with Their Error Values for the
First Iteration.

U 0 p=4 p=2 p

Emax �0.25 0.323 0.25 �0.25

Table 7.17 Error Values at Extremal Frequencies and Band Edge

U 0 p=4 p=2 p

Emax �0.287 0.287 0.213 �0.287
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7.7 REALIZATION STRUCTURES OF FINITE IMPULSE RESPONSE FILTERS
Using the direct-form I realization (discussed in Chapter 6), we will obtain a special realization form,
called the transversal form. Using the linear phase property will produce a linear phase realization
structure.

7.7.1 Transversal Form

Given the transfer function of the FIR filter in Equation (7.38),

HðzÞ ¼ b0 þ b1z
�1 þ/þ bKz

�K (7.38)

we obtain the difference equation as

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ b2xðn� 2Þ þ/þ bKxðn� KÞ
Realization of such a transfer function is the transversal form, displayed in Figure 7.39.

EXAMPLE 7.18
Given an FIR filter transfer function

HðzÞ ¼ 1þ 1:2z�1 þ 0:36z�2

perform the FIR filter realization.

Solution:
From the transfer function, we can identify that

b0 ¼ 1; b1 ¼ 1:2; andb2 ¼ 0:36

Using Figure 7.39, we find the FIR realization to be as displayed in Figure 7.40.
We determine the DSP equation for implementation to be

yðnÞ ¼ xðnÞ þ 1:2xðn � 1Þ þ 0:36xðn � 2Þ

Program 7.12 shows the MATLAB implementation.
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FIGURE 7.39

FIR filter realization (transversal form).
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Program 7.12. MATLAB program for Example 7.18.

% Sample MATLAB code
sample ¼1:1:10; % Input test array
x¼[ 0 0 0]; % Input buffer [x(n) x(n-1) .]
y¼[0]; %output buffer [y(n) y(n-1) . ]
b¼[1.0 1.2 0.36]; % FIR filter coefficients [b0 b1 .]
KK¼length(b);
for n¼1:1:length(sample) % Loop processing
for k¼KK:-1:2 % Shift input by one sample
x(k)¼x(k-1);
end
x(1)¼sample(n); % Get new sample
y(1)¼0; % Perform FIR filtering
for k¼1:1:KK
y(1)¼y(1)þb(k)*x(k);
end
out(n)¼y(1); %send filtered sample to the output array
end
out

7.7.2 Linear Phase Form

We illustrate the linear phase structure using the following simple example.
Consider the following transfer function with 5 taps obtained from the design:

HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2 þ b1z
�3 þ b0z

�4 (7.39)

We can see that the coefficients are symmetrical and the difference equation is

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ b2xðn� 2Þ þ b1xðn� 3Þ þ b0xðn� 4Þ

This DSP equation can further be combined to yield

yðnÞ ¼ b0ðxðnÞ þ xðn� 4ÞÞ þ b1ðxðn� 1Þ þ xðn� 3ÞÞ þ b2xðn� 2Þ

Then we obtain the realization structure in a linear phase form as shown in Figure 7.41.
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FIGURE 7.40

FIR filter realization for Example 7.18.
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FIGURE 7.41

Linear phase FIR filter realization.

7.8 COEFFICIENT ACCURACY EFFECTS ON FINITE IMPULSE RESPONSE
FILTERS
In practical applications, the filter coefficients achieved through high-level software such as MATLAB
must be quantized using finite word length. This may have two effects. First, the locations of zeros are
changed; second, due to the location change of zeros, the filter frequency response will change
correspondingly. In practice, there are two types of digital signal (DS) processors: fixed-point
processors and floating-point processors. The fixed-point DS processor uses integer arithmetic, and the
floating-point processor employs floating-point arithmetic. Such effects of filter coefficient quanti-
zation will be covered in Chapter 9.

In this section, we will study the effects of FIR filter coefficient quantization in general, since
during practical filter realization, obtaining filter coefficients with infinite precision is impossible.
Filter coefficients are usually truncated or rounded off for the application. Assume that the FIR filter
transfer function with infinite precision is given by

HðzÞ ¼
XK
n¼ 0

bnz
�n ¼ b0 þ b1z

�1 þ/þ b2Mz
�K (7.40)

where each filter coefficient bn has infinite precision. Now let the quantized FIR filter transfer
function be

HqðzÞ ¼
XK
n¼ 0

bqnz
�n ¼ b

q
0 þ b

q
1z

�1 þ/þ b
q
Kz

�K (7.41)

where each filter coefficient bqn is quantized (rounded off) using the specified number of bits. Then the
error of the magnitude frequency response can be bounded as

��HðejUÞ � HqðejUÞ�� ¼ PK
n¼ 0

��
bn � bqnÞejU
��

<
PK
n¼ 0

��bn � bqn
���ðK þ 1Þ$2�B

(7.42)

where B is the number of bits used to encode each magnitude of the filter coefficient.
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EXAMPLE 7.19
In Example 7.7, a lowpass FIR filter with 25 taps using a Hamming window was designed, and FIR filter coeffi-
cients are listed below for comparison in Table 7.18. One sign bit is used, and 7 bits are used for fractional parts,
since all FIR filter coefficients are less than 1. We will multiply each filter coefficient by a scale factor of 27 and
round off each scaled magnitude to an integer whose magnitude can be encoded using 7 bits. When the coefficient
integer is scaled back, the coefficient with finite precision (quantized filter coefficient) using 8 bits, including the
sign bit, will be achieved.

To understand quantization, we take a look at one of the infinite precision coefficients
Bhamð3Þ ¼ 0:00759455135346, for illustration. The quantization using 7 magnitude bits is

0:00759455135346� 27 ¼ 0:9721 ¼ 1

Then the quantized filter coefficient is obtained as

BhamQð3Þ ¼ 1=27 ¼ 0:0078125

Since the poles for both FIR filters always reside at the origin, we need to examine only their zeros. The z-plane zero
plots for both FIR filters are shown in Figure 7.42A, where the circles are zeros from the FIR filter with infinite
precision, while the crosses are zeros from the FIR filter with the quantized coefficients.

Most importantly, Figure 7.42B shows the difference of the frequency responses for both filters obtained using
Program 7.13. In the figure, the solid line represents the frequency response with infinite filter coefficient
precision, and the dot-dashed line indicates the frequency response with finite filter coefficients. It is observed that
the stopband performance is degraded due to the filter coefficient quantization. The degradation in the passband is
not severe.

TABLE 7.18 FIR Filter Coefficients and Their Quantized Filter Coefficients in Example
7.19 (Hamming window)

Bham: FIR Filter Coefficients BhamQ: FIR Filter Coefficients

b0 ¼ b24 ¼ 0.00000000000000 b0 ¼ b24 ¼ 0.0000000

b1 ¼ b23 ¼ �0.00276854711076 b1 ¼ b23 ¼ �0.0000000

b2 ¼ b22 ¼ 0.00000000000000 b2 ¼ b22 ¼ 0.0000000

b3 ¼ b21 ¼ 0.00759455135346 b3 ¼ b21 ¼ 0.0078125

b4 ¼ b20 ¼ 0.00000000000000 b4 ¼ b20 ¼ 0.0000000

b5 ¼ b19 ¼ �0.01914148493949 b5 ¼ b19 ¼ �0.0156250

b6 ¼ b18 ¼ 0.00000000000000 b6 ¼ b18 ¼ 0.0000000

b7 ¼ b17 ¼ 0.04195685650042 b7 ¼ b17 ¼ 0.0390625

b8 ¼ b16 ¼ 0.00000000000000 b8 ¼ b16 ¼ 0.0000000

b9 ¼ b15 ¼ �0.09180790496577 b9 ¼ b15 ¼ �0.0859375

b10 ¼ b14 ¼ 0.00000000000000 b10 ¼ b14 ¼ 0.0000000

b11 ¼ b13 ¼ 0.31332065886015 b11 ¼ b13 ¼ 0.3125000

b12 ¼ 0.50000000000000 b12 ¼ 0.5000000
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Program 7.13. MATLAB program for Example 7.19.

fs¼8000;
[hham,f]¼freqz(Bham,1,512,fs);
[hhamQ,f]¼freqz(BhamQ,1,512,fs);
p¼180*unwrap(angle(hham))/pi;
pQ¼180*unwrap(angle(hhamQ))/pi
subplot(2,1,1); plot(f,20*log10(abs(hham)),f,20*log10(abs(hhamQ)),’:’);grid
axis([0 4000 -100 10]);
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Response (dB)’);
subplot(2,1,2); plot(f,p,f,pQ,’:’);grid

Using Equation (7.42), the error of the magnitude frequency response due to quantization is bounded by

���HðejUÞ � HqðejUÞ
���D25=256 ¼ 0:0977

This can be easily verified at the stopband of the magnitude frequency response for the worst condition as follows:

���HðejUÞ � HqðejUÞ
��� ¼

���10�100=20 � 10�30=20
��� ¼ 0:032 < 0:0977
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FIGURE 7.42A

The z-plane zero plots for both FIR filters. The circles are zeros for infinite precision; the crosses are zeros

for round-off coefficients.
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In practical situations, a similar procedure can be used to analyze the effects of filter coefficient
quantization to make sure that the designed filter meets the requirements.

7.9 SUMMARY OF FIR DESIGN PROCEDURES AND SELECTION OF FIR
FILTER DESIGN METHODS IN PRACTICE
In this section, we first summarize the design procedures of the window design, frequency sampling
design, and optimal design methods, and then discuss the selection of the particular filter for typical
applications.

The window method (Fourier transform design using windows):

1. Given the filter frequency specifications, determine the filter order (odd number used in this book)
and the cutoff frequency/frequencies using Table 7.7 and Equation (7.26).

2. Compute the impulse sequence hðnÞ via the Fourier transform method using the appropriate
equations (in Table 7.1).

3. Multiply the generated FIR filter coefficients hðnÞ in step 2 by the selected window sequence using
Equation (7.20) to obtain the windowed impulse sequence hwðnÞ.
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FIGURE 7.42B

Frequency responses. The solid line indicates the FIR filter with infinite precision; the dashed line indicates the

FIR filter with the round-off coefficients.
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4. Delay the windowed impulse sequence hwðnÞ by M samples to get the causal windowed FIR filter
coefficients bn ¼ hwðn�MÞ using Equation (7.21).

5. Output the transfer function and plot the frequency responses.
6. If the frequency specifications are satisfied, output the difference equation. If the frequency

specifications are not satisfied, increase the filter order and repeat beginning with step 2.

The frequency sampling method:

1. Given the filter frequency specifications, choose the filter order (odd number used in the book), and
specify the equally spaced magnitudes of the frequency response for the normalized frequency
range from 0 to p using Equation (7.29).

2. Calculate FIR filter coefficients using Equation (7.30).
3. Use the symmetry in Equation (7.31) and the linear phase requirement to determine the rest of the

coefficients.
4. Output the transfer function and plot the frequency responses.
5. If the frequency specifications are satisfied, output the difference equation. If the frequency

specifications are not satisfied, increase the filter order and repeat beginning with step 2.

The optimal design method (Parks–McClellan algorithm):

1. Given the band edge frequencies, choose the filter order , normalize each band edge frequency to
the Nyquist limit (folding frequency ¼ fs=2), and specify the ideal magnitudes.

2. Calculate the absolute values of the passband ripple and stopband attenuation, if they are given in
terms of dB values, using Equations (7.34) and (7.35).

3. Determine the error weight factors for the passband and stopband, respectively, using Equations
(7.36) and (7.37).

4. Apply the Remez algorithm to calculate filter coefficients.

Table 7.19 Comparisons of Three Design Methods

Design Method Window Frequency Sampling Optimal

Filter type 1. Lowpass, highpass,
bandpass, bandstop.
2. Formulas are not valid
for arbitrary frequency
selectivity.

1. Any type of filter
2. The formula is valid
for arbitrary frequency
selectivity.

1. Any type of filter
2. Valid for arbitrary
frequency selectivity

Linear phase Yes Yes Yes

Ripple and stopband
specifications

Used for determining
the filter order and cutoff
frequency/-cies

Need to be checked
after each design trial

Used in the algorithm;
need to be checked
after each design trial

Algorithm complexity for
coefficients

Moderate:
1. Impulse sequence
calculation
2. Window function
weighting

Simple:
Single equation

Complicated:
1. ParkseMcClellan
algorithm
2. Remez exchange
algorithm

Minimal design tool Calculator Calculator Software
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5. Output the transfer function and check the frequency responses.
6. If the frequency specifications are satisfied, output the difference equation. If the frequency

specifications are not satisfied, increase the filter order and repeat beginning with step 4.

Table 7.19 shows the comparisons for the window, frequency sampling, and optimal methods. The
table can be used as a selection guide for each design method in this book.

Example 7.20 describes the possible selection of the design method by a DSP engineer to solve
a real-world problem.

EXAMPLE 7.20
Determine the appropriate FIR filter design method for each of the following DSP applications.

a. A DSP engineer implements a digital two-band crossover system as described in Section 7.4.4 in this book. He
selects the FIR filters to satisfy the following specifications:

Sampling rate ¼ 44,100 Hz
Crossover frequency ¼ 1,000 Hz (cutoff frequency)
Transition band ¼ 600 Hz to 1,400 Hz
Lowpass filter¼ passband frequency range from 0 to 600 Hz with a ripple of 0.02 dB and stopband edge at 1,400
Hz with an attenuation of 50 dB.
Highpass filter ¼ passband frequency range from 1.4 to 44.1 kHz with a ripple of 0.02 dB and stopband edge at
600 Hz with an attenuation of 50 dB.

The engineer does not have the software routine for the Remez algorithm.
b.An audio engineer tries to equalize a speech signal sampled at 8,000Hz using a linear phase FIR filter based on the
magnitude specifications in Figure 7.43. The engineer does not have the software routine for the Remez algorithm.

Solution:
a. The window design method is the first choice, since this formula is expressed in terms of the cutoff frequency
(crossover frequency), the filter order is based on the transient band, and the filter types are standard lowpass and
highpass. The ripple and stopband specifications can be satisfied by selecting the Hamming window. The optimal
design method will also do the job if the remez() algorithm is available. But there exists a challenge to satisfy the
combined unity gains at the crossover frequency of 1,000 Hz.
b. Since the magnitude frequency response is not a standard filter type such as lowpass, highpass, bandpass, or
bandstop, and the remez() algorithm is not available, the first choice should be the frequency sampling method.
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FIGURE 7.43

Magnitude frequency response in Example 7.20(b).
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7.10 SUMMARY
1. The Fourier transform method is used to compute noncausal FIR filter coefficients, including

those of lowpass, highpass, bandpass, and bandstop filters.
2. Converting noncausal FIR filter coefficients to causal FIR filter coefficients only introduces

linear phase, which is a good property for audio applications. The linear phase filter output
has the same amount of delay for all the input signals whose frequency components are
within the passband.

3. The causal FIR filter using the Fourier transform method generates ripple oscillations (Gibbs
effect) in the passband and stopband in its filter magnitude frequency response due to abrupt
truncation of the FIR filter coefficient sequence.

4. To reduce the oscillation effect, the window method is introduced to tap down the coefficient values
towards both ends. A substantial improvement of the magnitude frequency response is achieved.

5. Real-life DSP applications such as noise reduction systems and two-band digital audio crossover
systems were investigated.

6. Frequency sampling design is feasible for an FIR filter with an arbitrary magnitude response
specification.

7. An optimal design method, the Parks–McClellan algorithm using the Remez exchange algorithm,
offers flexibility for filter specifications. The Remez exchange algorithm was explained using
a simplified example.

8. Realization structures of FIR filters have special forms, such as the transversal form and the linear
phase form.

9. The effect of quantizing FIR filter coefficients for implementation changes the zero locations
of the FIR filter. More effects on the stopband in the magnitude and phase responses are
observed.

10. Guidelines for selecting an appropriate design method in practice were summarized with
consideration of the filter type, linear phase, ripple and stopband specifications, algorithm
complexity, and design tools.

7.11 MATLAB PROGRAMS
Program 7.14 enables one to design FIR filters via the window method using window functions
such as the rectangular window, triangular window, Hanning window, Hamming window, and
Blackman window. Filter types of the design include lowpass, highpass, bandpass, and
bandstop.
Program 7.14. MATLAB function for FIR filter design using the window method.

function B¼firwd(N,Ftype,WnL,WnH,Wtype)
% B ¼ firwd(N,Ftype,WnL,WnH,Wtype)
% FIR filter design using the window function method.
% Input parameters:
% N: the number of the FIR filter taps.
% Note: It must be odd number.
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% Ftype: the filter type
% 1. Lowpass filter
% 2. Highpass filter
% 3. Bandpass filter
% 4. Bandstop filter
% WnL: lower cutoff frequency in radians. Set WnL¼0 for the highpass filter.
% WnH: upper cutoff frequency in radians. Set WnL¼0 for the lowpass filter.
% Wtypw: window function type
% 1. Rectangular window
% 2. Triangular window
% 3. Hanning window
% 4. Hamming window
% 5. Balckman window
% Output:
% B: FIR filter coefficients.

M¼(N-1)/2;
hH¼sin(WnH*[-M:1:-1])./([-M:1:-1]*pi);
hH(Mþ1)¼WnH/pi;
hH(Mþ2:1:N)¼hH(M:-1:1);
hL¼sin(WnL*[-M:1:-1])./([-M:1:-1]*pi);
hL(Mþ1)¼WnL/pi;
hL(Mþ2:1:N)¼hL(M:-1:1);
if Ftype ¼¼ 1
h(1:N)¼hL(1:N);

end
if Ftype ¼¼ 2
h(1:N)¼-hH(1:N);
h(Mþ1)¼1þh(Mþ1);

end
if Ftype ¼¼3

h(1:N)¼hH(1:N)-hL(1:N);
end
if Ftype ¼¼ 4

h(1:N)¼hL(1:N)-hH(1:N);
h(Mþ1)¼1þh(Mþ1);

end
% Window functions

if Wtype ¼¼1
w(1:N)¼ones(1,N);

end
if Wtype ¼¼2
w¼1-abs([-M:1:M])/M;
end
if Wtype ¼¼3
w¼ 0.5þ0.5*cos([-M:1:M]*pi/M);
end
if Wtype ¼¼4
w¼0.54þ0.46*cos([-M:1:M]*pi/M);
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end
if Wtype ¼¼5
w¼0.42þ0.5*cos([-M:1:M]*pi/M)þ0.08*cos(2*[-M:1:M]*pi/M);
end
B¼h .* w

Program 7.15 enables one to design FIR filters using the frequency sampling method. Note that
values of the frequency response, which correspond to the equally spaced DFT frequency components,
must be specified for design. Besides the lowpass, highpass, bandpass and bandstop filter designs, the
method can be used to design FIR filters with an arbitrarily specified magnitude frequency response.

Program 7.15. MATLAB function for FIR filter design using the frequency sampling method.

function B¼firfs(N,Hk)
% B¼firls(N,Hk)
% FIR filter design using the frequency sampling method.
% Input parameters:
% N: the number of filter coefficients.
% note: N must be odd number.
% Hk: sampled frequency reponse for k¼0,1,2,.,M¼(N-1)/2.
% Output:
% B: FIR filter coefficients.

M¼(N-1)/2;
for n¼1:1:N
B(n)¼(1/N)*(Hk(1)þ.

2*sum(Hk(2:1:Mþ1).
.*cos(2*pi*([1:1:M])*(n-1-M)/N)));

end

7.12 PROBLEMS

7.1. Design a 3-tap FIR lowpass filter with a cutoff frequency of 1,500 Hz and a sampling rate of
8,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p radians.

7.2. Design a 3-tap FIR highpass filter with a cutoff frequency of 1,600 Hz and a sampling rate of
8,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p

radians.
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7.3. Design a 5-tap FIR lowpass filter with a cutoff frequency of 100 Hz and a sampling rate of
1,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p radians.

7.4. Design a 5-tap FIR highpass filter with a cutoff frequency of 250 Hz and a sampling rate of
1,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p radians.

7.5. Design a 5-tap FIR bandpass filter with a lower cutoff frequency of 1,600 Hz, an upper cut-off
frequency of 1,800 Hz and a sampling rate of 8,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p radians.

7.6. Design a 5-tap FIR band reject filter with a lower cutoff frequency of 1,600 Hz, an upper
cutoff frequency of 1,800 Hz, and a sampling rate of 8,000 Hz using a

a. rectangular window function

b. Hamming window function

Determine the transfer function and difference equation of the designed FIR system, and
compute and plot the magnitude frequency response for U ¼ 0;p=4;p=2; 3p=4; and p radians.

7.7. Consider an FIR lowpass filter design with the following specifications:

Passband ¼ 0e800 Hz

Stopband ¼ 1,200e4,000 Hz

Passband ripple ¼ 0.1 dB

Stopband attenuation ¼ 40 dB

Sampling rate ¼ 8,000 Hz

Determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequency for the design equation
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7.8. Consider an FIR highpass filter design with the following specifications:

Stopband ¼ 0e1,500 Hz

Passband ¼ 2,000e4,000 Hz

Passband ripple ¼ 0.02 dB

Stopband attenuation ¼ 60 dB

Sampling rate ¼ 8,000 Hz

Determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequency for the design equation

7.9. Consider an FIR bandpass filter design with the following specifications:

Lower cutoff frequency ¼ 1,500 Hz

Lower transition width ¼ 600 Hz

Upper cutoff frequency ¼ 2,300 Hz

Upper transition width ¼ 600 Hz

Passband ripple ¼ 0.1 dB

Stopband attenuation ¼ 50 dB

Sampling rate: 8,000 Hz

Determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequencies for the design equation

7.10. Consider an FIR bandstop filter design with the following specifications:

Lower passband ¼ 0e1,200 Hz

Stopband ¼ 1,600e2,000 Hz

Upper passband ¼ 2,400e4,000 Hz

Passband ripple ¼ 0.05 dB

Stopband attenuation ¼ 60 dB

Sampling rate ¼ 8,000 Hz
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Determine the following:

a. window method

b. length of the FIR filter

c. cutoff frequencies for the design equation

7.11. Given an FIR system

HðzÞ ¼ 0:25� 0:5z�1 þ 0:25z�2

realize HðzÞ using each of the following specified methods:

a. transversal form (write the difference equation for implementation)

b. linear phase form (write the difference equation for implementation)

7.12. Given an FIR filter transfer function

HðzÞ ¼ 0:2þ 0:5z�1 � 0:3z�2 þ 0:5z�3 þ 0:2z�4

perform the linear phase FIR filter realization, and write the difference equation for
implementation.

7.13. Determine the transfer function for a 3-tap FIR lowpass filter with a cutoff frequency of 150
Hz and a sampling rate of 1,000 Hz using the frequency sampling method.

7.14. Determine the transfer function for a 3-tap FIR highpass filter with a cutoff frequency of 250
Hz and a sampling rate of 1,000 Hz using the frequency sampling method.

7.15. Determine the transfer function for a 5-tap FIR lowpass filter with a cutoff frequency of 2,000
Hz and a sampling rate of 8,000 Hz using the frequency sampling method.

7.16. Determine the transfer function for a 5-tap FIR highpass filter with a cutoff frequency of
3,000 Hz and a sampling rate of 8,000 Hz using the frequency sampling method.

7.17. Given the following specifications, determine the transfer function:

• 7-tap FIR bandpass filter

• lower cutoff frequency of 1,500 Hz and upper cutoff frequency of 3,000 Hz

• sampling rate of 8,000 Hz

• frequency sampling design method

7.18. Given the following specifications, determine the transfer function:

• 7-tap FIR bandstop filter

• lower cutoff frequency of 1,500 Hz and upper cutoff frequency of 3,000 Hz

• sampling rate of 8,000 Hz

• frequency sampling design method
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7.19. A lowpass FIR filter to be designed has the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 1,000 Hz

Passband ¼ 0e200 Hz

Stopband ¼ 300e500 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 40 dB

Determine the error weights Wp andWs for the passband and stopband in the ParkseMcClellan
algorithm.

7.20. A bandpass FIR filter to be designed has the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 1,000 Hz

Passband ¼ 200e250 Hz

Lower stopband ¼ 0e150 Hz

Upper stopband ¼ 300e500 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 30 dB

Determine the error weights Wp andWs for the passband and stopband in the ParkseMcClellan
algorithm.

7.21. A highpass FIR filter to be designed has the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 1,000 Hz

Passband ¼ 350e500 Hz

Stopband ¼ 0e250 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 60 dB

Determine the error weights Wp andWs for the passband and stopband in the ParkseMcClellan
algorithm.

7.22. A bandstop FIR filter to be designed has the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 1,000 Hz
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Stopband ¼ 250e350 Hz

Lower passband ¼ 0e200 Hz

Upper passband ¼ 400e500 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 25 dB

Determine the error weightsWp andWs for the passband and stopband in the ParkseMcClellan
algorithm.

7.23. In a speech recording system with a sampling rate of 10,000 Hz, the speech is corrupted by
broadband random noise. To remove the random noise while preserve speech information,
the following specifications are given:

Speech frequency range ¼ 0e3,000 Hz

Stopband range ¼ 4,000e5,000 Hz

Passband ripple ¼ 0.1 dB

Stopband attenuation ¼ 45 dB

FIR filter with Hamming window

Determine the FIR filter length (number of taps) and the cutoff frequency; use MATLAB to
design the filter; and plot the frequency response.

7.24. Consider the speech equalizer shown in Figure 7.44 to compensate for midrange frequency
loss of hearing that has the following specifications:

Sampling rate ¼ 8,000 Hz

Bandpass FIR filter with Hamming window

Frequency range to be emphasized ¼ 1,500e2,000 Hz

Lower stopband ¼ 0e1,000 Hz

Upper stopband ¼ 2,500e4,000 Hz

Passband ripple ¼ 0.1 dB

Stopband attenuation ¼ 45 dB

Determine the filter length and the lower and upper cutoff frequencies.

Digital
input x(n)

Digital
output y(n)

+Bandpass
filter 5

Gain

FIGURE 7.44

Speech equalizer in Problem 7.24.
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7.25. A digital crossover can be designed as shown in Figure 7.45.

Consider the following audio specifications:

Sampling rate ¼ 44,100 Hz

Crossover frequency ¼ 2,000 Hz

Transition band range ¼ 1,600 Hz

Passband ripple ¼ 0.1 dB

Stopband attenuation ¼ 50 dB

Filter type ¼ FIR

Determine the following for each filter in Figure 7.45:

a. window function

b. filter length

c. cutoff frequency

Use MALAB to design both filters and plot frequency responses for both filters.

7.12.1 Computer Problems with MATLAB

Use the MATLAB programs provided in Section 7.11 to design the following FIR filters.

7.26. Design a 41-tap lowpass FIR filter whose cutoff frequency is 1,600 Hz using the following
window functions. Assume that the sampling frequency is 8,000 Hz.

a. rectangular window function

b. triangular window function

c. Hanning window function

d. Hamming window function

e. Blackman window function

List the FIR filter coefficients and plot the frequency responses for each case.

Digital
audio x(n)

Highpass filter

Lowpass filter Gain_L

Gain_H Tweeter:
The crossover passes

high frequencies

Woofer:
The crossover passes

low frequencies

yH(n)

yL(n)

FIGURE 7.45

Two-band crossover in Problem 7.25.
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7.27. Design a lowpass FIR filter whose cutoff frequency is 1,000 Hz using the Hamming window
function for the following specified filter length. Assume that the sampling frequency is
8,000 Hz.

a. 21 filter coefficients

b. 31 filter coefficients

c. 41 filter coefficients

List the FIR filter coefficients for each design and compare the magnitude frequency
responses.

7.28. Design a 31-tap highpass FIR filter whose cutoff frequency is 2,500 Hz using the following
window functions. Assume that the sampling frequency is 8,000 Hz.

a. Hanning window function

b. Hamming window function

c. Blackman window function

List the FIR filter coefficients and plot the frequency responses for each design.

7.29. Design a 41-tap bandpass FIR filter with lower and upper cutoff frequencies of 2,500 Hz and
3,000 Hz, respectively, using the following window functions. Assume a sampling frequency
of 8,000 Hz.

a. Hanning window function

b. Blackman window function.

List the FIR filter coefficients and plot the frequency responses for each design.

7.30. Design a 41-tap band reject FIR filter with cutoff frequencies of 2,500 Hz and 3,000 Hz,
respectively, using the Hamming window function. Assume a sampling frequency of 8,000
Hz. List the FIR filter coefficients and plot the frequency responses.

7.31. Use the frequency sampling method to design a linear phase lowpass FIR filter with 17
coefficients. Let the cutoff frequency be 2,000 Hz and assume a sampling frequency of 8,000
Hz. List the FIR filter coefficients and plot the frequency responses.

7.32. Use the frequency sampling method to design a linear phase bandpass FIR filter with 21
coefficients. Let the lower and upper cutoff frequencies be 2,000 Hz and 2,500 Hz,
respectively, and assume a sampling frequency of 8,000 Hz. List the FIR filter coefficients
and plot the frequency responses.

7.33. Given an input data sequence

xðnÞ ¼ 1:2$sinð2pð1; 000Þn=8; 000Þ � 1:5$cosð2pð2; 800Þn=8; 000Þ
with a sampling frequency of 8,000 Hz, use the designed FIR filter with a Hamming window
in Problem 7.26 to filter 400 data points of xðnÞ, and plot the 400 samples of the input and
output data.
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7.34. Design a lowpass FIR filter with the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 8,000 Hz

Passband ¼ 0e1,200 Hz

Stopband ¼ 1,500e4,000 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 40 dB

List the filter coefficients and plot the frequency responses.

7.35. Design a bandpass FIR filter with the following specifications:

Design method: ParkseMcClellan algorithm

Sampling rate ¼ 8,000 Hz

Passband ¼ 1,200e1,600 Hz

Lower stopband ¼ 0e800 Hz

Upper stopband ¼ 2,000e4,000 Hz

Passband ripple ¼ 1 dB

Stopband attenuation ¼ 40 dB

List the filter coefficients and plot the frequency responses.

7.12.2 MATLAB Projects

7.36. Speech enhancement:

Digitally recorded speech in a noisy environment can be enhanced using a lowpass filter if
the recorded speech with a sampling rate of 8,000 Hz contains the desired frequency
components lower than 1,600 Hz. Design a lowpass filter to remove the high frequency noise
above 1,600 Hz with the following filter specifications: passband frequency range: 0 e 1,600
Hz; passband ripple: 0.02 dB; stopband frequency range: 1,800e4,000 Hz; stopband
attenuation: 50 dB.

Use the designed lowpass filter to filter the noisy speech and adopt the following code to simulate
the noisy speech:

load speech.dat
t¼[0:length(speech)-1]*T;
th¼mean(speech.*speech)/4; %Noise power ¼(1/4) speech power
noise¼sqrt(th)*randn([1,length(speech)]); %Generate Gaussian noise
nspeech¼speech+noise; % Generate noisy speech

In this project, plot the speech samples and spectra for both noisy speech and the enhanced
speech and use the MATLAB sound() function to evaluate the sound quality. For example, to
hear the noisy speech, use the following:

soundðnspeech=maxðabsðnspeechÞÞ; 8000Þ;
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7.37. Digital crossover system:

Design a two-band digital crossover system with the following specifications:

Sampling rate ¼ 44,100 Hz

Crossover frequency ¼ 1,200 Hz (cutoff frequency)

Transition band ¼ 800e1,600 Hz

Lowpass filter: passband frequency range from 0 to 800 Hz with a ripple of 0.02 dB and
stopband edge at 1,400 Hz with the attenuation of 50 dB

Highpass filter: passband frequency range from 1.6 to 44.1 kHz with a ripple of 0.02 dB and
stopband edge at 1,600 Hz with the attenuation of 50 dB

In this project, plot the magnitude frequency responses for both lowpass and highpass filters.
Use the following MATLAB code to read stereo audio data (“No9seg.wav”):

½x fs Nbits� ¼ wavreadð0No9seg:wav0Þ;

Process the given stereo audio segment. Listen to and describe the sound effects of the processed
audio in the following sequences:

Channel 1: original, lowband, and highband

Channel 2: original, lowband, and highband

Stereo (both channels): original, lowband, and highband
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OBJECTIVES:

This chapter investigates a bilinear transformation method for infinite impulse response (IIR) filter design
and develops a procedure to design digital Butterworth and Chebyshev filters. The chapter also investigates
other IIR filter design methods, such as impulse-invariant design and pole-zero placement design. Finally,
the chapter illustrates how to apply the designed IIR filters to solve real-world problems such as digital audio
equalization, 60-Hz interference cancellation in audio and electrocardiography signals, dual-tone multifre-
quency tone generation, and detection using the Goertzel algorithm.

8.1 INFINITE IMPULSE RESPONSE FILTER FORMAT
In this chapter, we will study several methods for infinite impulse response (IIR) filter design. An IIR
filter is described using the difference equation, as discussed in Chapter 6:

yðnÞ ¼ b0xðnÞ þ b1xðn� 1Þ þ/þ bMxðn�MÞ
� a1yðn� 1Þ �/� aNyðn� NÞ

Chapter 6 also gives the IIR filter transfer function as

HðzÞ ¼ YðzÞ
XðzÞ ¼ b0 þ b1z

�1 þ/þ bMz
�M

1þ a1z�1 þ/þ aNz�N

where bi and ai are the ðM þ 1Þ numerator and N denominator coefficients, respectively. YðzÞ and XðzÞ
are the z-transform functions of the filter input xðnÞ and filter output yðnÞ. To become familiar with the
form of the IIR filter, let us look at the following example.

EXAMPLE 8.1
Given the IIR filter

yðnÞ ¼ 0:2xðnÞ þ 0:4xðn � 1Þ þ 0:5yðn � 1Þ

determine the transfer function, nonzero coefficients, and impulse response.

Solution:
Applying the z-transform and solving for a ratio of the z-transform output over input, we have

HðzÞ ¼ Y ðzÞ
X ðzÞ ¼ 0:2þ 0:4z�1

1� 0:5z�1

We also identify the nonzero numerator coefficients and denominator coefficient as

b0 ¼ 0:2; b1 ¼ 0:4; and a1 ¼ �0:5

To determine the impulse response, we rewrite the transfer function as

HðzÞ ¼ 0:2

1� 0:5z�1
þ 0:4z�1

1� 0:5z�1
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Using the inverse z-transform and shift theorem, we obtain the impulse response as

h
�
n
� ¼ 0:2ð0:5Þnu�n�þ 0:4ð0:5Þn�1u

�
n � 1

�
The obtained impulse response has an infinite number of terms, where the first several terms are calculated as

hð0Þ ¼ 0:2; hð1Þ ¼ 0:7; hð2Þ ¼ 0:25; .:

At this point, we can make following remarks:

1. The IIR filter output yðnÞ depends not only on the current input xðnÞ and past inputs xðn� 1Þ, .,
but also on the past output(s) yðn� 1Þ, ., (recursive terms). Its transfer function is a ratio of the
numerator polynomial over the denominator polynomial, and its impulse response has an infinite
number of terms.

2. Since the transfer function has the denominator polynomial, the pole(s) of a designed IIR filter
must be inside the unit circle on the z-plane to ensure its stability.

3. Compared with the finite impulse response (FIR) filter (see Chapter 7), the IIR filter offers a much
smaller filter size. Hence, the filter operation requires a fewer number of computations, but the
linear phase is not easily obtained. The IIR filter is preferred when a small filter size is called
for but the application does not require a linear phase.

The objective of IIR filter design is to determine the filter numerator and denominator coefficients to
satisfy filter specifications such as passband gain and stopband attenuation, as well as cutoff frequency/
frequencies for the lowpass, highpass, bandpass, and bandstop filters.

We first focus on the bilinear transformation (BLT) design method. Then we introduce other design
methods such as the impulse invariant design and the pole-zero placement design.

8.2 BILINEAR TRANSFORMATION DESIGN METHOD
Figure 8.1 illustrates a flow chart of the BLT design used in this book. The design procedure includes
the following steps: (1) transforming digital filter specifications into analog filter specifications,

Digital filter
specifications

 Analog filter specifications

Analog filter transfer function

Digital filter transfer function
 and frequency response verification

1. Transformation with frequency warping

2. Transformation by lowpass prototype filter

3. Bilinear transformation

FIGURE 8.1

General procedure for IIR filter design using bilinear transformation.
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(2) performing analog filter design, and (3) applying bilinear transformation (which will be introduced
in the next section) and verifying the frequency response.

8.2.1 Analog Filters Using Lowpass Prototype Transformation

Before we begin to develop the BLT design, let us review analog filter design using lowpass prototype
transformation. This method converts an analog lowpass filter with a cutoff frequency of 1 radians per
second, called the lowpass prototype, into practical analog lowpass, highpass, banspass, and bandstop
filters with specified frequencies.

Letting HPðsÞ be a transfer function of the lowpass prototype, the transformation of the lowpass
prototype into a lowpass filter is given in Figure 8.2.

As shown in Figure 8.2, HLPðsÞ designates the analog lowpass filter with a cutoff frequency uc

radians/second. The lowpass prototype to lowpass filter transformation substitutes s in the lowpass
prototype functionHPðsÞwith s=uc, where v is the normalized frequency of the lowpass prototype anduc

is the cutoff frequency of the lowpass filter. Let us consider the following first-order lowpass prototype:

HPðsÞ ¼ 1

sþ 1
(8.1)

Its frequency response is obtained by substituting s ¼ jv into Equation (8.1), that is,

HPðjnÞ ¼ 1

jvþ 1

and the magnitude gain is

jHPðjvÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ v2

p (8.2)

We compute the gains at v ¼ 0, v ¼ 1, v ¼ 100, v ¼ 10; 000 to obtain 1; 1=
ffiffiffi
2

p
, 0:0995, and 0.01,

respectively. The cutoff frequency gain at v ¼ 1 equals 1=
ffiffiffi
2

p
, which is equivalent to �3 dB, and

the direct-current (DC) gain is 1. The gain approaches zero when the frequency goes to v ¼ þN.
This verifies that the lowpass prototype is a normalized lowpass filter with a normalized cutoff
frequency of 1. Applying the prototype transformation s ¼ s=uc in Figure 8.2, we get an analog
lowpass filter with a cutoff frequency of uc:

HðsÞ ¼ 1

s=uc þ 1
¼ uc

sþ uc
(8.3)

1 c
v

H jvP ( ) H jLP ( )

s
s

c

H s H sLP P s s c
( ) ( )

/

00

FIGURE 8.2

Analog lowpass prototype transformation into a lowpass filter.
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We can obtain the analog frequency response by substituting s ¼ ju into Equation (8.3), that is,

HðjuÞ ¼ 1

ju=uc þ 1

The magnitude response is determined by

jHðjuÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
u

uc

�2
s (8.4)

Similarly, we verify the gains at u ¼ 0, u ¼ uc, u ¼ 100uc, u ¼ 10; 000uc to be 1;1=
ffiffiffi
2

p
, 0:0995,

and 0.01, respectively. The filter gain at the cutoff frequencyuc equals 1=
ffiffiffi
2

p
, and the DC gain is 1. The

gain approaches zero when u ¼ þN. We notice that filter gains do not change but that the filter
frequency is scaled up by a factor of uc. This verifies that the prototype transformation converts the
lowpass prototype to the analog lowpass filter with the specified cut-off frequency of uc without an
effect on the filter gain.

This first-order prototype function is used here for illustrative purposes. We will obtain general
functions for Butterworth and Chebyshev lowpass prototypes in Section 8.3.

The highpass, bandpass, and bandstop filters using the specified lowpass prototype transformation
can be easily verified. We review them in Figures 8.3, 8.4 and 8.5, respectively.

The transformation from the lowpass prototype to the highpass filter HHPðsÞ with a cutoff
frequency uc radians/second is given in Figure 8.3, where s ¼ uc=s in the lowpass prototype
transformation.

The transformation of the lowpass prototype function to a bandpass filter with a center frequency
u0, a lower cutoff frequency ul, and an upper cutoff frequency uh in the passband is depicted in
Figure 8.4, where s ¼ ðs2 þ u2

0Þ=ðsWÞ is substituted into the lowpass prototype.
As shown in Figure 8.4, u0 is the geometric center frequency, which is defined as u0 ¼ ffiffiffiffiffiffiffiffiffiffi

uluh
p

while the passband bandwidth is given by W ¼ uh � ul. Similarly, the transformation from the
lowpass prototype to a bandstop (band reject) filter is illustrated in Figure 8.5 with s ¼ sW=ðs2 þ u2

0Þ
substituted into the lowpass prototype.

Finally, the lowpass prototype transformations are summarized in Table 8.1.

1 cv

H jvP ( ) H jHP ( )

s
s

c

H s H sHP P s sc
( ) ( )

/

00

FIGURE 8.3

Analog lowpass prototype transformation to the highpass filter.
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1 v

H jvP ( ) H jBP ( )

s
s

sW

2
0
2

H s H sBP P
s

s

sW

( ) ( ) 2
0
2

00 l h0

W

0 l h

W h l

FIGURE 8.4

Analog lowpass prototype transformation to the bandpass filter.

1 v

H jvP ( ) H jBS ( )

s
sW

s2
0
2

H s H sBS P s sW

s

( ) ( )
2

0
2

00 l h0

W

0 l h

W h l

FIGURE 8.5

Analog lowpass prototype transformation to a bandstop filter.

Table 8.1 Analog Lowpass Prototype Transformations

Filter Type Prototype Transformation

Lowpass
s

uc
, uc is the cutoff frequency

Highpass
uc

s
, uc is the cutoff frequency

Bandpass
s2 þ u2

0

sW
, u0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

uluh
p

, W ¼ uh � ul

Bandstop
sW

s2 þ u2
0

, u0 ¼ ffiffiffiffiffiffiffiffiffiffiffi
uluh

p
, W ¼ uh � ul
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The MATLAB function freqs() can be used to plot analog filter frequency responses for verifi-
cation with the following syntax:

H[ freqs(B, A, W)
B ¼ the vector containing the numerator coefficients
A ¼ the vector containing the denominator coefficients
W¼ the vector containing the specified analog frequency points (radians per second)
H ¼ the vector containing the frequency response

The following example verifies the lowpass prototype transformation.

EXAMPLE 8.2
Given a lowpass prototype

HP ðsÞ ¼ 1

s þ 1

determine each of the following analog filters and plot their magnitude responses from 0 to 200 radians per
second.

a. A highpass filter with a cutoff frequency of 40 radians per second.
b. A bandpass filter with a center frequency of 100 radians per second and bandwidth of 20 radians per second.

Solution:

a. Applying the lowpass prototype transformation by substituting s ¼ 40/s into the lowpass prototype, we obtain
an analog highpass filter:

HHP ðsÞ ¼ 1

40

s
þ 1

¼ s

s þ 40

b. Similarly, substituting the lowpass-to-bandpass transformation s ¼ ðs2 þ 100Þ=ð20sÞ into the lowpass
prototype leads to

HBP ðsÞ ¼ 1

s2 þ 100

20s
þ 1

¼ 20s

s2 þ 20s þ 100

The program for plotting the magnitude responses for the highpass filter and bandpass filter is shown in
Program 8.1, and Figure 8.6 displays the magnitude responses for the highpass filter and bandpass filter,
respectively.
Program 8.1 MATLAB program in Example 8.2.

W¼0:1:200; % Analog frequency points for computing the
%filter gains

Ha¼freqs([1 0],[1 40],W); % Frequency response for the highpass filter
Hb¼freqs([20 0],[1 20 100],W); %Frequency response for the bandpass filter
subplot(2,1,1);plot(W, abs(Ha),’k’); grid % The filter gain plot for highpass filter
xlabel(’(a) Frequency (radians per second)’)
ylabel(’Absolute filter gain’);
subplot(2,1,2);plot(W,abs(Hb),’k’);grid % The filter gain plot for bandpass filter
xlabel(’(b) Frequency (radians per second)’)
ylabel(’Absolute filter gain’);
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Figure 8.6 confirms the transformation of the lowpass prototype into a highpass filter and a bandpass
filter, respectively. To obtain the transfer function of an analog filter, we always begin with the lowpass
prototype and apply the corresponding lowpass prototype transformation. To transfer from a lowpass prototype
to a bandpass or bandstop filter, the resultant order of the analog filter is twice that of the lowpass prototype
order.

8.2.2 Bilinear Transformation and Frequency Warping

In this subsection, we develop the BLT, which converts an analog filter to a digital filter. We begin by
finding the area under a curve using the integration of calculus and the numerical recursive method.
The area under the curve is a common problem in early calculus courses. As shown in Figure 8.7, the
area under the curve can be determined using the following integration:

yðtÞ ¼
Z t
0

xðtÞdt (8.5)

where yðtÞ (area under the curve) and xðtÞ (curve function) are the output and input of the analog
integrator, respectively, and t is the upper limit of the integration.
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FIGURE 8.6

Magnitude responses for the analog highpass filter and bandpass filter in Example 8.2.
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Applying the Laplace transform on Equation (8.5), we have

YðsÞ ¼ XðsÞ
s

(8.6)

and find that the Laplace transfer function is

GðsÞ ¼ YðsÞ
XðsÞ ¼ 1

s
(8.7)

Now we examine the numerical integration method shown in Figure 8.7 to approximate the integration
of Equation (8.5) using the following difference equation:

yðnÞ ¼ yðn� 1Þ þ xðnÞ þ xðn� 1Þ
2

T (8.8)

where T denotes the sampling period. yðnÞ ¼ yðnTÞ is the output sample that represents the whole area
under the curve,while yðn� 1Þ ¼ yðnT � TÞ is the previous output sample from the integrator indicating
the previously computed area under the curve (the shaded area in Figure 8.7). Notice that xðnÞ ¼ xðnTÞ
and xðn� 1Þ ¼ xðnT � TÞ, sample amplitudes from the curve, are the current input sample and the
previous input sample in Equation (8.8). Applying the z-transform on both sides of Equation (8.8) leads to

Y
�
z
� ¼ z�1Y

�
z
�þ T

2

�
X
�
z
�þ z�1X

�
z
��

Solving for the ratio of YðzÞ=XðzÞ, we obtain the z-transfer function as

HðzÞ ¼ YðzÞ
XðzÞ ¼ T

2

1þ z�1

1� z�1
(8.9)

Next, comparing Equation (8.9) with Equation (8.7), it follows that

1

s
¼ T

2

1þ z�1

1� z�1
¼ T

2

zþ 1

z� 1
(8.10)

Solving for s in Equation (8.10) gives the bilinear transformation

s ¼ 2

T

z� 1

zþ 1
(8.11)

t

x n( )1
x n( )

nT( )n T1

T

0

x t( )

y n( )

y n( )1

FIGURE 8.7

Digital integration method to calculate the area under the curve.
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The BLT method is a mapping or transformation of points on the s-plane to the z-plane. Equation
(8.11) can be alternatively written as

z ¼ 1þ sT=2

1� sT=2
(8.12)

The general mapping properties are summarized as following:

1. The left-half s-plane is mapped onto the inside of the unit circle of the z-plane.
2. The right-half s-plane is mapped into the outside of the unit circle of the z-plane.
3. The positive ju axis portion in the s-plane is mapped onto the positive half circle (the dashed line

arrow in Figure 8.8) on the unit circle, while the negative ju axis is mapped onto the negative half
circle (the dotted line arrow in Figure 8.8) on the unit circle.

To verify these features, let us look at the following illustrative example.

EXAMPLE 8.3
Assume that T ¼ 2 seconds in Equation (8.12), and that the following points are given:

1. s ¼ �1þ j, on the left half of the s-plane
2. s ¼ 1� j, on the right half of the s-plane
3. s ¼ j, on the positive ju on the s-plane
4. s ¼ �j, on the negative ju on the s-plane

Convert each of the points in the s-plane to the z-plane, and verify mapping properties (1) to (3).

Solution:
Substituting T ¼ 2 into Equation (8.12) leads to

z ¼ 1þ s

1� s

We can carry out mapping for each point as follows:

1. z ¼ 1þ ð�1þ jÞ
1� ð�1þ jÞ ¼ j

2� j
¼ 1:90

�ffiffiffi
5

p
:� 26:57� ¼ 0:4472:116:57

�
,

j

Re( )z

Im( )z

Stable Region

Stable Region

10 0

FIGURE 8.8

Mapping between the s-plane and the z-plane by the bilinear transformation.

310 CHAPTER 8 Infinite Impulse Response Filter Design



since jzj ¼ 0:4472 < 1, which is inside the unit circle on the z-plane.

2. z ¼ 1þ ð1� jÞ
1� ð1� jÞ ¼ 2� j

j
¼

ffiffiffi
5

p
:� 26:57�

1:90� ¼ 2:2361:� 116:57�,

since jzj ¼ 2:2361 > 1, which is outside the unit circle on the z-plane.

3. z ¼ 1þ j

1� j
¼

ffiffiffi
2

p
:45�ffiffiffi

2
p

:� 45� ¼ 1:90�,

since jzj ¼ 1 and q ¼ 90�, which is on the positive half circle on the unit circle on the z-plane.

4. z ¼ 1� j

1� ð�jÞ ¼ 1� j

1þ j
¼

ffiffiffi
2

p
:� 45�ffiffiffi
2

p
:45� ¼ 1:� 90�,

since jzj ¼ 1 and q ¼ �90
�
, which is on the negative half circle on the unit circle on the z-plane.

As shown in Example (8.3), the BLT offers convertion of an analog transfer function to a digital
transfer function. Example (8.4) shows how to perform the BLT.

EXAMPLE 8.4
Given an analog filter whose transfer function is

HðsÞ ¼ 10

s þ 10

convert it to the digital filter transfer function and difference equation, respectively, when the sampling period is
given as T ¼ 0:01 second.

Solution:
Applying the BLT, we have

HðzÞ ¼ HðsÞjs¼ 2
T

z�1
zþ1

¼ 10

s þ 10

����
s¼ 2

T
z�1
zþ1

Substituting T ¼ 0:01, it follows that

HðzÞ ¼ 10

200ðz � 1Þ
z þ 1

þ 10

¼ 0:05

z � 1

z þ 1
þ 0:05

¼ 0:05ðz þ 1Þ
z � 1þ 0:05ðz þ 1Þ ¼ 0:05z þ 0:05

1:05z � 0:95
:

Finally, we get

HðzÞ ¼ ð0:05z þ 0:05Þ=ð1:05zÞ
ð1:05z � 0:95Þ=ð1:05zÞ ¼ 0:0476þ 0:0476z�1

1� 0:9048z�1
:

Applying the technique from Chapter 6, we obtain the difference equation as

yðnÞ ¼ 0:0476xðnÞ þ 0:0476xðn � 1Þ þ 0:9048yðn � 1Þ :
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Next, we examine frequency mapping between the s-plane and the z-plane. As illustrated in
Figure 8.9, the analog frequency ua is marked on the ju -axis on the s-plane, whereas ud is the digital
frequency labeled on the unit circle in the z-plane.

We substitute s ¼ jwa and z ¼ ejuT into the bilinear transformation in Equation (8.11) to get

jua ¼ 2

T

ejudT � 1

ejudT þ 1
(8.13)

Simplifying Equation (8.13) leads to

ua ¼ 2

T
tan

�
udT

2

�
(8.14)

Equation (8.14) explores the relation between the analog frequency on the ju axis and the corre-
sponding digital frequency ud on the unit circle. We can also write its inverse as

ud ¼ 2

T
tan�1

�
uaT

2

�
(8.15)

The range of the digital frequency ud is from 0 radians per second to the folding frequency us=2
radians per second, where us is the sampling frequency in terms of radians per second. We present
a plot of Equation (8.14) in Figure 8.10.

From Figure 8.10, when the digital frequency range 0 � ud � 0:25us is mapped to the analog
frequency range 0 � ua � 0:32us, the transformation appears to be linear; however, when the
digital frequency range 0:25us � ud � 0:5us is mapped to the analog frequency range for
ua > 0:32us, the transformation is nonlinear. The analog frequency range for ua > 0:32us is
compressed into the digital frequency range 0:25us � ud � 0:5us. This nonlinear frequency
mapping effect is called frequency warping. We must incorporate frequency warping into IIR filter
design.

The following example will illustrate the frequency warping effect in the BLT.

j

Re( )z

Im( )z

10

a
dT

1z

0

FIGURE 8.9

Frequency mapping from the analog domain to the digital domain.
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EXAMPLE 8.5
Assume the following analog frequencies:

ua ¼ 10 radians per second
ua ¼ us=4 ¼ 50p ¼ 157 radians per second
ua ¼ us=2 ¼ 100p ¼ 314 radians per second.

Find their digital frequencies using the BLT with a sampling period of 0.01 second, given the analog filter in
Example 8.4 and the developed digital filter.

Solution:
From Equation (8.15), we can calculate digital frequency ud as follows:

When ua ¼ 10 radians per second and T ¼ 0:01 second

ud ¼ 2

T
tan�1

�
uaT

2

�
¼ 2

0:01
tan�1

�
10� 0:01

2

�
¼ 9:99 rad=sec

which is close to the analog frequency of 10 radians per second. When ua ¼ 157 rad/sec and T ¼ 0:01 second

ud ¼ 2

0:01
tan�1

�
157� 0:01

2

�
¼ 133:11 rad=sec

which is somewhat off as compared with the desired value 157. When ua ¼ 314 rad/sec and T ¼ 0:01 second,

ud ¼ 2

0:01
tan�1

�
314� 0:01

2

�
¼ 252:5 rad=sec

which is significantly different than the digital folding frequency of 314 radians per second.

Figure 8.11 shows how to correct the frequency warping error. First, given the digital frequency
specification, we prewarp the digital frequency specification to the analog frequency specification by
Equation (8.14).

Second, we obtain the analog lowpass filter HðsÞ using the prewarped analog frequency ua and the
lowpass prototype. For the lowpass analog filter, we have

0
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d

0 25. s

0 32. s

0 4. s

s

05. s

( / )r s

( / )r s

FIGURE 8.10

Frequency warping from bilinear transformation.
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HðsÞ ¼ HPðsÞjs¼ s
ua

¼ HP

�
s

ua

�
(8.16)

Finally, substituting the BLT Equation (8.11) into Equation (8.16) yields the digital filter:

H
�
z
� ¼ HðsÞjs¼ 2

T
z�1
zþ1

(8.17)

This approach can be similarly extended to other types of filter design.

8.2.3 Bilinear Transformation Design Procedure

Now we can summarize the BLT design procedure.

1. Given the digital filter frequency specifications, prewarp the digital frequency specifications to the
analog frequency specifications.
For the lowpass filter and highpass filter:

ua ¼ 2

T
tan

�
udT

2

�
(8.18)
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Bilinear transformation

FIGURE 8.11

Graphical representation of IIR filter design using the bilinear transformation.
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For the bandpass filter and bandstop filter :

ual ¼ 2

T
tan

�
ulT

2

�
; uah ¼ 2

T
tan

�
uhT

2

�
(8.19)

and u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ualuah

p
, W ¼ uah � ual

2. Perform the prototype transformation using the lowpass prototype HPðsÞ.

From lowpass to lowpass : HðsÞ ¼ HPðsÞjs¼ s
ua

(8.20)

From lowpass to highpass : HðsÞ ¼ HPðsÞjs¼ ua

s
(8.21)

From lowpass to bandpass : HðsÞ ¼ HPðsÞj
s¼

s2þu2
0

sW

(8.22)

From lowpass to bandstop : HðsÞ ¼ HPðsÞj
s¼

sW

s2þu2
0

(8.23)

3. Substitute the BLT to obtain the digital filter

HðzÞ ¼ HðsÞjs¼ 2
T
z�1
zþ1

(8.24)

Table 8.2 lists MATLAB functions for the BLT design.
We illustrate the lowpass filter design procedure in Example (8.6). Other types of filters, such as

highpass, bandpass, and bandstop, will be illustrated in the next section.

EXAMPLE 8.6
The normalized lowpass filter with a cutoff frequency of 1 rad/sec is given as

HP ðsÞ ¼ 1

s þ 1

a. Use the given HP ðsÞ and the BLT to design a corresponding digital IIR lowpass filter with a cutoff frequency of
15 Hz and a sampling rate of 90 Hz.

b. Use MATLAB to plot the magnitude response and phase response of HðzÞ.
Solution:

a. First, we obtain the digital frequency as

ud ¼ 2pf ¼ 2pð15Þ ¼ 30p radians=second; and T ¼ 1=fs ¼ 1=90 sec

We then follow the design procedure:

1. First calculate the prewarped analog frequency as
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ua ¼ 2

T
tan

�
udT

2

�
¼ 2

1=90
tan

�
30p=90

2

�

that is, ua ¼ 180� tanðp=6Þ ¼ 180� tanð30�Þ ¼ 103:92 rad/sec.
2. Then perform the prototype transformation (lowpass to lowpass) as follows:

HðsÞ ¼ HP ðsÞjs¼ s
ua

¼ 1
s

ua
þ 1

¼ ua

s þ ua

This yields an analog filter:

HðsÞ ¼ 103:92

s þ 103:92

3. Apply the BLT, which yields

HðzÞ ¼ 103:92

s þ 103:92

����
s¼ 2

T
z�1
zþ1

Table 8.2 MATLAB Functions for Bilinear Transformation Design

Lowpass to lowpass: HðsÞ ¼ HP ðsÞj
s¼

s

ua>>[B, A][lp2lp(Bp, Ap, wa)

Lowpass to highpass: HðsÞ ¼ HP ðsÞj
s¼

ua

s
>>[B, A][lp2hp(Bp, Ap, wa)

Lowpass to bandpass: HðsÞ ¼ HP ðsÞj
s¼

s2þu2
0

sW>>[B, A][lp2bp(Bp, Ap, w0, W)

Lowpass to bandstop: HðsÞ ¼ HP ðsÞj
s¼

sW

s2þu2
0>>[B, A][lp2bs(Bp, Ap, w0, W)

Bilinear transformation to achieve the digital filter:

>>[b, a][bilinear(B, A, fs)

Plot of the magnitude and phase frequency responses of the digital filter:

>>freqz(b, a, 512, fs)
Definitions of design parameters:

Bp ¼ vector containing the numerator coefficients of the lowpass prototype

Ap ¼ vector containing the denominator coefficients of the lowpass prototype

wa ¼ cutoff frequency for the lowpass or highpass analog filter (rad/sec)

w0 ¼ center frequency for the bandpass or bandstop analog filter (rad/sec)

W ¼ bandwidth for the bandpass or bandstop analog filter (rad/sec)

B ¼ vector containing the numerator coefficients of the analog filter

A ¼ vector containing the denominator coefficients of the analog filter

b ¼ vector containing the numerator coefficients of the digital filter

a ¼ vector containing the denominator coefficients of the digital filter

fs ¼ sampling rate (samples/sec)
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We simplify the algebra by dividing both the numerator and the denominator by 180:

HðzÞ ¼ 103:92

180� z � 1

z þ 1
þ 103:92

¼ 103:92=180

z � 1

z þ 1
þ 103:92=180

¼ 0:5773

z � 1

z þ 1
þ 0:5773

Then we multiply both numerator and denominator by ðz þ 1Þ to obtain

HðzÞ ¼ 0:5773ðz þ 1Þ�
z � 1

z þ 1
þ 0:5773

��
z þ 1

� ¼ 0:5773z þ 0:5773

ðz � 1Þ þ 0:5773ðz þ 1Þ ¼ 0:5773z þ 0:5773

1:5773z � 0:4227

Finally, we divide both numerator and denominator by 1:5773z to get the transfer function in the standard
format:

HðzÞ ¼ ð0:5773z þ 0:5773Þ=ð1:5773zÞ
ð1:5773z � 0:4227Þ=ð1:5773zÞ ¼ 0:3660þ 0:3660z�1

1� 0:2679z�1

b. The corresponding MATLAB design is listed in Program 8.2. Figure 8.12 shows the magnitude and phase
frequency responses.

Program 8.2. MATLAB program for Example 8.6.

%Example 8.6
% Plot the magnitude and phase responses
fs¼90; % Sampling rate (Hz)
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FIGURE 8.12

Frequency responses of the designed digital filter for Example 8.6.
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[B, A][lp2lp([1],[1 1],103.92);
[b,a][bilinear(B,A,fs)
% b ¼ [0.3660 0.3660] numerator coefficients of the digital filter from MATLAB
% a ¼ [1 -0.2679] denominator coefficients of the digital filter from MATLAB
[hz, f]¼freqz([0.3660 0.3660],[1 -0.2679],512,fs); % Frequency response
phi ¼ 180*unwrap(angle(hz))/pi;
subplot(2,1,1), plot(f, abs(hz)),grid;
axis([0 fs/2 0 1]);
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Response’)
subplot(2,1,2), plot(f, phi); grid;
axis([0 fs/2 -100 0]);
xlabel(’Frequency (Hz)’); ylabel(’Phase (degrees)’)

8.3 DIGITAL BUTTERWORTH AND CHEBYSHEV FILTER DESIGNS
In this section, we design various types of digital Butterworth and Chebyshev filters using the BLT
design method developed in the previous section.

8.3.1 Lowpass Prototype Function and Its Order

As described in Section 8.2, BLT design requires obtaining the analog filter with prewarped frequency
specifications. These analog filter design requirements include the ripple specification at the passband
frequency edge, the attenuation specification at the stopband frequency edge, and the type of lowpass
prototype (which we shall discuss) and its order.

Table 8.3 lists the Butterworth prototype functions with 3 dB passband ripple specification. Tables
8.4 and 8.5 contain the Chebyshev prototype functions (type I) with 1 dB and 0.5 dB passband ripple
specifications, respectively. Other lowpass prototypes with different ripple specifications and orders
can be computed using the methods described in Appendix C.

In this section, we will focus on the Chebyshev type I filter. The Chebyshev type II filter design can
be found in Proakis and Manolakis (1996) and Porat (1997).

The magnitude response function of the Butterworth lowpass prototype with order n is
shown in Figure 8.13, where the magnitude response jHPðvÞj versus the normalized frequency v is
given by

jHPðvÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2v2n
p (8.25)

With the given passband ripple AP dB at the normalized passband frequency edge vp ¼ 1, and the
stopband attenuation As dB at the normalized stopband frequency edge vs, the following two equations
must be satisfied to determine the prototype filter order:

AP dB ¼ �20$log10

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε
2

p
�

(8.26)
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As dB ¼ �20$log10

 
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε
2v2ns

p
!

(8.27)

Solving Equations (8.26) and (8.27), we determine the lowpass prototype order as

ε
2 ¼ 100:1Ap � 1 (8.28)

Table 8.4 Chebyshev Lowpass Prototype Transfer Functions with 0.5 dB Ripple ( ε ¼ 0:3493)

n HPðsÞ
1 2:8628

sþ 2:8628

2 1:4314

s2 þ 1:4256sþ 1:5162

3 0:7157

s3 þ 1:2529s2 þ 1:5349sþ 0:7157

4 0:3579

s4 þ 1:1974s3 þ 1:7169s2 þ 1:0255sþ 0:3791

5 0:1789

s5 þ 1:1725s4 þ 1:9374s3 þ 1:3096s2 þ 0:7525sþ 0:1789

6 0:0895

s6 þ 1:1592s5 þ 2:1718s4 þ 1:5898s3 þ 1:1719s2 þ 0:4324sþ 0:0948

Table 8.3 3-dB Butterworth Lowpass Prototype Transfer Functions ( ε ¼ 1)

n HPðsÞ
1 1

sþ 1

2 1

s2 þ 1:4142sþ 1

3 1

s3 þ 2s2 þ 2sþ 1

4 1

s4 þ 2:6131s3 þ 3:4142s2 þ 2:6131sþ 1

5 1

s5 þ 3:2361s4 þ 5:2361s3 þ 5:2361s2 þ 3:2361sþ 1

6 1

s6 þ 3:8637s5 þ 7:4641s4 þ 9:1416s3 þ 7:4641s2 þ 3:8637sþ 1
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n �
log10

�
100:1As � 1

ε
2

�
½2$log10ðvsÞ�

(8.29)

where ε is the absolute ripple specification.
The magnitude response function of a Chebyshev lowpass prototype with order n is shown in

Figure 8.14, where the magnitude response jHPðvÞj versus the normalized frequency v is given by

jHPðvÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2C2
n

�
v
�q (8.30)

where

Cn

�
vs
� ¼ cosh

�
ncosh�1

�
vs
�	

(8.31)

Table 8.5 Chebyshev Lowpass Prototype Transfer Functions with 1 dB Ripple ( ε ¼ 0:5088Þ
n HPðsÞ
1 1:9652

sþ 1:9652

2 0:9826

s2 þ 1:0977sþ 1:1025

3 0:4913

s3 þ 0:9883s2 þ 1:2384sþ 0:4913

4 0:2456

s4 þ 0:9528s3 þ 1:4539s2 þ 0:7426sþ 0:2756

5 0:1228

s5 þ 0:9368s4 þ 1:6888s3 þ 0:9744s2 þ 0:5805sþ 0:1228

6 0:0614

s6 þ 0:9283s5 þ 1:9308s4 þ 1:20121s3 þ 0:9393s2 þ 0:3071sþ 0:0689

v

H vP ( )

vp 1

1

n 1
n 2n 3
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P n
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FIGURE 8.13

Normalized Butterworth magnitude response function.
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cosh�1
�
vs
� ¼ ln

�
vs þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2s � 1

q �
(8.32)

As shown in Figure 8.14, the magnitude response for the Chebyshev lowpass prototype with an odd-
numbered order begins with a filter DC gain of 1. In the case of a Chebyshev lowpass prototype with an
even-numbered order, the magnitude starts at a filter DC gain of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2
p

. For both cases, the filter
gain at the normalized cutoff frequency vp ¼ 1 is 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2
p

.
Similarly, Equations (8.33) and (8.34) must be satisfied:

AP dB ¼ �20$log10

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε
2

p
�

(8.33)

As dB ¼ �20$log10

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε
2C2

n

�
vs
�q
1
CA (8.34)

The lowpass prototype order can be solved in Equation (8.35):

ε
2 ¼ 100:1Ap � 1 (8.35a)

n �
cosh�1


�
100:1As � 1

ε
2

�0:5�
cosh�1ðvsÞ

(8.35b)

where cosh�1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ, ε is the absolute ripple parameter.

The normalized stopband frequency vs can be determined from the frequency specifications of
the analog filter in Table 8.6. Then the order of the lowpass prototype can be determined by
Equation (8.29) for the Butterworth function and Equation (8.35b) for the Chebyshev function.
Figure 8.15 gives frequency edge notations for analog lowpass and bandpass filters. The notations for
analog highpass and bandstop filters can be defined correspondingly.
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FIGURE 8.14

Normalized Chebyshev magnitude response function.
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8.3.2 Lowpass and Highpass Filter Design Examples

The following examples illustrate various designs for the Butterworth and Chebyshev lowpass and
highpass filters.

EXAMPLE 8.7
a. Design a digital lowpasss Butterworth filter with the following specifications:

1. 3-dB attenuation at the passband frequency of 1.5 kHz
2. 10-dB stopband attenuation at the frequency of 3 kHz
3. Sampling frequency at 8,000 Hz

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. First, we obtain the digital frequencies in radians per second:
udp ¼ 2pf ¼ 2pð1500Þ ¼ 3;000p rad/sec

Table 8.6 Conversion from Analog Filter Specifications to Lowpass Prototype Specifications

Analog Filter Specifications Lowpass Prototype Specifications

Lowpass: uap , uas vp ¼ 1, vs ¼ uas=uap

Highpass: uap , uas vp ¼ 1, vs ¼ uap=uas

Bandpass: uapl , uaph, uasl , uash, u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uapluaph

p
,

u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uasluash

p vp ¼ 1, vs ¼ uash � uasl

uaph � uapl

Bandstop: uapl , uaph, uasl , uash, u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uapluaph

p
,

u0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uasluash

p vp ¼ 1, vs ¼ uaph � uapl

uash � uasl

uap , passband frequency edge; uas , stopband frequency edge;
uapl , lower cutoff frequency in passband; uaph, upper cutoff frequency in passband;
uasl , lower cutoff frequency in stopband; uash, upper cutoff frequency in stopband;
u0, geometric center frequency.
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FIGURE 8.15

Specifications for analog lowpass and bandpass filters.
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uds ¼ 2pf ¼ 2pð3;000Þ ¼ 6;000p rad/sec
T ¼ 1=fs ¼ 1=8;000 sec

We then follow the design procedure steps

1. We apply the warping equation as follows:

uap ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
3;000p=8;000

2

�
¼ 1:0691� 104 rad=sec:

uas ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
6;000p=8;000

2

�
¼ 3:8627� 104 rad=sec:

We then find the lowpass prototype specifications using Table 8.6 as follows:

vs ¼ uas=uap ¼ 3:8627� 104=
�
1:0691� 104



¼ 3:6130 rad=s and As ¼ 10 dB

The filter order is computed as

ε
2 ¼ 100:1�3 � 1 ¼ 1

n ¼ log10
�
100:1�10 � 1

�
2$log10ð3:6130Þ

¼ 0:8553

2. Rounding n up, we choose n ¼ 1 for the lowpass prototype. From Table 8.3, we have

HP

�
s
� ¼ 1

s þ 1

Applying the prototype transformation (lowpass to lowpass) yields the analog filter

HðsÞ ¼ HP ðsÞ
��
s

uap

¼ 1
s

uap
þ 1

¼ uap

s þ uap
¼ 1:0691� 104

s þ 1:0691� 104

3. Finally, using the BLT, we have

HðzÞ ¼ 1:0691� 104

s þ 1:0691� 104

����
s¼16;000ðz�1Þ=ðzþ1Þ

Substituting the BLT leads to

HðzÞ ¼ 1:0691� 104�
16;000

z � 1

z þ 1

�
þ 1:0691� 104

To simply the algebra, we both numerator and denominator by 16,000 to get

HðzÞ ¼ 0:6682�
z � 1

z þ 1

�
þ 0:6682

8.3 Digital Butterworth and Chebyshev Filter Designs 323



Then multiplying ðz þ 1Þ on both numerator and denominator leads to

HðzÞ ¼ 0:6682ðz þ 1Þ
ðz � 1Þ þ 0:6682ðz þ 1Þ ¼ 0:6682z þ 0:6682

1:6682z � 0:3318

Dividing both numerator and denominator by ð1:6682$zÞ leads to

HðzÞ ¼ 0:4006þ 0:4006z�1

1� 0:1989z�1

b. Steps 2 and 3 can be carried out using MATLAB Program 8.3, as shown in the first three lines of the MATLAB
code. Figure 8.16 describes the filter frequency responses.

Program 8.3. MATLAB program for Example 8.7.

% Example 8.7
% Design of the digital lowpass Butterworth filter
format long
fs¼8000; % Sampling rate
[B A]¼lp2lp([1],[1 1], 1.0691*10^4) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.4005 0.4005]; numerator coefficients from MATLAB
% a¼[1 -0.1989]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -20 1])
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FIGURE 8.16

Frequency responses of the designed digital filter for Example 8.7.
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EXAMPLE 8.8

a. Design a first-order highpass digital Chebyshev filter with a cutoff frequency of 3 kHz and 1 dB ripple on the
passband using a sampling frequency of 8,000 Hz.

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. First, we obtain the digital frequency in radians per second:

ud ¼ 2pf ¼ 2pð3;000Þ ¼ 6;000p rad=sec; and T ¼ 1=fs ¼ 1=8;000 sec

Following the steps of the design procedure, we have

1.

ua ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
6;000p=8;000

2

�
¼ 3:8627� 104 rad=sec

2. Since the filter order is given as 1, we select the first-order lowpass prototype from Table 8.5:

HP ðsÞ ¼ 1:9625

s þ 1:9625

Applying the prototype transformation (lowpass to highpass), we obtain

HðsÞ ¼ HP ðsÞjua

s
¼ 1:9625

ua

s
þ 1:9625

¼ 1:9625s

1:9625s þ 3:8627� 104

Dividing both numerator and denominator by 1.9625 gives

HðsÞ ¼ s

s þ 1:9683� 104

3. Using the BLT, we have

HðzÞ ¼ s

s þ 1:9683� 104

���
s¼16;000ðz�1Þ=ðzþ1Þ

The algebra work proceeds as follows:

HðzÞ ¼
16;000

z � 1

z þ 1

16;000
z � 1

z þ 1
þ 1:9683� 104

Simplifying the transfer function yields

HðzÞ ¼ 0:4484� 0:4484z�1

1þ 0:1032z�1

b. Steps 2 and 3 and frequency response plots shown in Figure 8.17 can be carried out usingMATLAB Program8.4.

Program 8.4. MATLAB program for Example 8.8.

% Example 8.8
% Design of the digital highpass Butterworth filter

8.3 Digital Butterworth and Chebyshev Filter Designs 325



format long
fs¼8000; % Sampling rate
[B A]¼lp2hp([1.9625],[1 1.9625], 3.8627*10^4) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.4484 -0.4484 ]; numerator coefficients from MATLAB
% a¼[1 0.1032]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -40 2])

EXAMPLE 8.9

a. Design a second-order lowpass digital Butterworth filter with a cutoff frequency of 3.4 kHz at a sampling
frequency of 8,000 Hz.

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. First, we obtain the digital frequency in radians per second:

ud ¼ 2pf ¼ 2pð3;400Þ ¼ 6;800p rad=sec; and T ¼ 1=fs ¼ 1=8;000 sec
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FIGURE 8.17

Frequency responses of the designed digital filter for Example 8.8.
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Following the steps of the design procedure, we compute the prewarped analog frequencies as

1.

ua ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
6;800p=8;000

2

�
¼ 6:6645� 104 rad=sec

2. Since the order of 2 is given in the specification, we directly pick the second-order lowpass prototype from
Table 8.3:

HP ðsÞ ¼ 1

s2 þ 1:4142s þ 1

After applying the prototype transformation (lowpass to lowpass), we have

HðsÞ ¼ HP ðsÞj s
ua

¼ 4:4416� 109

s2 þ 9:4249� 104s þ 4:4416� 109

3. Carrying out the BLT yields

HðzÞ ¼ 4:4416� 109

s2 þ 9:4249� 104s þ 4:4416� 109

����
s¼16;000ðz�1Þ=ðzþ1Þ

Algebra work yields the following:

HðzÞ ¼ 4:4416� 109�
16;000

z � 1

z þ 1

�2

þ9:4249� 104

�
16;000

z � 1

z þ 1

�
þ 4:4416� 109

To simplify, we divide both numerator and denominator by ð16;000Þ2 to get

HðzÞ ¼ 17:35�
z � 1

z þ 1

�2

þ5:8906

�
z � 1

z þ 1

�
þ 17:35

Then multiplying both numerator and denominator by ðz þ 1Þ2 leads to

HðzÞ ¼ 17:35ðz þ 1Þ2
ðz � 1Þ2þ5:8906ðz � 1Þðz þ 1Þ þ 17:35ðz þ 1Þ2

Using identities, we have

HðzÞ ¼ 17:35
�
z2 þ 2z þ 1

��
z2 � 2z þ 1

�þ 5:8906
�
z2 � 1

�þ 17:35
�
z2 þ 2z þ 1

� ¼ 17:35z2 þ 34:7z þ 17:35

24:2406z2 þ 32:7z þ 12:4594

Dividing both numerator and denominator by ð24:2406z2Þ leads to

HðzÞ ¼ 0:7157þ 1:4314z�1 þ 0:7151z�2

1þ 1:3490z�1 þ 0:5140z�2

b. Steps 2 and 3 require a certain amount of algebra work and can be verified using MATLAB Program 8.5, as
shown in the first three lines of the code. Figure 8.18 plots the filter magnitude and phase frequency
responses.
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Program 8.5. MATLAB program for Example 8.9.
% Example 8.9
% Design of the digital lowpass Butterworth filter
format long
fs¼8000; % Sampling rate
[B A]¼lp2lp([1],[1 1.4142 1], 6.6645*10^4) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.7157 1.4315 0.7157]; numerator coefficients from MATLAB
%a¼[1 1.3490 0.5140]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -40 10])

EXAMPLE 8.10

a. Design a highpass digital Chebyshev filter with the following specifications:
1. 0.5 dB ripple on the passband at a frequency of 3,000 Hz
2. 25 dB attenuation at a frequency of 1,000 Hz
3. Sampling frequency at 8,000 Hz.

b. Use MATLAB to plot the magnitude and phase responses.
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FIGURE 8.18

Frequency responses of the designed digital filter for Example 8.9.
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Solution:

a. From the specifications, the digital frequencies are
udp ¼ 2pf ¼ 2pð3;000Þ ¼ 6;000p rad/sec
uds ¼ 2pf ¼ 2pð1;000Þ ¼ 2;000p rad/sec
and T ¼ 1=fs ¼ 1=8;000 sec

Using the design procedure, it follows that

uap ¼ 2

T
tan

�
udpT

2

�
¼ 16;000� tan

�
6;000p=8;000

2

�
¼ 3:8627� 104 rad=sec

uas ¼ 16;000� tan

�
udsT

2

�
¼ 16;000� tan

�
2;000p=8;000

2

�
¼ 6:6274� 103 rad=sec

We find the lowpass prototype specification as follows:

vs ¼ ups=usp ¼ 3:8627� 104=6:6274� 103 ¼ 5:8284 rad=s and As ¼ 25 dB

Then the filter order is computed as

ε
2 ¼ 100:1�0:5 � 1 ¼ 0:1220

�
100:1�25 � 1


.
0:1220 ¼ 2;583:8341

n ¼
cosh�1

h
ð2;583:8341Þ0:5

i
cosh�1

�
5:8284

� ¼
ln
�
50:8314þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50:83142 � 1

p 

ln
�
5:8284þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:82842 � 1

p 
 ¼ 1:8875

We select n ¼ 2 for the lowpass prototype function. Following the steps of the design procedure, it follows that

1.

up ¼ 3:8627� 104 rad=sec

2. Performing the prototype transformation (lowpass to lowpass) using the prototype filter in Table 8.4, we have

HP ðsÞ ¼ 1:4314

s2 þ 1:4256s þ 1:5162
and

HðsÞ ¼ HP ðsÞj s
ua

¼ 1:4314�up

s


2þ1:4256
�up

s



þ 1:5162

¼ 0:9441s2

s2 þ 3:6319� 104s þ 9:8407� 108

3. Applying the BLT, we convert the analog filter to the digital filter as follows:

HðzÞ ¼ 0:9441s2

s2 þ 3:6319� 104s þ 9:8407� 108

����
s¼16;000ðz�1Þ=ðzþ1Þ
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After algebra simplification, it follows that

HðzÞ ¼ 0:1327� 0:2654z�1 þ 0:1327z�2

1þ 0:7996z�1 þ 0:3618z�2

b. MATLAB Program 8.6 is listed for this example, and frequency responses are given in Figure 8.19.

Program 8.6. MATLAB program for Example 8.10.

% Example 8.10
% Design of the digital lowpass Chebyshev filter
format long
fs¼8000; % Sampling rate
% BLT design
[B A]¼lp2hp([1.4314],[1 1.4256 1.5162], 3.8627*10^4) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3
% Plot the magnitude and phase responses jH(z)j
% b¼[0.1327 -0.2654 0.1327]; numerator coefficients from MATLAB
% a¼[1 0.7996 0.3618]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -40 10])
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FIGURE 8.19

Frequency responses of the designed digital filter for Example 8.10.
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8.3.3 Bandpass and Bandstop Filter Design Examples

EXAMPLE 8.11
a. Design a second-order digital bandpass Butterworth filter with the following specifications:

• upper cutoff frequency of 2.6 kHz
• lower cutoff frequency of 2.4 kHz
• sampling frequency of 8,000 Hz

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. Let us find the digital frequencies in radians per second:

uh ¼ 2pfh ¼ 2pð2600Þ ¼ 5;200p rad/sec
ul ¼ 2pfl ¼ 2pð2400Þ ¼ 4;800p rad/sec, and T ¼ 1=fs ¼ 1=8;000 sec

Following the steps of the design procedure, we have the following:

1.

uah ¼ 2

T
tan

�
uhT

2

�
¼ 16;000� tan

�
5;200p=8;000

2

�
¼ 2:6110� 104 rad=sec

ual ¼ 16;000� tan

�
ulT

2

�
¼ 16;000� tan

�
0:3p

� ¼ 2:2022� 104 rad=sec

W ¼ uah � ual ¼ 26;110� 22;022 ¼ 4;088 rad=sec

u2
0 ¼ uah � ual ¼ 5:7499� 108

2. We perform the prototype transformation (lowpass to bandpass) to obtain HðsÞ. From Table 8.3, we pick the
lowpass prototype with order 1 to produce the bandpass filter with order 2:

HP

�
s
� ¼ 1

s þ 1

Applying the lowpass-to-bandpass transformation, it follows that

HðsÞ ¼ HP ðsÞjs2þu2
0

sW

¼ Ws

s2 þWs þ u2
0

¼ 4;088s

s2 þ 4;088s þ 5:7499� 108

3. Hence we apply the BLT to yield

HðzÞ ¼ 4;088s

s2 þ 4;088s þ 5:7499� 108

����
s¼16;000ðz�1Þ=ðzþ1Þ

Via algebra work, we obtain the digital filter as

HðzÞ ¼ 0:0730� 0:0730z�2

1þ 0:7117z�1 þ 0:8541z�2
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b. MATLAB Program 8.7 is given for this example, and the corresponding frequency response plots are illustrated
in Figure 8.20.

Program 8.7. MATLAB program for Example 8.11.

% Example 8.11
% Design of the digital bandpass Butterworth filter
format long
fs¼8000;
[B A]¼lp2bp([1],[1 1],sqrt(5.7499*10^8),4088) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.0730 0 -0.0730]; numerator coefficients from MATLAB
% a¼[1 0.7117 0.8541]; denominator coefficients form MATLAB
freqz(b, a,512,fs);
axis([0 fs/2 -40 10])

EXAMPLE 8.12
Now let us examine the bandstop Butterworth filter design.

a. Design a digital bandstop Butterworth filter with the following specifications:
• Center frequency of 2.5 kHz
• Passband width of 200 Hz and ripple of 3dB
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FIGURE 8.20

Frequency responses of the designed digital filter for Example 8.11.
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• Stopband width of 50 Hz and attenuation of 10 dB
• Sampling frequency of 8,000 Hz

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. The digital frequencies of the digital filter are
uh ¼ 2pfh ¼ 2pð2;600Þ ¼ 5;200p rad/sec
ul ¼ 2pfl ¼ 2pð2;400Þ ¼ 4;800p rad/sec
ud0 ¼ 2pf0 ¼ 2pð2;500Þ ¼ 5;000p rad/sec, and T ¼ 1=fs ¼ 1=8;000 sec

Applying the three steps of the IIR filter design approach, it follows that
1.

uah ¼ 2

T
tan

�
uhT

2

�
¼ 16;000� tan

�
5;200p=8;000

2

�
¼ 2:6110� 104 rad=sec

ual ¼ 16;000� tan

�
ulT

2

�
¼ 16;000� tan

�
0:3p

� ¼ 2:2022� 104 rad=sec

u0 ¼ 16;000� tan

�
ud0T

2

�
¼ 16;000� tan

�
0:3125p

� ¼ 2:3946� 104 rad=sec

ush ¼ 2

T
tan

�
2;525� 2p=8;000

2

�
¼ 16;000� tan

�
56:81250

� ¼ 2:4462� 104 rad=sec

usl ¼ 16;000� tan

�
2;475� 2p=8;000

2

�
¼ 16;000� tan

�
55:68750

� ¼ 2:3444� 104 rad=sec

To adjust the unit passband gain at the center frequency of 2,500 Hz, we perform the following:

Fixing ual ¼ 2:2022� 104, we compute uah ¼ u2
0=ual ¼ ð2:3946� 104Þ2

2:2022� 104
¼ 2:6037� 104

and the passband bandwidth: W ¼ uah � ual ¼ 4;015

Fixing usl ¼ 2:3444� 104, ush ¼ u2
0=usl ¼ ð2:3946� 104Þ2

2:3444� 104
¼ 2:4459� 104

and the stopband bandwidth: Ws ¼ ush � usl ¼ 1;015

Again, Fixing uah ¼ 2:6110� 104, we got ual ¼ u2
0=uah ¼ ð2:3946� 104Þ2

2:6110� 104
¼ 2:1961� 104

and the passband bandwidth: W ¼ uah � ual ¼ 4;149

Fixing ush ¼ 2:4462� 104, usl ¼ u2
0=ush ¼ ð2:3946� 104Þ2

2:4462� 104
¼ 2:3441� 104

and the stopband bandwidth: Ws ¼ ush � usl ¼ 1;021

For an aggressive bandstop design, we chooseual ¼ 2:6110� 104,uah ¼ 2:1961� 104,usl ¼ 2:3441� 104,
ush ¼ 2:4462� 104 and u0 ¼ 2:3946� 104 to satisfy a larger bandwidth.

Thus we develop the prototype specification:

vs ¼ ð26;110� 21;916Þ=ð24;462� 23;441Þ ¼ 4:0177

n ¼
�
log10

�
100:1�10 � 1

�
2$log10ð4:0177Þ

�
¼ 0:7899; choose n ¼ 1

W ¼ uah � ual ¼ 26;110� 21;961 ¼ 4;149 rad=sec; u2
0 ¼ 5:7341� 108:
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2. Then, carrying out the prototype transformation (lowpass to bandstop) using the first-order lowpass prototype
filter given by

HP

�
s
� ¼ 1

s þ 1

it follows that

HðsÞ ¼ HP ðsÞ
��

sW
s2þu2

0

¼
�
s2 þ u2

0

�
s2 þWs þ u2

0

Substituting the values of u2
0 and W yields

HðsÞ ¼ s2 þ 5:7341� 108

s2 þ 4;149s þ 5:7341� 108

3. Hence, applying the BLT leads to

HðzÞ ¼ s2 þ 5:7341� 108

s2 þ 4;149s þ 5:73411� 108

����
s¼16;000ðz�1Þ=ðzþ1Þ

After algebra, we get

HðzÞ ¼ 0:9259þ 0:7078z�1 þ 0:9249z�2

1þ 0:7078z�1 þ 0:8518z�2
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FIGURE 8.21

Frequency responses of the designed digital filter for Example 8.12.
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b. MATLAB Program 8.8 includes the design steps. Figure 8.21 shows the filter frequency responses.

Program 8.8. MATLAB program for Example 8.12.

% Example 8.12
% Design of the digital bandstop Butterworth filter
format long
fs¼8000; % Sampling rate
[B A]¼lp2bs([1],[1 1],sqrt(5.7341*10^8),4149) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.9259 0.7078 0.9259]; numerator coefficients from MATLAB
% a¼[1 0.7078 0.8518]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -40 10])

EXAMPLE 8.13

a. Design a digital bandpass Chebyshev filter with the following specifications:
• Center frequency of 2.5 kHz
• Passband bandwidth of 200 Hz, 0.5 dB ripple on passband
• Lower stop frequency of 1.5 kHz, upper stop frequency of 3.5 kHz
• Stopband attenuation of 10 dB
• Sampling frequency of 8,000 Hz

b. Use MATLAB to plot the magnitude and phase responses.

Solution:

a. The digital frequencies are given as
udph ¼ 2pfdph ¼ 2pð2;600Þ ¼ 5;200p rad/sec
udpl ¼ 2pfdpl ¼ 2pð2;400Þ ¼ 4;800p rad/sec
ud0 ¼ 2pf0 ¼ 2pð2;500Þ ¼ 5;000p rad/sec, and T ¼ 1=fs ¼ 1=8;000 sec

Applying the frequency prewarping equation, it follows that

uaph ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
5;200p=8;000

2

�
¼ 2:6110� 104 rad=sec

uapl ¼ 16;000� tan

�
udplT

2

�
¼ 16;000� tan

�
0:3p

� ¼ 2:2022� 104 rad=sec

u0 ¼ 16;000� tan

�
ud0T

2

�
¼ 16;000� tan

�
0:3125p

� ¼ 2:3946� 104 rad=sec

uash ¼ 16;000� tan

�
3;500� 2p=8;000

2

�
¼ 16;000� tan

�
78:750

� ¼ 8:0437� 104 rad=sec
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uasl ¼ 16;000� tan

�
1;500� 2p=8;000

2

�
¼ 1:0691� 104 rad=sec

Now, adjusting the unit gain for the center frequency of 2,500 Hz leads to the following:

Fixing uapl ¼ 2:2022� 104, we have uaph ¼ u2
0

uapl
¼ ð2:3946� 104Þ2

2:2022� 104
¼ 2:6038� 104

and the passband bandwidth: W ¼ uaph � uapl ¼ 4;016

Fixing uasl ¼ 1:0691� 104, uash ¼ u2
0

uasl
¼ ð2:3946� 104Þ2

2:10691� 104
¼ 5:3635� 104

and the stopband bandwidth: Ws ¼ uash � uasl ¼ 42;944

Again, fixing uaph ¼ 2:6110� 104, we have uapl ¼ u2
0

uaph
¼ ð2:3946� 104Þ2

2:6110� 104
¼ 2:1961� 104

and the passband bandwidth: W ¼ uaph � uapl ¼ 4;149

Fixing uash ¼ 8:0437� 104, uasl ¼ u2
0

uash
¼ ð2:3946� 104Þ2

8:0437� 104
¼ 0:7137� 104

and the stopband bandwidth: Ws ¼ uash � uasl ¼ 73;300
For an aggressive bandpass design, we select uapl ¼ 2:2022� 104, uaph ¼ 2:6038� 104,

uasl ¼ 1:0691� 104, uash ¼ 5:3635� 104 and for a smaller bandwidth for passband.
Thus, we obtain the prototype specifications:

vs ¼ ð53;635� 10;691Þ=ð26;110� 21;961Þ ¼ 10:6932

ε
2 ¼ 100:1�0:5 � 1 ¼ 0:1220�

100:1�10 � 1

.

0:1220 ¼ 73:7705

n ¼
cosh�1

h
ð73:7705Þ0:5

i
cosh�1

�
10:6932

� ¼
ln
�
8:5890þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:58902 � 1

p 

ln
�
10:6932þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10:69322 � 1

p 
 ¼ 0:9280

Rounding up n leads to n ¼ 1.
Next, we apply the design steps:

1.

uaph ¼ 2:6038� 104 rad=sec; uapl ¼ 2:2022� 104 rad=sec

W ¼ 4;016 rad=sec; u2
0 ¼ 5:7341� 108

2. Performing the prototype transformation (lowpass to bandpass), we obtain

HP ðsÞ ¼ 2:8628

s þ 2:8628

and

HðsÞ ¼ HP ðsÞ
��
s¼

s2þu2
0

sW

¼ 2:8628Ws

s2 þ 2:8628Ws þ u2
0

¼ 1:1878� 104s

s2 þ 1:1878� 104s þ 5:7341� 108
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3. Applying the BLT, the analog filter is converted into a digital filter as follows:

HðzÞ ¼ 1:1878� 104s

s2 þ 1:1878� 104s þ 5:7341� 108

����
s¼16;000ðz�1Þ=ðzþ1Þ

This is simplified and arranged as follows:

HðzÞ ¼ 0:1864� 0:1864z�2

1þ 0:6227z�1 þ 0:6272z�2

b. Program 8.9 lists the MATLAB details. Figure 8.22 displays the frequency responses.

Program 8.9. MATLAB program for Example 8.13.

% Example 8.13
% Design of the digital bandpass Chebyshev filter
format long
fs¼8000;
[B A]¼lp2bp([2.8628],[1 2.8628],sqrt(5.7341*10^8),4149) % Complete step 2
[b a]¼bilinear(B,A,fs) % Complete step 3

% Plot the magnitude and phase responses jH(z)j
% b¼[0.1864 0.0 -0.1864]; numerator coefficients from MATLAB
% a¼[1 0.6227 0.6272]; denominator coefficients from MATLAB
freqz(b,a,512,fs);
axis([0 fs/2 -40 10])
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FIGURE 8.22

Frequency responses of the designed digital filter for Example 8.13.
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8.4 HIGHER-ORDER INFINITE IMPULSE RESPONSE FILTER DESIGN USING
THE CASCADE METHOD
For higher order IIR filter design, use of a cascade transfer function is preferred. The factored forms for
the lowpass prototype transfer functions for Butterworth and Chebyshev filters are given in Tables 8.7,
8.8 and 8.9. A Butterworth filter design example will be provided and a similar procedure can be
adopted for the Chebyshev filters.

EXAMPLE 8.14
a. Design a fourth-order digital lowpass Butterworth filter with a cutoff frequency of 2.5 kHz at a sampling

frequency of 8,000 Hz.
b. Use MATLAB to plot the magnitude and phase responses.

Table 8.7 3-dB Butterworth Prototype Functions in Cascade Form

n HPðsÞ
3 1

ðsþ 1Þðs2 þ sþ 1Þ
4 1

ðs2 þ 0:7654sþ 1Þðs2 þ 1:8478sþ 1Þ
5 1

ðsþ 1Þðs2 þ 0:6180sþ 1Þðs2 þ 1:6180sþ 1Þ
6 1

ðs2 þ 0:5176sþ 1Þðs2 þ 1:4142sþ 1Þðs2 þ 1:9319sþ 1Þ

Table 8.8 Chebyshev Prototype Functions in Cascade Form with 0.5-dB Ripple ( ε ¼ 0:3493)

n HPðsÞ 0.5-dB Ripple ( ε[0:3493)

3 0:7157

ðsþ 0:6265Þðs2 þ 0:6265sþ 1:1425Þ
4 0:3579

ðs2 þ 0:3507sþ 1:0635Þðs2 þ 0:8467sþ 0:3564Þ
5 0:1789

ðsþ 0:3623Þðs2 þ 0:2239sþ 1:0358Þðs2 þ 0:5862sþ 0:4768Þ
6 0:0895

ðs2 þ 0:1553sþ 1:0230Þðs2 þ 0:4243sþ 0:5900Þðs2 þ 0:5796sþ 0:1570Þ
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Solution:

a. First, we obtain the digital frequency in radians per second:

ud ¼ 2pf ¼ 2pð2;500Þ ¼ 5;000p rad=sec; and T ¼ 1=fs ¼ 1=8;000 sec

Following the design steps, we compute the specifications for the analog filter.

1.

ua ¼ 2

T
tan

�
udT

2

�
¼ 16;000� tan

�
5;000p=8;000

2

�
¼ 2:3946� 104 rad=sec

2. From Table 8.7, we obtain the fourth-order factored prototype transfer function:

HP ðsÞ ¼ 1�
s2 þ 0:7654s þ 1

��
s2 þ 1:8478s þ 1

�
Applying the prototype transformation, we yield

HðsÞ ¼ HP ðsÞj s
ua

¼ u2
a � u2

a�
s2 þ 0:7654uas þ u2

a

��
s2 þ 1:8478uas þ u2

a

�
Substituting ua ¼ 2:3946� 104 rad/sec yields

HðsÞ ¼
�
5:7340� 108

�� �5:7340� 108
��

s2 þ 1:8328s þ 5:7340� 108
��
s2 þ 4:4247� 104s þ 5:7340� 108

�
3. Hence, after applying BLT, we have

HðzÞ ¼
�
5:7340� 108

�� �5:7340� 108
��

s2 þ 1:8328s þ 5:7340� 108
��
s2 þ 4:4247� 104s þ 5:7340� 108

�����
s¼16;000ðz�1Þ=ðzþ1Þ

After simplifying with algebra, we obtain the digital filter as

HðzÞ ¼ 0:5108þ 1:0215z�1 þ 0:5108z�2

1þ 0:5654z�1 þ 0:4776z�2
� 0:3730þ 0:7460z�1 þ 0:3730z�2

1þ 0:4129z�1 þ 0:0790z�2

Table 8.9 Chebyshev Prototype Functions in Cascade Form with 1-dB Ripple ðε ¼ 0:5088Þ
n HPðsÞ 1-dB Ripple ðε[0:5088Þ
3 0:4913

ðsþ 0:4942Þðs2 þ 0:4942sþ 0:9942Þ
4 0:2456

ðs2 þ 0:2791sþ 0:9865Þðs2 þ 0:6737sþ 0:2794Þ
5 0:1228

ðsþ 0:2895Þðs2 þ 0:1789sþ 0:9883Þðs2 þ 0:4684sþ 0:4293Þ
6 0:0614

ðs2 þ 0:1244sþ 0:9907Þðs2 þ 0:3398sþ 0:5577Þðs2 þ 0:4641sþ 0:1247Þ
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b. A MATLAB program is preferable to carry out the algebra and is listed in Program 8.10. Figure 8.23 shows the
filter magnitude and phase frequency responses.

Program 8.10. MATLAB program for Example 8.14.
% Example 8.14
% Design of the fourth-order digital lowpass Butterworth filter
% in the cascade form
format long
fs¼8000; % Sampling rate
[B1 A1]¼lp2lp([1],[1 0.7654 1], 2.3946*10^4) % Complete step 2
[b1 a1]¼bilinear(B1,A1,fs) % complete step 3
[B2 A2]¼lp2lp([1],[1 1.8478 1], 2.3946*10^4) % Complete step 2
[b2 a2]¼bilinear(B2,A2,fs) % complete step 3
% Plot the magnitude and phase responses jH(z)j
% b1¼[0.5108 1.0215 0.5108]; a1¼[1 0.5654 0.4776]; coefficients from MATLAB
% b2¼[0.3730 0.7460 0.3730]; a2¼[1 0.4129 0.0790]; coefficients from MATLAB
freqz(conv(b1,b2),conv(a1,a2),512,fs); % Combined filter responses
axis([0 fs/2 -40 10]);

The higher-order bandpass, highpass and bandstop filters using the cascade form can be designed
similarly.
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FIGURE 8.23

Frequency responses of the designed digital filter for Example 8.14.
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8.5 APPLICATION: DIGITAL AUDIO EQUALIZER
In this section, the design of a digital audio equalizer is introduced. For an audio application such as the
CD player, the digital audio equalizer is used to adjust the sound as one desires by changing filter gains
for different audio frequency bands. Other applications include adjusting the sound source to take
room acoustics into account, removing undesired noise, and boosting the desired signal in the specified
passband. The simulation is based on the consumer digital audio processordsuch as a CD playerd
handling the 16-bit digital samples with a sampling rate of 44.1 kHz and an audio signal bandwidth at
22.05 kHz. A block diagram of the digital audio equalizer is depicted in Figure 8.24.

A seven-band audio equalizer is adopted for discussion. The center frequencies are listed in
Table 8.10. The 3-dB bandwidth for each bandpass filter is chosen to be 50% of the center frequency.
As shown in Figure 8.24, g0 through g6 are the digital gains for each banspass filter output and can be
adjusted to make sound effects, while y0ðnÞ through y6ðnÞ are the digital amplified bandpass filter
outputs. Finally, the equalized signal is the sum of the amplified bandpass filter outputs and itself. By
changing the digital gains of the equalizer, many sound effects can be produced.

x n( ) y n( )

g0

g1

g6

bandpass filter

bandpass filter

bandpass filter

x n( )
y n0 ( )

y n1 ( )

y n6 ( )

FIGURE 8.24

Simplified block diagram of the audio equalizer.

Table 8.10 Specifications for an Audio Equalizer

Center frequency (Hz) 100 200 400 1000 2500 6000 15000

Bandwidth (Hz) 50 100 200 500 1250 3000 7500
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To complete the design and simulation, second-order IIR bandpass Butterworth filters are chosen
for the audio equalizer; the coefficients are determined using the BLT method, and are given in
Table 8.11.

The magnitude response for each filter bank is plotted in Figure 8.25 for design verification. As
shown in Figure 8.25, after careful examination, the magnitude response of each filter band meets the
design specification. We will perform simulation next.

Table 8.11 Designed Filter Banks

Filter Banks Coefficients for the Numerator Coefficients for the Denominator

Bandpass filter 0 0.0031954934, 0, �0.0031954934 1,�1.9934066716 , 0.9936090132

Bandpass filter 1 0.0063708102, 0, �0.0063708102 1, �1.9864516324, 0.9872583796

Bandpass filter 2 0.0126623878, 0, �0.0126623878 1, �1.9714693192, 0.9746752244

Bandpass filter 3 0.0310900413, 0, �0.0310900413 1, �1.9181849043, 0.9378199174

Bandpass filter 4 0.0746111954, 0, �0.0746111954 1, �1.7346085867, 0.8507776092

Bandpass filter 5 0.1663862883, 0, �0.1663862884 1, �1.0942477187, 0.6672274233

Bandpass filter 6 0.3354404899, 0, �0.3354404899 1, 0.7131366534, 0.3291190202
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Magnitude frequency responses for the audio equalizer.
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Simulation in the MATLAB environment is based on the following settings. The audio test signal
with frequency components of 100 Hz, 200 Hz, 400 Hz, 1,000 Hz, 2,500 Hz, 6,000 Hz, and 15,000 Hz
is generated from Equation (8.36):

xðnÞ ¼ sinð200pn=44;100Þ þ sinð400pn=44;100þ p=14Þ
þ sinð800pn=44;100þ p=7Þ þ sinð2; 000pn=44;100þ 3p=14Þ
þ sinð5; 000pn=44;100þ 2p=7Þ þ sinð12; 000pn=44;100þ 5p=14Þ
þ sinð30; 000pn=44;100þ 3p=7Þ

(8.36)

The gains set for the filter banks are

g0 ¼ 10; g1 ¼ 10; g2 ¼ 0; g3 ¼ 0; g4 ¼ 0; g5 ¼ 10; g6 ¼ 10

After simulation, we notice that the frequency components at 100 Hz, 200 Hz, 6,000 Hz, and
15,000 Hz will be boosted by 20$log1010 ¼ 20 dB. The top plot in Figure 8.26 shows the spectrum for
the audio test signal, while the bottom plot depicts the spectrum for the equalized audio test signal. As
shown in the plots, before audio digital equalization, the spectral peaks at all bands are at the same
level; after audio digital equalization, the frequency components at bank 0, bank 1, bank 5, and bank 6
are amplified. Therefore, as we expected, the operation of the digital equalizer boosts the low
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FIGURE 8.26

Audio spectrum and equalized audio spectrum.
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frequency components and the high frequency components. The MATLAB list for the simulation is
shown in Program 8.11.
Program 8.11. MATLAB program for the digital audio equalizer.

close all; clear all
% Filter Coefficients (Butterworth type designed using the BLT)
B0¼[0.0031954934 0 -0.0031954934]; A0¼[1.0000000000 -1.9934066716 0.9936090132];
B1¼[0.0063708102 0 -0.0063708102]; A1¼[1.0000000000 -1.9864516324 0.9872583796];
B2¼[0.0126623878 0 -0.0126623878]; A2¼[1.0000000000 -1.9714693192 0.9746752244];
B3¼[0.0310900413 0 -0.0310900413]; A3¼[ 1.0000000000 -1.9181849043 0.9378199174];
B4¼[0.0746111954 0.000000000 -0.0746111954];
A4¼[1.0000000000 -1.7346085867 0.8507776092];
B5¼[0.1663862883 0.0000000000 -0.1663862884];
A5¼[1.0000000000 -1.0942477187 0.6672274233];
B6¼[0.3354404899 0.0000000000 -0.3354404899];
A6¼[1.0000000000 0.7131366534 0.3291190202];

[h0,f]¼freqz(B0,A0,2048,44100);
[h1,f]¼freqz(B1,A1,2048,44100);
[h2,f]¼freqz(B2,A2,2048,44100);
[h3,f]¼freqz(B3,A3,2048,44100);
[h4,f]¼freqz(B4,A4,2048,44100);
[h5,f]¼freqz(B5,A5,2048,44100);
[h6,f]¼freqz(B6,A6,2048,44100);
loglog(f,abs(h0),f,abs(h1), f,abs(h2), .

f,abs(h3),f,abs(h4),f,abs(h5),f,abs(h6));
xlabel(’Frequency (Hz)’);
ylabel(’Filter Gain’);grid
axis([10 10^5 10^(-6) 1]);
figure(2)
g0¼10;g1¼10;g2¼0;g3¼0;g4¼0;g5¼10;g6¼10;
p0¼0;p1¼pi/14;p2¼2*p1;p3¼3*p1;p4¼4*p1;p5¼5*p1;p6¼6*p1;
n¼0:1:20480; % Indices of samples
fs¼44100; % Sampling rate
x¼sin(2*pi*100*n/fs)þsin(2*pi*200*n/fsþp1)þ.

sin(2*pi*400*n/fsþp2)þsin(2*pi*1000*n/fsþp3)þ.

sin(2*pi*2500*n/fsþp4)þsin(2*pi*6000*n/fsþp5)þ.

sin(2*pi*15000*n/fsþp6); % Generate test audio signals
y0¼filter(B0,A0,x); % Bandpass filter 0
y1¼filter(B1,A1,x); % Bandpass filter 1
y2¼filter(B2,A2,x); % Bandpass filter 2
y3¼filter(B3,A3,x); % Bandpass filter 3
y4¼filter(B4,A4,x); % Bandpass filter 4
y5¼filter(B5,A5,x); % Bandpass filter 5
y6¼filter(B6,A6,x); % Bandpass filter 6
y¼g0.*y0þg1.*y1þg2.*y2þg3.*y3þg4.*y4þg5.*y5þg6.*y6þx; % Equalizer output
N¼length(x);
Axk¼2*abs(fft(x))/N;Axk(1)¼Axk(1)/2; % One-sided amplitude spectrum of the input
f¼[0:N/2]*fs/N;
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subplot(2,1,1);loglog(f,Axk(1:N/2þ1));
title(’Audio spectrum’);
axis([10 100000 0.00001 100]);grid;
Ayk¼2*abs(fft(y))/N; Ayk(1)¼Ayk(1)/2; % One-sided amplitude

% spectrum of the output
subplot(2,1,2);loglog(f,Ayk(1:N/2þ1));
xlabel(’Frequency (Hz)’);
title(’Equalized audio spectrum’);
axis([10 100000 0.00001 100]);grid;

8.6 IMPULSE-INVARIANT DESIGN METHOD
We illustrate the concept of the impulse-invariant design in Figure 8.27. Given the transfer function of
a designed analog filter, an analog impulse response can be easily found by the inverse Laplace
transform of the transfer function. To replace the analog filter by the equivalent digital filter, we apply
an approximation in the time domain in which the digital filter impulse response must be equivalent to
the analog impulse response. Therefore, we can sample the analog impulse response to get the digital
impulse response, and take the z-transform of the sampled analog impulse response to obtain the
transfer function of the digital filter.

The analog impulse response can be achieved by taking the inverse Laplace transform of the analog
filter HðsÞ, that is,

h
�
t
� ¼ L�1ðHðsÞÞ (8.37)

Now, if we sample the analog impulse response with a sampling interval of T and use T as a scale
factor, it follows that

T$h
�
n
� ¼ T$hðtÞjt¼nT ; n � 0 (8.38)
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FIGURE 8.27

Impulse-invariant design method.
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Taking the z-transform on both sides of Equation (8.38) yields the digital filter as

HðzÞ ¼ Z½T$hðnÞ� (8.39)

The effect of the scale factor T in Equation (8.38) can be explained as follows. We approximate the
area under the curve specified by the analog impulse function hðtÞ using a digital sum given by

area ¼
ZN
0

hðtÞdtz T$hð0Þ þ T$hð1Þ þ T$hð2Þ þ/ (8.40)

Note that the area under the curve indicates the DC gain of the analog filter while the digital sum in
Equation (8.40) is the DC gain of the digital filter.

The rectangular approximation is used, since each sample amplitude is multiplied by the sampling
interval T . Due to the interval size for approximation in practice, we cannot guarantee that the digital
sum has exactly the same value as the one from the integration unless the sampling interval T in
Equation (8.40) approaches zero. This means that the higher the sampling ratedthat is, the smaller the
sampling intervaldthe more accurately the digital filter gain matches the analog filter gain. Hence, in
practice, we need to further apply gain scaling for adjustment if it is a requirement.

EXAMPLE 8.15
Consider the following Laplace transfer function:

HðsÞ ¼ 2

s þ 2

a. Determine HðzÞ using the impulse-invariant method if the sampling rate fs ¼ 10 Hz.
b. Use MATLAB to plot the following:

1. The magnitude response jHðf Þj and phase response 4ðf Þ with respect to HðsÞ for the
frequency range from 0 to fs=2 Hz;

2. The magnitude response
��HðejUÞ�� ¼ jHðej2pfT Þj and phase response 4ðf Þ with respect to HðzÞ for the

frequency range from 0 to fs=2 Hz.

Solution:

a. Taking the inverse Laplace transform of the analog transfer function, the impulse response is found to be

hðtÞ ¼ L�1



2

s þ 2

�
¼ 2e�2t uðtÞ

Sampling the impulse response hðtÞ with T ¼ 1=fs ¼ 0:1 second, we have

Th
�
n
� ¼ T2e�2nT u

�
n
� ¼ 0:2e�0:2nu

�
n
�

Using the z-transform table in Chapter 5, we yield

Z
h
e�anu

�
n
�i ¼ z

z � e�a

And noting that e�a ¼ e�0:2 ¼ 0:8187, the digital filter transfer function HðzÞ is finally given by

H
�
z
� ¼ 0:2z

z � 0:8187
¼ 0:2

1� 0:8187z�1
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b. The MATLAB code is listed in Program 8.12. The first and third plots in Figure 8.28 show comparisons of the
magnitude and phase frequency responses. The shape of the magnitude response (first plot) closely matches
that of the analog filter, while the phase response (third plot) differs from the analog phase response in this
example.

Program 8.12. MATLAB program for Example 8.15.

% Example 8.15.
% Plot the magnitude responses jH(s)j and jH(z)j
% For the Laplace transfer function H(s)
f¼0:0.1:5;T¼0.1; % Frequency range and sampling interval
w¼2*pi*f; % Frequency range in rad/sec
hs¼freqs([2], [1 2],w); % Analog frequency response
phis¼180*angle(hs)/pi;

% For the z-transfer function H(z)
hz¼freqz([0.2],[1 -0.8187],length(w)); % Digital frequency resoonse
hz_scale¼freqz([0.1813],[1 -0.8187],length(w)); % Scaled digital mag. response

phiz¼180*angle(hz)/pi;
% Plot magnitude and phase responses.
subplot(3,1,1), plot(f,abs(hs),’kx’,f, abs(hz),’k-’),grid; axis([0 5 0 1.2]);
xlabel(’Frequency (Hz)’); ylabel(’Mag. Responses’)
subplot(3,1,2), plot(f,abs(hs),’kx’,f, abs(hz_scale),’k-’),grid; axis([0 5

0 1.2]);
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FIGURE 8.28

Frequency responses. The line of “x”s represent the frequency responses of the analog filter; the solid line

represents the frequency responses of the designed digital filter.

8.6 Impulse-Invariant Design Method 347



xlabel(’Frequency (Hz)’); ylabel(’Scaled Mag. Responses’)
subplot(3,1,3), plot(f,phis,’kx’,f, phiz,’k-’); grid;
xlabel(’Frequency (Hz)’); ylabel(’Phases (deg.)’);

The filter DC gain is given by

H
�
e jU
���

U¼0
¼ Hð1Þ ¼ 1:1031

We can further scale the filter to have a unit gain of

HðzÞ ¼ 1

1:1031

0:2

1� 0:8187z�1
¼ 0:1813

1� 0:8187z�1

The scaled magnitude frequency response is shown in the middle plot along with that of analog filter in
Figure 8.28, where the magnitudes are matched very well below 1.8 Hz.

Example 8.15 demonstrates the procedure for using the impulse-invariant design. The filter
performance depends on the sampling interval (Lynn and Fuerst,1999). As shown in Figure 8.27, the
analog impulse response hðtÞ is not a band-limited signal whose frequency extends to infinity, which is
certainly larger than the Nyquist limit (folding frequency); hence, sampling hðtÞ could cause aliasing.
Figure 8.29(a) shows the analog impulse response ThðtÞ in Example 8.15 and its sampled version
ThðnTÞ, where the sampling interval is 0.125 second. The analog filter and digital filter magnitude
responses are plotted in Figure 8.29(b). The aliasing occurs because the impulse response contains
frequency components beyond the Nyquist limit, that is, 4 Hz in this case. Furthermore, using the
lower sampling rate of 8 Hz causes less accuracy in the digital filter magnitude response, so more
aliasing develops.

Figure 8.29(c) shows the analog impulse response and its sampled version using a higher
sampling rate of 16 Hz. Figure 8.29(d) displays the more accurate magnitude response of the digital
filter. Hence, we can obtain a reduced aliasing level. Note that the aliasing cannot be avoided, due to
sampling of the analog impulse response. The only way to reduce the aliasing is to use a higher
sampling frequency or design a filter with a very low cutoff frequency to reduce the aliasing to
a minimum level.

Investigation of the sampling interval effect leads us to the following conclusions. Note that the
analog impulse response for an analog highpass filter or bandstop filter contains frequency up to
infinity, which is larger than the Nyquist limit (folding frequency), even assuming that the sampling
rate is much higher than the cutoff frequency of a highpass filter or the upper cutoff frequency of
a bandstop filter. Hence, sampling the analog impulse response always produces aliasing. Without
using an additional anti-aliasing filter, the impulse invariant method alone cannot be used for designing
the highpass filter or bandstop filter.

Instead, in practice, we should apply the BLT design method. The impulse-invariant design
method is only appropriate for designing a lowpass filter or bandpass filter with a sampling rate much
larger than the lower cutoff frequency of the lowpass filter or the upper cutoff frequency of the
bandpass filter.

Next, let us focus on second-order filter design via Example 8.16.
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EXAMPLE 8.16
Consider the following Laplace transfer function:

HðsÞ ¼ s

s2 þ 2s þ 5

a. Determine HðzÞ using the impulse-invariant method if the sampling rate fs ¼ 10 Hz.
b. Use MATLAB to plot the following:

1. the magnitude response jHðf Þj and phase response fðf Þ with respect to HðsÞ for the frequency range from
0 to fs=2 Hz;

2. the magnitude response
��HðejUÞ�� ¼ jHðej2pfT Þj and phase response fðf Þ with respect to HðzÞ for the

frequency range from 0 to fs=2 Hz.

Solution:

a. Since HðsÞ has complex poles located at s ¼ �1� 2j, we can write it in a quadratic form as

HðsÞ ¼ s

s2 þ 2s þ 5
¼ s

ðs þ 1Þ2þ22
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Sampling interval effect in the impulse invariant IIR filter design.
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We can further write the transfer function as

HðsÞ ¼ ðs þ 1Þ � 1

ðs þ 1Þ2þ22
¼ ðs þ 1Þ

ðs þ 1Þ2þ22
� 0:5� 2

ðs þ 1Þ2þ22

From the Laplace transform table (Appendix B), the analog impulse response can easily be found as

h
�
t
� ¼ e�tcos

�
2t
�
u
�
t
�� 0:5e�tsin

�
2t
�
u
�
t
�

Sampling the impulse response hðtÞ using a sampling interval T ¼ 0:1 and using the scale factor of T ¼ 0:1,
we have

Th
�
n
� ¼ ThðtÞjt¼nT ¼ 0:1e�0:1ncos

�
0:2n

�
u
�
n
�� 0:05e�0:1nsin

�
0:2n

�
u
�
n
�

Applying the z-transform (Chapter 5) leads to

H
�
z
� ¼ Z

�
0:1e�0:1ncos

�
0:2n

�
u
�
n
�� 0:05e�0:1nsin

�
0:2n

�
u
�
n
�	

¼ 0:1z
�
z � e�0:1cos

�
0:2
��

z2 � 2e�0:1cos
�
0:2
�
z þ e�0:2

� 0:05e�0:1sin
�
0:2
�
z

z2 � 2e�0:1cos
�
0:2
�
z þ e�0:2
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FIGURE 8.30

Frequency responses. The line of “x”s represents frequency responses of the analog filter; the solid line

represents frequency responses of the designed digital filter.
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After algebra simplification, we obtain the second-order digital filter as

HðzÞ ¼ 0:1� 0:09767z�1

1� 1:7735z�1 þ 0:8187z�2

b. The magnitude and phase frequency responses are shown in Figure 8.30 and MATLAB Program 8.13 is
given. The passband gain of the digital filter is higher than that of the analog filter, but their shapes are
same.

Program 8.13. MATLAB program for Example 8.16.

% Example 8.16
% Plot the magnitude responses jH(s)j and jH(z)j
% For the Laplace transfer function H(s)
f¼0:0.1:5;T¼0.1; % Initialize analog frequency range in Hz and sampling interval
w¼2*pi*f; % Convert the frequency range to radians/second
hs¼freqs([1 0], [1 2 5],w); % Calculate analog filter frequency responses
phis¼180*angle(hs)/pi;
% For the z-transfer function H(z)
% Calculate digital filter frequency responses
hz¼freqz([0.1 -0.09766],[1 -1.7735 0.8187],length(w));
phiz¼180*angle(hz)/pi;
% Plot magnitude and phase responses
subplot(2,1,1), plot(f,abs(hs),’x’,f, abs(hz),’-’),grid;
xlabel(’Frequency (Hz)’); ylabel(’Magnitude Responses’)
subplot(2,1,2), plot(f,phis,’x’,f, phiz,’-’); grid;
xlabel(’Frequency (Hz)’); ylabel(’Phases (degrees)’)

8.7 POLE-ZERO PLACEMENT METHOD FOR SIMPLE INFINITE IMPULSE
RESPONSE FILTERS
This section introduces a pole-zero placement method for a simple IIR filter design. Let us first
examine the effects of the pole-zero placement on the magnitude response in the z-plane (Figure 8.31).

In the z-plane,whenwe place a pair of complex conjugate zeros at a given point on the unit circlewith
an angle q (usuallywe do), wewill have a numerator factor of ðz� ejqÞðz� e�jqÞ in the transfer function.
Its magnitude contribution to the frequency response at z ¼ ejU is ðejU � ejqÞðejU � e�jqÞ. When
U ¼ q, the magnitude will reach zero, since the first factor ðejq � ejqÞ ¼ 0 contributes zero magnitude.
When a pair of complex conjugate poles are placed at a given point within the unit cycle, we have
a denominator factor of ðz� rejqÞðz� re�jqÞ, where r is the radius chosen to be less than and close to 1 to
place the poles inside the unit circle. The magnitude contribution to the frequency response at U ¼ q

will rise to a large magnitude, since the first factor ðejq � rejqÞ ¼ ð1� rÞejq gives a small magnitude
of 1� r in the denominator. This small magnitude (1�r) is the length between the pole location and the
unit circle at the angle U ¼ q as shown in Figure 8.31. Note that the magnitude of ejq is 1.

Therefore, we can reduce the magnitude response using zero placement, while we increase the
magnitude response using pole placement. Placing a combination of poles and zeros will result in
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different frequency responses, such as lowpass, highpass, bandpass, and bandstop. The method is
intuitive and approximate. Furthermore, it is easy to compute filter coefficients for simple IIR filters.
Here, we describe the design procedures for second-order bandpass and bandstop filters, as well first-
order lowpass and highpass filters. (For details of derivations, readers are referred to Lynn and Fuerst
[1999]). Practically, the pole-zero placement method delivers good performance when the bandpass
and bandstop filters have very narrow bandwidth requirements and the lowpass and highpass filters
have either very low cutoff frequency close to DC or very high cutoff frequency close to the folding
frequency (Nyquist limit).

8.7.1 Second-Order Bandpass Filter Design

Typical pairs of poles and zeros for a bandpass filter are placed in Figure 8.32. Poles are complex
conjugate, with the magnitude r controlling the bandwidth and the angle q controlling the center
frequency. The zeros are placed at z ¼ 1 corresponding to DC, and z ¼ �1, corresponding to the
folding frequency.

The poles will increase the magnitude response at the center frequency while the zeros will cause
zero gains at DC (zero frequency) and at the folding frequency.

The following equations give the bandpass filter design formulas using pole-zero placement:

rz 1� ðBW3dB=fsÞ � p; good for 0:9 � r < 1 (8.41)

q ¼
�
f0
fs

�
� 360

�
(8.42)
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FIGURE 8.31

Effects of the pole-zero placement on the magnitude response.
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HðzÞ ¼ Kðz� 1Þðzþ 1Þ
ðz� rejqÞðz� re�jqÞ ¼ K

�
z2 � 1

�
ðz2 � 2rz cos qþ r2Þ (8.43)

where K is a scale factor to adjust the bandpass filter so it has a unit passband gain given by

K ¼ ð1� rÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2r cos 2qþ r2

p

2jsin qj (8.44)

EXAMPLE 8.17
A second-order bandpass filter is required to satisfy the following specifications:

• Sampling rate ¼ 8,000 Hz
• 3 dB bandwidth: BW ¼ 200 Hz
• Narrow passband centered at f0 ¼ 1;000 Hz
• Zero gain at 0 Hz and 4,000 Hz

Find the transfer function using the pole-zero placement method.

Solution:
First, we calculate the required magnitude of the poles

r ¼ 1� ð200=8;000Þp ¼ 0:9215;

which is a good approximation. Use the center frequency to obtain the angle of the pole location:

q ¼
�
1;000

8;000

�
� 360 ¼ 45�
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f
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FIGURE 8.32

Pole-zero placement for a second-order narrow bandpass filter.
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Compute the unit-gain scale factor as

K ¼ ð1� 0:9215Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2� 0:9215� cos2� 45

� þ 0:92152
p

2jsin 45�j ¼ 0:0755

Finally, the transfer function is given by

HðzÞ ¼ 0:0755
�
z2 � 1

��
z2 � 2� 0:9215zcos45� þ 0:92152

� ¼ 0:0755� 0:0755z�2

1� 1:3031z�1 þ 0:8491z�2

8.7.2 Second-Order Bandstop (Notch) Filter Design

For this type of filter, the pole placement is the same as the bandpass filter (Figure 8.33). The zeros are
placed on the unit circle with the same angles with respect to poles. This will improve passband
performance. The magnitude and the angle of the complex conjugate poles determine the 3 dB
bandwidth and center frequency, respectively.

Design formulas for bandstop filters are given in the following equations:

rz 1� ðBW3dB=fsÞ � p; good for 0:9 � r < 1 (8.45)

q ¼
�
f0
fs

�
� 360� (8.46)

HðzÞ ¼ K
�
z� ejq

��
zþ e�jq

�
ðz� rejqÞðz� re�jqÞ ¼ K

�
z2 � 2z cos qþ 1

�
ðz2 � 2rz cos qþ r2Þ (8.47)

The scale factor to adjust the bandstop filter so it has a unit passband gain is given by

K ¼
�
1� 2r cos qþ r2

�
ð2� 2 cos qÞ (8.48)
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FIGURE 8.33

Pole-zero placement for a second-order notch filter.
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EXAMPLE 8.18
A second-order notch filter is required to satisfy the following specifications:

• Sampling rate ¼ 8,000 Hz
• 3 dB bandwidth: BW ¼ 100 Hz
• Narrow passband centered at f0 ¼ 1;500 Hz

Find the transfer function using the pole-zero placement approach.

Solution:
We first calculate the required magnitude of the poles

r z1� ð100=8;000Þ � p ¼ 0:9607

which is a good approximation. We use the center frequency to obtain the angle of the pole location:

q ¼
�
1;500

8;000

�
� 360� ¼ 67:5�

The unit-gain scale factor is calculated as

K ¼
�
1� 2� 0:9607cos 67:5� þ 0:96072

�
ð2� 2cos 67:5�Þ ¼ 0:9620

Finally, we obtain the transfer function:

HðzÞ ¼ 0:9620
�
z2 � 2z cos67:5� þ 1

��
z2 � 2� 0:9607z cos67:5� þ 0:96072

� ¼ 0:9620� 0:7363z�1 þ 0:9620z�2

1� 0:7353z�1 þ 0:9229

8.7.3 First-Order Lowpass Filter Design

The first-order pole-zero placement can be utilized in two cases. The first situation is when the cutoff
frequency is less than fs=4. Then the pole-zero placement is shown in Figure 8.34.

As shown in Figure 8.34, the pole z ¼ a is placed in the real axis. The zero is placed at z ¼ �1 to
ensure zero gain at the folding frequency (Nyquist limit). When the cutoff frequency is above fs=4, the
pole-zero placement is adopted as shown in Figure 8.35.

Design formulas for lowpass filters using the pole-zero placement are given in the following
equations.

0 fc
f s / 2

0

f s / 2

f

FIGURE 8.34

Pole-zero placement for the first-order lowpass filter with fc < fs=4.
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When fc < fs=4,

az 1� 2� ðfc=fsÞ � p; good for 0:9 � r < 1 (8.49)

When fc > fs=4,

az � ð1� pþ 2� ðfc=fsÞ � pÞ; good for � 1 < r � �0:9 (8.50)

The transfer function is

HðzÞ ¼ Kðzþ 1Þ
ðz� aÞ (8.51)

and the unit passband gain scale factor is given by

K ¼ ð1� aÞ
2

(8.52)

EXAMPLE 8.19
A first-order lowpass filter is required to satisfy the following specifications:

• Sampling rate ¼ 8,000 Hz
• 3 dB cutoff frequency: fc ¼ 100 Hz
• Zero gain at 4,000 Hz

Find the transfer function using the pole-zero placement method.

Solution:
Since the cutoff frequency of 100 Hz is much less than fs=4 ¼ 2;000 Hz, we determine the pole as

az1� 2� ð100=8;000Þ � p ¼ 0:9215

which is above 0.9. Hence, we have a good approximation. The unit gain scale factor is calculated by

K ¼ ð1� 0:9215Þ
2

¼ 0:03925

Last, we can develop the transfer function as

HðzÞ ¼ 0:03925ðz þ 1Þ
ðz � 0:9215Þ ¼ 0:03925þ 0:03925z�1

1� 0:9215z�1

0 fc f s / 2

0

f s / 2

f

FIGURE 8.35

Pole-zero placement for the first-order lowpass filter with fc > fs=4.
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Note that we can also determine the unit-gain factor K by substituting z ¼ ej0 ¼ 1 in the transfer function

HðzÞ ¼ ðz þ 1Þ
ðz � aÞ, then finding the DC gain. Set the scale factor to be a reciprocal of the DC gain. This can be easily

done as follows:

DC gain ¼ z þ 1

z � 0:9215

����
z¼1

¼ 1þ 1

1� 0:9215
¼ 25:4777

Hence, K ¼ 1=25:4777 ¼ 0:03925.

8.7.4 First-Order Highpass Filter Design

Similar to the lowpass filter design, the pole-zero placements for the first-order highpass filters in two
cases are shown in Figure 8.36(a) and 8.36(b).

Formulas for designing highpass filters using the pole-zero placement are listed in the following
equations:

When fc < fs=4,

az 1� 2� ðfc=fsÞ � p; good for 0:9 � r < 1 (8.53)

When fc > fs=4,

az � ð1� pþ 2� ðfc=fsÞ � pÞ; good for � 1 < r � �0:9 (8.54)

HðzÞ ¼ Kðz� 1Þ
ðz� aÞ (8.55)

K ¼ ð1þ aÞ
2

(8.56)
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FIGURE 8.36

(a) Pole-zero placement for the first-order highpass filter with fc < fs=4. (b) Pole-zero placement for the first-

order highpass filter with fc > fs=4.
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EXAMPLE 8.20
A first-order highpass filter is required to satisfy the following specifications:

• Sampling rate ¼ 8,000 Hz
• 3 dB cutoff frequency: fc ¼ 3;800 Hz
• Zero gain at 0 Hz

Find the transfer function using the pole-zero placement method.

Solution:
Since the cutoff frequency of 3,800 Hz is much larger than fs=4 ¼ 2;000 Hz, we determine the pole as

az � ð1� pþ 2� ð3;800=8;000Þ � pÞ ¼ �0:8429

The unit-gain scale factor and transfer function are obtained as

K ¼ ð1� 0:8429Þ
2

¼ 0:07854

HðzÞ ¼ 0:07854ðz � 1Þ
ðz þ 0:8429Þ ¼ 0:07854� 0:07854z�1

1þ 0:8429z�1

Note that we can also determine the unit-gain scale factor K by substituting z ¼ ej180
0 ¼ �1 to the transfer

function H
�
z
� ¼ ðz � 1Þ

ðz � aÞ, finding a passband gain at the Nyquist limit fs=2 ¼ 4;000 Hz. We then set the scale

factor to be a reciprocal of the passband gain. That is,

Passbandgain ¼ z � 1

z þ 0:8429

����
z¼1

¼ �1� 1

�1þ 0:8429
¼ 12:7307

Hence, K ¼ 1=12:7307 ¼ 0:07854:

8.8 REALIZATION STRUCTURES OF INFINITE IMPULSE RESPONSE FILTERS
In this section, we will realize the designed IIR filter using direct-form I as well as direct-form II. We
will then realize a higher-order IIR filter using a cascade form.

8.8.1 Realization of Infinite Impulse Response Filters in
Direct-Form I and Direct-Form II

EXAMPLE 8.21
Realize the first-order digital highpass Butterworth filter

HðzÞ ¼ 0:1936� 0:1936z�1

1þ 0:6128z�1

using a direct-form I realization.
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Solution:
From the transfer function, we can identify

b0 ¼ 0:1936; b1 ¼ �0:1936; and a1 ¼ 0:6128

Applying the direct-form I developed in Chapter 6 results in the diagram in Figure 8.37.
The digital signal processing (DSP) equation for implementation is then given by

yðnÞ ¼ �0:6128yðn � 1Þ þ 0:1936xðnÞ � 0:1936xðn � 1Þ

Program 8.14 lists the MATLAB implementation.
Program 8.14. MATLAB program for Example 8.21.

% Sample MATLAB code
sample ¼ 2:2:20; % Input test array
x¼[ 0 0 ]; % Input buffer [x(n) x(n-1) .]
y¼[ 0 0]; % Output buffer [y(n) y(n-1) . ]
b¼[0.1936 -0.1936]; % Numerator coefficients [b0 b1 . ]
a¼[1 0.6128]; % Denominator coefficients [1 a0 a1 .]
for n¼1:1:length(sample) % Processing loop

for k¼2:-1:2
x(k)¼x(k-1); % Shift input by one sample
y(k)¼y(k-1); % Shift output by one sample

end
x(1)¼sample(n); % Get new sample
y(1)¼0; % Digital filtering
for k¼1:1:2
y(1)¼y(1)þx(k)*b(k);

end
for k¼2:2
y(1)¼y(1)-a(k)*y(k);

end
out(n)¼y(1); % Output the filtered sample to output array

end
out

EXAMPLE 8.22
Realize the following digital filter using direct-form II:

HðzÞ ¼ 0:7157þ 1:4314z�1 þ 0:7151z�2

1þ 1:3490z�1 þ 0:5140z�2

z 1 z 1

y(n)
01936.

01936. 0 6128.

+

x n( )

x n( )1 y n( )1

FIGURE 8.37

Realization of IIR filter in Example 8.21 in direct-form I.

8.8 Realization Structures of Infinite Impulse Response Filters 359



Solution:
First, we can identify

b0 ¼ 0:7157; b1 ¼ 1:4314; b2 ¼ 0:7151

and a1 ¼ 1:3490; a2 ¼ 0:5140

Applying the direct-form II realization developed in Chapter 6 leads to Figure 8.38.
There are two difference equations required for implementation:

wðnÞ ¼ xðnÞ � 1:3490wðn � 1Þ � 0:5140wðn � 2Þ

yðnÞ ¼ 0:7157wðnÞ þ 1:4314wðn � 1Þ þ 0:7157wðn � 2Þ

The MATLAB implementation is listed in Program 8.15.

Program 8.15. MATLAB code for Example 8.22.

% Sample MATLAB code
sample ¼2:2:20; % Input test array
x¼[0]; % Input buffer [x(n) ]
y¼[0]; % Output buffer [y(n)]
w¼[0 0 0]; % Buffer for w(n) [w(n) w(n-1) .]
b¼[0.7157 1.4314 0.7157]; % Numerator coefficients [b0 b1 .]
a¼[1 1.3490 0.5140]; % Denominator coefficients [1 a1 a2 .]
for n¼1:1:length(sample) % Processing loop

for k¼3:-1:2
w(k)¼w(k-1); % Shift w(n) by one sample

end
x(1)¼sample(n); % Get new sample
w(1)¼x(1); % Perform IIR filtering
for k¼2:1:3
w(1)¼w(1)-a(k)*w(k);

end
y(1)¼0; % Perform FIR filtering
for k¼1:1:3
y(1)¼y(1)þb(k)*w(k);

end
out(n)¼y(1); % Send the filtered sample to output array

end
out

z 1

y n( )0 7157.

14314.1349.

x n( )

0514. w n( )2

w n( )

z 1

w n( )1

0 7157.

FIGURE 8.38

Realization of IIR filter in Example 8.22 in direct-form II.
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8.8.2 Realization of Higher-Order Infinite Impulse Response Filters via the
Cascade Form

EXAMPLE 8.23
Given a fourth-order filter transfer function designed as

HðzÞ ¼ 0:5108z2 þ 1:0215z þ 0:5108

z2 þ 0:5654z þ 0:4776
� 0:3730z2 þ 0:7460z þ 0:3730

z2 þ 0:4129z þ 0:0790

realize the digital filter using the cascade (series) form via second-order sections.

Solution:
Since the filter is designed using the cascade form, we have two sections of the second-order filters, whose transfer
functions are

H1ðzÞ ¼ 0:5108z2 þ 1:0215z þ 0:5108

z2 þ 0:5654z þ 0:4776
¼ 0:5180þ 1:0215z�1 þ 0:5108z�2

1þ 0:5654z�1 þ 0:4776z�2

and

H2ðzÞ ¼ 0:3730z2 þ 0:7460z þ 0:3730

z2 þ 0:4129z þ 0:0790
¼ 0:3730þ 0:7460z�1 þ 0:3730z�2

1þ 0:4129z�1 þ 0:0790z�2

Each filter section is developed using the direct-form I realization, shown in Figure 8.39.

There are two sets of DSP equations for implementation of the first and second sections, respectively.
First section:

y1ðnÞ ¼ �0:5654y1ðn � 1Þ � 0:4776y1ðn � 2Þ
þ0:5108xðnÞ þ 1:0215xðn � 1Þ þ 0:5108xðn � 2Þ

Second section:

yðnÞ ¼ �0:4129yðn � 1Þ � 0:0790yðn � 2Þ
þ0:3730y1ðnÞ þ 0:7460y1ðn � 1Þ þ 0:3730y1ðn � 2Þ

Again, after we use the direct-form II for realizing each second-order filter, the realization shown in Figure 8.40 is
developed.

z 1

z 1

z 1

z 1

0 5654.
+

x n( )

0 4776.

z 1

z 1

z 1

z 1

y(n)
05108.

0 4129.
+

0 3730.

10215.

05108. 0 0790.

0 3730.

0 7460.

y n1( )

FIGURE 8.39

Cascade realization of IIR filter in Example 8.23 in direct-form I.
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The difference equations for the implementation of the first section are

w1ðnÞ ¼ xðnÞ � 0:5654w1ðn � 1Þ � 0:4776w1ðn � 2Þ

y1ðnÞ ¼ 0:5108w1ðnÞ þ 1:0215w1ðn � 1Þ þ 0:5108w1ðn � 2Þ

The difference equations for the implementation of the second section are

w2ðnÞ ¼ y1ðnÞ � 0:4129w2ðn � 1Þ � 0:0790w2ðn � 2Þ

yðnÞ ¼ 0:3730w2ðnÞ þ 0:7460w2ðn � 1Þ þ 0:3730w2ðn � 2Þ

Note that for both direct-form I and direct-form II, the output from the first filter section becomes the input for the
second filter section.

8.9 APPLICATION: 60-HZ HUM ELIMINATOR AND HEART RATE DETECTION
USING ELECTROCARDIOGRAPHY
Hum noise created by poor power suppliers, transformers, or electromagnetic interference sourced by
a main power supply is characterized by a frequency of 60 Hz and its harmonics. If this noise interferes
with a desired audio or biomedical signal (e.g., in electrocardiography [ECG]), the desired signal could
be corrupted. The corrupted signal is useless without signal processing. It is sufficient to eliminate the
60-Hz hum frequency with its second and third harmonics in most practical applications. We can
complete this by cascading with notch filters having notch frequencies of 60 Hz, 120 Hz, and 180 Hz,
respectively. Figure 8.41 depicts the functional block diagram.

Now let us apply the 60-Hz hum eliminator to an ECG recording system. ECG is a small electrical
signal captured from an ECG sensor. The ECG signal is produced by the activity of the human heart, thus
it can be used for heart rate detection, fetal monitoring, and diagnostic purposes. The single pulse of the
ECG is depicted in Figure 8.42, which shows that the ECG signal is characterized by five peaks and
valleys, labeled P, Q, R, S, and T. The highest positive wave is the R wave. Shortly before and after the R
wave are negative waves called the Q wave and S wave. The P wave comes before the Q wave, while the
T wave comes after the S wave. The Q, R, and S waves together are called the QRS complex.

The properties of the QRS complex, with its rate of occurrence and times, heights, and widths,
provide information to cardiologists concerning various pathological conditions of the heart. The

z 1
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10215.0 5654.

x n( )

05108.
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z 1

z 1

y n( )0 3730.

0 7460.0 4129.

0 3730.

0 0790.

z 1

y n1( )w n1( ) w n2 ( )

FIGURE 8.40

Cascade realization of IIR filter in Example 8.23 in direct-form II.
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(Top) 60-Hz hum eliminator; (middle) the filter frequency response of the eliminator; (bottom) the input signal

spectrum corrupted by the 60-Hz hum and its second and third harmonics.
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The characteristics of the ECG pulse.
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reciprocal of the time period between R wave peaks (in milliseconds) multiplied by 60,000 gives
instantaneous heart rate in beats per minute. On a modern ECG monitor, the acquired ECG signal is
displayed for diagnostic purposes.

However, a major source of frequent interference is the electric-power system. Such interference
appears on the recorded ECG data due to electrical-field coupling between the power lines and the
electrocardiograph or patient, which is the cause of the electrical field surrounding power lines
(mains). Another cause is magnetic induction in the power line, whereby current in the power line
generates a magnetic field around the line. Sometimes, the harmonics of 60-Hz hum exist due to the
nonlinear sensor and signal amplifier effects. If such interference is severe, the recorded ECG data
becomes useless.

In this application, we focus on ECG enhancement for heart rate detection. To significantly reduce
60-Hz interference,we apply signal enhancement to the ECG recording system, as shown in Figure 8.43.

The 60-Hz eliminator removes the 60-Hz interference and has the capability to reduce its second
harmonic of 120 Hz and third harmonic of 180 Hz.

The next objective is to detect the heart rate using the enhanced ECG signal. We need to remove
DC drift and to filter muscle noise, which may occur at approximately 40 Hz or more. If we consider
the lowest heart rate as 30 beats per minute, the corresponding frequency is 30/60 ¼ 0.5 Hz. Choosing
a lower cutoff frequency of 0.25 Hz should be reasonable.

Thus, a bandpass filter with a passband from 0.25 Hz to 40 Hz (range from 0.67 Hz to 40 Hz, dis-
cussed in Webster [1998]), either FIR or IIR type, can be designed to reduce such effects. The resultant
ECGsignal is valid only for the detection of heart rate.Notice that theECG signal after bandpass filtering
with a passband from 0.25Hz to 40Hz is no longer valid for general ECG applications, since the original
ECG signal occupies the frequency range from 0.01 Hz to 250 Hz (diagnostic-quality ECG), as dis-
cussed in Carr and Brown (2001) and Webster (1998). The enhanced ECG signal from the 60-Hz hum
eliminator can serve for general ECG signal analysis (which is beyond the scope of this book). We
summarize the design specifications for the heart rate detection application as follows:

System outputs: Enhanced ECG signal with 60-Hz elimination
Processed ECG signal for heart rate detection

60-Hz eliminator specifications:
Harmonics to be removed: 60 Hz (fundamental)

120 Hz (second harmonic)
180 Hz (third harmonic)

3-dB bandwidth for each filter: 4 Hz
Sampling rate: 600 Hz
Notch filter type: Second-order IIR

60 Hz eliminator
Bandpass filtering

Passband:
0.25 Hz to 40 Hz

Input ECG
signal

Enhanced ECG signal Signal for
heart rate
detection

FIGURE 8.43

ECG signal enhancement system.
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Design method: Pole-zero placement
Bandpass filter specifications:
Passband frequency range: 0.25–40 Hz
Passband ripple: 0.5 dB
Filter type: Chebyshev fourth order
Design method: Bilinear transformation method
DSP sampling rate: 600 Hz

Let us carry out the 60-Hz eliminator design and determine the transfer function and difference
equation for each notch filter and bandpass filter. For the first section with the notch frequency of 60
Hz, applying Equations (8.45) to (8.48) leads to

r ¼ 1� ð4=600Þ � p ¼ 0:9791

q ¼
�
60

600

�
� 360� ¼ 36�

We calculate 2 cos ð36�Þ ¼ 1:6180, 2r cos ð36�Þ ¼ 1:5842, and

K ¼
�
1� 2r cos qþ r2

�
ð2� 2 cos qÞ ¼ 0:9803

Hence it follows that

H1ðzÞ ¼ 0:9803� 1:5862z�1 þ 0:9803z�2

1� 1:5842z�1 þ 0:9586z�2

y1ðnÞ ¼ 0:9803xðnÞ � 1:5862xðn� 1Þ þ 0:9802xðn� 2Þ þ 1:5842y1ðn� 1Þ � 0:9586y1ðn� 2Þ
Similarly, we obtain the transfer functions and difference equations for the second section and third
section as follows:

Second section:

H2ðzÞ ¼ 0:9794� 0:6053z�1 þ 0:9794z�2

1� 0:6051z�1 þ 0:9586z�2

y2ðnÞ ¼ 0:9794y1ðnÞ � 0:6053y1ðn� 1Þ þ 0:9794y1ðn� 2Þ þ 0:6051y2ðn� 1Þ � 0:9586y2ðn� 2Þ

Third section:

H3ðzÞ ¼ 0:9793þ 0:6052z�1 þ 0:9793z�2

1þ 0:6051z�1 þ 0:9586z�2

y3ðnÞ ¼ 0:9793y2ðnÞ þ 0:6052y2ðn� 1Þ þ 0:9793y2ðn� 2Þ � 0:6051y3ðn� 1Þ � 0:9586y3ðn� 2Þ

The cascaded frequency responses are plotted in Figure 8.44. As we can see, the rejection for each
notch frequency is below 50 dB.
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The second-stage design using the BLT gives the bandpass filter transfer function and difference
equation:

H4ðzÞ ¼ 0:0464� 0:0927z�2 þ 0:0464z�4

1� 3:3523z�1 þ 4:2557z�2 � 2:4540z�3 þ 0:5506z�4

y4ðnÞ ¼ 0:046361y3ðnÞ � 0:092722y3ðn� 2Þ þ 0:046361y3ðn� 4Þ
þ03:352292y4ðn� 1Þ � 4:255671y4ðn� 2Þ þ 2:453965y4ðn� 3Þ � 0:550587y4ðn� 4Þ

Figure 8.45 depicts the processed results at each stage. In Figure 8.45, plot (a) shows the initial corrupted
ECG data, which includes 60-Hz interference and its 120 and 180 Hz harmonics, along with muscle
noise. Plot (b) shows that the 60-Hz interference and its harmonics of 120 and 180Hz have been removed.
Finally, plot (c) displays the result after the bandpass filter. As we expected, the muscle noise has been
removed; and the enhanced ECG signal is observed. AMATLAB simulation is provided in Program 8.16.

With the procssed ECG signal, a simple zero-cross algorithm can be designed to detect the heart
rate. Based on plot (c) in Figure 8.45, we use a threshold value of 0.5 and continuously compare each
of two consecutive samples with the threshold. If both results are opposite, then a zero crossing is
detected. Each zero-crossing measure is given by

zero crossing ¼ jcur sign� pre signj
2
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FIGURE 8.44

Frequency responses of three cascaded notch filters.
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where cur sign and pre sign are determined based on the current input xðnÞ, the past input xðn� 1Þ,
and the threshold value, given as

if xðnÞ � threshold cur sign ¼ 1 else cur sign ¼ �1

if xðn� 1Þ � threshold pre sign ¼ 1 else pre sign ¼ �1

Figure 8.46 summarizes the algorithm.
After detecting the total number of zero crossings, the number of peaks will be half the number of

zero crossings. The heart rate in terms of pulses per minute can be determined by

Heart rate ¼ 60�
Number of enhanced ECG data

fs

��
�
zero � crossing number

2

�

In our simulation, we have detected 6 zero-crossing points using 1,500 captured data points at
a sampling rate of 600 samples per second. Hence,

0 0.5 1 1.5 2 2.5
-1

0

1
(a)

0 0.5 1 1.5 2 2.5
-1

0

1(b)

0 0.5 1 1.5 2 2.5
-1

0

1
(c)

Time (sec.)

FIGURE 8.45

Results of ECG signal processing. (a) Initial corrupted ECG data; (b) ECG data enhanced by removing 60-Hz

interference; (c) ECG data with DC blocking and noise removal for heart rate detection.
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Heart rate ¼ 60�
1; 500

600

��
�
6

2

�
¼ 72 pulses per minute

The MATLAB implementation of the zero-crossing detection can be found in the last part in
Program 8.16.
Program 8.16. MATLAB program for heart rate detection using an ECG signal.

load ecgbn.dat; % Load noisy ECG recording
b1¼[0.9803 -1.5862 0.9803]; %Notch filter with a notch frequency of 60 Hz
a1¼[1 -1.5842 0.9586];
b2¼[0.9794 -0.6053 0.9794]; % Notch filter with a notch frequency 120 Hz
a2¼[1 -0.6051 0.9586];
b3¼[0.9793 0.6052 0.9793]; % Notch filter with a notch frequency of 180 Hz
a3¼[1 0.6051 0.9586];
y1¼filter(b1,a1,ecgbn); % First section filtering
y2¼filter(b2,a2,y1); % Second section filtering
y3¼filter(b3,a3,y2); % Third section filtering
%Bandpass filter
fs¼600; % Sampling rate
T¼1/600; % Sampling interval
% BLT design
wd1¼2*pi*0.25;

threshold=0.5
zerocrossing=0

pre_sign=-1 and cur_sign=-1
get x(n) and x(n-1)

Get enhanced ECG data array x(n)
with N data

if x(n-1))>threshold then pre_sign=1
if x(n)>threshold then cur_sign=1

 zerocrossing=zerocrossing+
abs(cur_sign-pre_sign)/2

n=n+1
is n=N ?

No

Yes

Start

Stop

FIGURE 8.46

A simple zero-crossing algorithm.
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wd2¼2*pi*40;
wa1¼(2/T)*tan(wd1*T/2);
wa2¼(2/T)*tan(wd2*T/2);
[B,A]¼lp2bp([1.4314], [1 1.4652 1.5162],sqrt(wa1*wa2),wa2-wa1);
[b,a]¼bilinear(B,A,fs);
b ¼[ 0.046361 0 -0.092722 0 0.046361]
a ¼[1 -3.352292 4.255671 -2.453965 0.550587]
y4¼filter(b,a,y3); %Bandpass filtering
t¼0:T:1499*T; % Recover time
subplot(3,1,1);plot(t,ecgbn);grid;ylabel(’(a)’);
subplot(3,1,2);plot(t,y3);grid;ylabel(’(b)’);
subplot(3,1,3);plot(t,y4);grid;ylabel(’(c)’);
xlabel(’Time (sec.)’);
%Zero cross algorithm
zcross¼0.0;threshold¼0.5
for n¼2:length(y4)
pre_sign¼-1;cur_sign¼-1;
if y4(n-1)>threshold
pre_sign¼1;

end
if y4(n)>threshold
cur_sign¼1;

end
zcross¼zcrossþabs(cur_sign-pre_sign)/2;

end
zcross % Output the number of zero crossings
rate¼60*zcross/(2*length(y4)/600) % Output the heart rate

8.10 COEFFICIENT ACCURACY EFFECTS ON INFINITE IMPULSE
RESPONSE FILTERS
In practical applications, the IIR filter coefficients with infinite precision may be quantized due
to the finite word length. Quantization of infinite precision filter coefficients changes the
locations of the zeros and poles of the designed filter transfer function, and thus changes the
filter frequency responses. Since analysis of filter coefficient quantization for the IIR filter is
very complicated and beyond the scope of this textbook, we pick only a couple of simple cases
for discussion. Filter coefficient quantization for specific processors such as the fixed-point DSP
processor and floating-point processor will be included in Chapter 9. To illustrate this effect, we
look at the following first-order IIR filter transfer function with filter coefficients with infinite
precision:

HðzÞ ¼ b0 þ b1z
�1

1þ a1z�1
(8.57)
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After filter coefficient quantization, we have the quantized digital IIR filter transfer function:

HqðzÞ ¼ bq0 þ bq1z
�1

1þ a
q
1z

�1
(8.58)

Solving for the pole and zero, we get

z1 ¼ �b
q
1

b
q
0

(8.59)

p1 ¼ �aq1 (8.60)

Now considering a second-order IIR filter transfer function as

HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2

1þ a1z�1 þ a2z�2
(8.61)

and its quantized IIR filter transfer function

HqðzÞ ¼ bq0 þ bq1z
�1 þ bq2z

�2

1þ aq1z
�1 þ aq2z

�2
(8.62)

solving for poles and zeros yields

z1;2 ¼ �0:5$
b
q
1

bq0
� j

�
b
q
2

bq0
� 0:25$

�
b
q
1

bq0

�2�1
2

(8.63)

p1;2 ¼ �0:5$aq1 � j
�
a
q
2 � 0:25$

�
a
q
1

�2
1
2

(8.64)

With Equations (8.59) and (8.60) for the first-order IIR filter, and Equations (8.63) and (8.64) for the
second-order IIR filter, we can study the effects of location changes of the poles and zeros, and the
frequency responses due to filter coefficient quantization.

EXAMPLE 8.24
Given the first-order IIR filter

HðzÞ ¼ 1:2341þ 0:2126z�1

1� 0:5126z�1

and assuming that we use 1 sign bit and 6 bits for encoding the magnitude of the filter coefficients, find the
quantized transfer function and pole-zero locations.

Solution:
Let us find the pole and zero for infinite precision filter coefficients. Solving 1:2341z þ 0:2126 ¼ 0 leads to
a zero location z1 ¼ �0:17227. Solving z � 0:5126 ¼ 0 gives a pole location p1 ¼ 0:5126.

Now let us quantize the filter coefficients. Quantizing 1.2341 can be illustrated as

1:2341� 25 ¼ 39:4912 ¼ 39 ðrounded to integerÞ
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Since the maximum magnitude of the filter coefficients is 1.2341, which is between 1 and 2, we scale all
coefficient magnitudes by a factor of 25 and round off each value to an integer whose magnitude is encoded using
6 bits. As shown in the quantization, 6 bits are required to encode the integer 39. When the coefficient integer is
scaled back by the same scale factor, the corresponding quantized coefficient with finite precision (7 bits,
including the sign bit) is found to be

bq
0 ¼ 39=25 ¼ 1:21875

Following the same procedure, we can obtain

bq
1 ¼ 0:1875

and

aq1 ¼ �0:5

Thus we achieve the quantized transfer function

HqðzÞ ¼ 1:21875þ 0:1875z�1

1� 0:5z�1

Solving for the pole and zero leads to

p1 ¼ 0:5

and

z1 ¼ �0:1538

It is clear that the pole and zero locations change after the filter coefficients are quantized. This
effect can change the frequency response of the designed filter as well. In Example 8.25, we study
quantization of the filter coefficients for the second-order IIR filter and examine the pole/zero location
changes and magnitude/phase frequency responses.

EXAMPLE 8.25
A second-order digital lowpass Chebyshev filter with a cutoff frequency of 3.4 kHz and 0.5 dB ripple on passband
at a sampling frequency of 8,000 Hz is designed. Assume that we use 1 sign bit and 7 bits for encoding the
magnitude of each filter coefficient. The z-transfer function is given by

HðzÞ ¼ 0:7434þ 1:4865z�1 þ 0:7434z�2

1þ 1:5149z�1 þ 0:6346z�2

a. Find the quantized transfer function and pole and zero locations.
b. Plot the magnitude and phase responses, respectively.

Solution:

a. Since the maximummagnitude of the filter coefficients is between 1 and 2, the scale factor for quantization is
chosen to be 26, so that the coefficient integer can be encoded using 7 bits.
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After performing filter coefficient encoding, we have

HqðzÞ ¼ 0:7500þ 1:484375z�1 þ 0:7500z�2

1þ 1:515625z�1 þ 0:640625z�2

For comparison, the uncoded zeros and encoded zeros of the transfer function HðzÞ are
Uncoded zeros: �1, �1
Coded zeros: �0.9896 þ 0.1440i, �0.9896 �0.1440i

Similarly, the uncoded poles and coded poles of the transfer function HqðzÞ are
Uncoded poles: �0.7574 þ 0.2467i, �0.7574 �0.2467i
Coded poles: �0.7578 þ 0.2569i, �0.7578 �0.2569i
b. The comparisons for the magnitude responses and phase responses are listed in Program 8.17 and plotted in

Figure 8.47.

Program 8.17. MATLAB m-file for Example 8.25.

% Example 8.25
% Plot the magnitude and phase responses
fs¼8000; % Sampling rate
B¼[0.7434 1.4868 0.7434];
A¼[1 1.5149 0.6346];

[hz,f]¼freqz(B,A,512,fs); % Calculate reponses without coefficient quantization
phi¼180*unwrap(angle(hz))/pi;
Bq¼[0.750 1.4834375 0.75000];
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FIGURE 8.47

Frequency responses (dash-dotted line, quantized coefficients; solid line, unquantized coefficients).
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Aq¼[1 1.515625 0.640625];
[hzq,f]¼freqz(Bq,Aq,512,fs); % Calculate responses with coefficient quantization
phiq¼180*unwrap(angle(hzq))/pi;
subplot(2,1,1), plot(f,20*log10(abs(hz)),f,20*log10(abs(hzq)), ’-.’);grid;
axis([0 4000 -10 2])
xlabel(’Frequency (Hz)’);
ylabel(’Magnitude Response (dB)’);
subplot(2,1,2), plot(f, phi, f, phiq,’-.’); grid;
xlabel(’Frequency (Hz)’);
ylabel(’Phase (degrees)’);

From Figure 8.47, we observe that the quantization of IIR filter coefficients has more effect on
magnitude response and less effect on phase response in the passband. In practice, one needs to verify
this effect to make sure that the magnitude frequency response meets the filter specifications.

8.11 APPLICATION: GENERATION AND DETECTION OF DTMF TONES USING
THE GOERTZEL ALGORITHM
In this section, we study an application of the digital filters to the generation and detection of dual-tone
multifrequency (DTMF) signals used for telephone touch keypads. In our daily life, DTMF touch tones
produced by telephone keypads on handsets are applied to dial telephone numbers routed to telephone
companies, where the DTMF tones are digitized and processed and the detected dialed telephone digits
are used for the telephone switching system to ring the party to be called. A telephone touch keypad is
shown in Figure 8.48, where each key is represented by two tones with their specified frequencies. For
example, if the key “7” is pressed, the DTMF signal with the designated frequencies of 852 Hz and
1,209 Hz is generated, which is sent to the central office at the telephone company for processing.

1 2 3

4 5 6

7 8 9

* 0 #

1209 Hz 1336 Hz 1477 Hz

697 Hz

770 Hz

852 Hz

941 Hz

FIGURE 8.48

DTMF tone specifications.
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At the central office, the received DTMF tones are detected through the digital filters and some logic
operations are used to decode the dialed signal consisting of 852 Hz and 1,209 Hz as key “7”. The
frequencies defined for each key are in Figure 8.48.

8.11.1 Single-Tone Generator

Now, let us look at a digital tone generator whose transfer function is obtained from the z-transform
function of a sinusoidal sequence sinðnU0Þ as

HðzÞ ¼ z sinU0

z2 � 2z cosU0 þ 1
¼ z�1 sinU0

1� 2z�1 cosU0 þ z�2
(8.65)

where U0 is the normalized digital frequency. Given the sampling rate of the DSP system and the
frequency of the tone to be generated, we have the relationship

U0 ¼ 2pf0=fs (8.66)

Applying the inverse z-transform to the transfer function leads to the difference equation

yðnÞ ¼ sinU0xðn� 1Þ þ 2 cosU0yðn� 1Þ � yðn� 2Þ (8.67)

since

Z�1ðHðzÞÞ ¼ Z�1

�
z sinU0

z2 � 2z cosU0 þ 1

�
¼ sinðU0nÞ ¼ sinð2pf0n=fsÞ

which is the impulse response. Hence, to generate a pure tone with an amplitude of A, an impulse
function xðnÞ ¼ AdðnÞ must be used as the input to the digital filter, as illustrated in Figure 8.49.

Now, we illustrate implementation. Assuming that the sampling rate of the DSP system is 8,000
Hz, we need to generate a digital tone of 1 kHz. Then we compute

U0 ¼ 2p� 1; 000=8; 000 ¼ p=4; sinU0 ¼ 0:707107; and 2 cosU0 ¼ 1:414214

The required filter transfer function is determined as

HðzÞ ¼ 0:707107z�1

1� 1:414214z�1 þ z�2

The MATLAB simulation using the input xðnÞ ¼ dðnÞ is displayed in Figure 8.50, where the top plot
is the generated tone of 1 kHz, and the bottom plot shows its spectrum. The corresponding MATLAB
code is in Program 8.18.
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FIGURE 8.49

Single-tone generator.
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Note that if we replace the filter H(z) with the z-transform of other sequences such as a cosine function
and use the impulse sequence as the filter input, the filter will generate the corresponding digital wave
such as the digital cosine wave.
Program 8.18. MATLAB program for generating a sinusoid.

fs¼8000; % Sampling rate
t¼0:1/fs:1; % Time vector for 1 second
x¼zeros(1,length(t)); % Initialize input to be zero
x(1)¼1; % Set up impulse function
y¼filter([0 0.707107],[1 -1.414214 1],x); % Perform filtering
subplot(2,1,1);plot(t(1:400),y(1:400));grid
ylabel(’y(n) 1 kHz tone’); xlabel(’time (second)’)
Ak¼2*abs(fft(y))/length(y);Ak(1)¼Ak(1)/2; % One-sided amplitude spectrum
f¼[0:1:(length(y)-1)/2]*fs/length(y); % Indices to frequencies (Hz) for plot
subplot(2,1,2);plot(f,Ak(1:(length(y)þ1)/2));grid
ylabel(’Spectrum for y(n)’); xlabel(’frequency (Hz)’)

8.11.2 Dual-Tone Multifrequency Tone Generator

Now that the principle of a single-tone generator is illustrated, we can extend it to develop the DTMF
tone generator using two digital filters in parallel. The DTMF tone generator for key “7” is depicted in
Figure 8.51.
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FIGURE 8.50

Plots of a generated single tone of 1,000 Hz and its spectrum.
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Here we generate the DTMF tone for key “7” for a duration of one second, assuming a sampling
rate of 8,000 Hz. The generated tone and its spectrum are plotted in Figure 8.52 for verification, while
the MATLAB implementation is given in Program 8.19.
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FIGURE 8.51

Digital DTMF tone generator for the keypad digit “7”.
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Plots of the generate DTMF tone of “7” and its spectrum.
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Program 8.19. MATLAB program for DTMF tone generation.

close all; clear all
fs¼8000; % Sampling rate
t¼0:1/fs:1; % 1-second time vector
x¼zeros(1,length(t)); % Initialize input to be zero
x(1)¼1; % Set up impulse function
% Generate 852-Hz tone
y852¼filter([0 sin(2*pi*852/fs)],[1 -2*cos(2*pi*852/fs) 1],x);
% Generate 1209-Hz tone
y1209¼filter([0 sin(2*pi*1209/fs) ],[1 -2*cos(2*pi*1209/fs) 1],x); % Filtering
y7¼y852þy1209; % Generate DTMF tone
subplot(2,1,1);plot(t(1:400),y7(1:400));grid
ylabel(’y(n) DTMF: number 7’);
xlabel(’time (second)’)
Ak¼2*abs(fft(y7))/length(y7);Ak(1)¼Ak(1)/2; % One-sided amplitude spectrum
f¼[0:1:(length(y7)-1)/2]*fs/length(y7); % Map indices to frequencies (Hz) for plot
subplot(2,1,2);plot(f,Ak(1:(length(y7)þ1)/2));grid
ylabel(’Spectrum for y7(n)’);
xlabel(’frequency (Hz)’);

8.11.3 Goertzel Algorithm

In practice, the DTMF tone detector is designed using the Goertzel algorithm. This is a special and
powerful algorithm used for computing discrete Fourier tansform (DFT) coefficients and signal spectra
using a digital filtering method. The modified Goertzel algorithm can be used for computing signal
spectra without involving complex algebra like the DFT algorithm.

Specifically, the Goertzel algorithm is a filtering method for computing the DFT coefficient XðkÞ at
the specified frequency bin k with the given N digital data xð0Þ; xð1Þ;/; xðN � 1Þ. We can begin to
illustrate the Goertzel algorithm using the second-order IIR digital Goertzel filter, whose transfer
function is given by

HkðzÞ ¼ YkðzÞ
XðzÞ ¼ 1�Wk

Nz
�1

1� 2cos

�
2pk

N

�
z�1 þ z�2

(8.68)

with the input data xðnÞ for n ¼ 0; 1;/;N � 1, and the last element set to be xðNÞ ¼ 0. Notice that
Wk

N ¼ e�2pk
N . We will process the data sequence N þ 1 times to achieve the filter output as ykðnÞ for

n ¼ 0; 1;/;N, where k is the frequency index (bin number) of interest. The DFT coefficient XðkÞ is
the last datum from the Goertzel filter, that is,

XðkÞ ¼ ykðNÞ (8.69)

The implementation of the Goertzel filter is presented by direct-form II realization in Figure 8.53.
According to the direct-form II realization, we can write the Goertzel algorithm as follows:

xðNÞ ¼ 0 (8.70)

For n ¼ 0; 1;/;N
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vkðnÞ ¼ 2 cos

�
2pk

N

�
vkðn� 1Þ � vkðn� 2Þ þ xðnÞ (8.71)

yk
�
n
� ¼ vk

�
n
��Wk

Nvk
�
n� 1

�
(8.72)

with initial conditions vkð�2Þ ¼ 0, vkð�1Þ ¼ 0
Then the DFT coefficient XðkÞ is given as

XðkÞ ¼ ykðNÞ (8.73)

The squared magnitude x(k) is computed as

jXðkÞj2¼ v2kðNÞ þ v2kðN � 1Þ � 2 cos

�
2pk

N

�
vkðNÞvkðN � 1Þ (8.74)

We show the derivation of Equation (8.74) as follows. Note that Equation (8.72) involves complex
algebra, since the equation contains only one complex number, a factor

Wk
N ¼ e�j2pk

N ¼ cos

�
2pk

N

�
� j sin

�
2pk

N

�

discussed in Chapter 4. If our objective is to compute the spectrum value, we can substitute n ¼ N into
Equation (8.72) to obtain XðkÞ and multiply XðkÞ by its conjugate X	ðkÞ to achieve the squared
magnitude the DFT coefficient. It follows (Ifeachor and Jervis, 2002) that

jXðkÞj2¼ XðkÞX	ðkÞ
Since

X
�
k
� ¼ yk

�
N
��Wk

Nvk
�
N � 1

�
X	�k� ¼ yk

�
N
��W�k

N vk
�
N � 1

�
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FIGURE 8.53

Second-order Goertzel IIR filter.
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then

jXðkÞj2¼ �
yk
�
N
��Wk

Nyk
�
N � 1

���
yk
�
N
��W�k

N yk
�
N � 1

��
¼ y2k

�
N
�þ y2k

�
N � 1

�� �Wk
N þW�k

N

�
yk
�
N
�
yk
�
N � 1

� (8.75)

Using Euler’s identity yields

Wk
N þW�k

N ¼ e�j2p
N
k þ ej

2p
N
k ¼ 2 cos

�
2pk

N

�
(8.76)

Substituting Equation (8.76) into Equation (8.75) leads to Equation (8.74).
We can see that the DSP equation for vkðkÞ and computation of the squared magnitude of the DFT

coefficient jXðkÞj2 do not involve any complex algebra. Hence, we will use this advantage for later
development. To illustrate the algorithm, let us consider Example 8.26.

EXAMPLE 8.26
Given a digital data sequence of length 4 as xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4, use the Goertzel
algorithm to compute DFT coefficient X ð1Þ and the corresponding spectral amplitude at the frequency bin
k ¼ 1.

Solution:
We have k ¼ 1, N ¼ 4, xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4. Note that

2 cos

�
2p

4

�
¼ 0 and W1

4 ¼ e�j2p�1
4 ¼ cos

�p
2



� jsin

�p
2



¼ �j

We first write the simplified difference equations:

xð4Þ ¼ 0

For n ¼ 0;1;/;4

v1ðnÞ ¼ �v1ðn � 2Þ þ xðnÞ

y1ðnÞ ¼ v1ðnÞ þ jv1ðn � 1Þ

Then

X ð1Þ ¼ y1ð4Þ

jX ð1Þj2 ¼ v21

�
4


þ v21

�
3



The digital filter process is demonstrated in the following:

v1ð0Þ ¼ �v1ð � 2Þ þ xð0Þ ¼ 0þ 1 ¼ 1

y1ð0Þ ¼ v1ð0Þ þ jv1ð � 1Þ ¼ 1þ j � 0 ¼ 1

v1ð1Þ ¼ �v1ð � 1Þ þ xð1Þ ¼ 0þ 2 ¼ 2
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y1ð1Þ ¼ v1ð1Þ þ jv1ð0Þ ¼ 2þ j � 1 ¼ 2þ j

v1ð2Þ ¼ �v1ð0Þ þ xð2Þ ¼ �1þ 3 ¼ 2

y1ð2Þ ¼ v1ð2Þ þ jv1ð1Þ ¼ 2þ j � 2 ¼ 2þ j2

v1ð3Þ ¼ �v1ð1Þ þ xð3Þ ¼ �2þ 4 ¼ 2

y1ð3Þ ¼ v1ð3Þ þ jv1ð2Þ ¼ 2þ j � 2 ¼ 2þ j2

v1ð4Þ ¼ �v1ð2Þ þ xð4Þ ¼ �2þ 0 ¼ �2

y1ð4Þ ¼ v1ð4Þ þ jv1ð3Þ ¼ �2þ j � 2 ¼ �2þ j2

Then the DFT coefficient and its squared magnitude are determined as

X ð1Þ ¼ y1ð4Þ ¼ �2þ j2

jX ð1Þj2 ¼ v21
�
4
�þ v21

�
3
� ¼ ð � 2Þ2þð2Þ2 ¼ 8

Thus, the two-sided amplitude spectrum is computed as

A1 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jX ð1Þj2


r
¼ 0:7071

and the corresponding single-sided amplitude spectrum is A1 ¼ 2� 0:707 ¼ 1:4141.

From this simple illustrative example, we see that the Goertzel algorithm has the following
advantages:

1. We can apply the algorithm for computing the DFT coefficient XðkÞ for a specified frequency
bin k; unlike the fast Fourier transform (FFT) algorithm, all the DFT coefficients are computed
once it is applied.

2. If we want to compute the spectrum at frequency bin k, that is, jXðkÞj, Equation (8.71) shows that
we need to process vkðnÞN þ 1 times and then compute jXðkÞj2. The operations avoid complex
algebra.

If we use the modified Goertzel filter in Figure 8.54, then the corresponding transfer function is
given by

GkðzÞ ¼ VkðzÞ
XðzÞ ¼ 1

1� 2 cos

�
2pk

N

�
z�1 þ z�2

(8.77)
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The modified Goertzel algorithm becomes the following:

xðNÞ ¼ 0

For n ¼ 0; 1;/;N

vkðnÞ ¼ 2 cos

�
2pk

N

�
vkðn� 1Þ � vkðn� 2Þ þ xðnÞ

with initial conditions vkð�2Þ ¼ 0 and vkð�1Þ ¼ 0
Then the squared magnitude of the DFT coefficient is given by

jXðkÞj2 ¼ v2kðNÞ þ v2kðN � 1Þ � 2 cos

�
2pk

N

�
vkðNÞvkðN � 1Þ

EXAMPLE 8.27
Given a digital data sequence of length 4 as xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 3, and xð3Þ ¼ 4, use the Goertzel
algorithm to compute the spectral amplitude at the frequency bin k ¼ 0.

Solution:

k ¼ 0; N ¼ 4; xð0Þ ¼ 1; xð1Þ ¼ 2; xð2Þ ¼ 3; and xð3Þ ¼ 4

Using the modified Goertzel algorithm and noting that 2$cos

�
2p

4
� 0

�
¼ 2, we obtain the simplified difference

equations as follows:

xð4Þ ¼ 0

For n ¼ 0;1;/;4

v0ðnÞ ¼ 2v0ðn � 1Þ � v0ðn � 2Þ þ xðnÞ

Then

jX ð0Þj2 ¼ v20
�
4
�þ v20

�
3
�� 2v0

�
4
�
v0
�
3
�

z 1

+

2 cos
k2

N

x n( )

1 v nk ( )2

v nk ( )

z 1

v nk ( )1

FIGURE 8.54

Modified second-order Goertzel IIR filter.
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The digital filtering is performed as

v0ð0Þ ¼ 2v0ð � 1Þ � v0ð � 2Þ þ xð0Þ ¼ 0þ 0þ 1 ¼ 1

v0ð1Þ ¼ 2v0ð0Þ � v0ð � 1Þ þ xð1Þ ¼ 2� 1þ 0þ 2 ¼ 4

v0ð2Þ ¼ 2v0ð1Þ � v0ð0Þ þ xð2Þ ¼ 2� 4� 1þ 3 ¼ 10

v0ð3Þ ¼ 2v0ð2Þ � v0ð1Þ þ xð3Þ ¼ 2� 10� 4þ 4 ¼ 20

v0ð4Þ ¼ 2v0ð3Þ � v0ð2Þ þ xð4Þ ¼ 2� 20� 10þ 0 ¼ 30

Then the squared magnitude is determined by

jX ð0Þj2 ¼ v20

�
4


þ v20

�
3


� 2v0

�
4


v0

�
3



¼ ð30Þ2þð20Þ2�2� 30� 20 ¼ 100

Thus, the amplitude spectrum is computed as

A0 ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jX ð0Þj2


r
¼ 2:5

A MATLAB function for the Geortzel algorithm is shown in Program 8.20.

Program 8.20. MATLAB function for Geortzel Algorithm.

function [ Xk, Ak] ¼ galg(x,k)
% Geortzel Algorithm
% [ Xk, Ak] ¼ galg(x,k)
% x¼input vetcor; k¼frequency index
% Xk¼ kth DFT coeficient; Ak¼magnitude of the kth DFT coefficient
N¼length(x); x¼[x 0];
vk¼zeros(1,Nþ3);
for n¼1:Nþ1

vk(nþ2)¼2*cos(2*pi*k/N)*vk(nþ1)-vk(n)þx(n);
end
Xk¼vk(Nþ3)-exp(-2*pi*j*k/N)*vk(Nþ2);
Ak¼vk(Nþ3)*vk(Nþ3)þvk(Nþ2)*vk(Nþ2)-2*cos(2*pi*k/N)*vk(Nþ3)*vk(Nþ2);
Ak¼sqrt(Ak)/N;
end

EXAMPLE 8.28
Use Program 8.20 to verify the results in Examples 8.26 and 8.27.

Solution:

a. For Example 8.26, we obtain
>> x¼[1 2 3 4]
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x¼ 1 2 3 4
>> [X1, A1]¼galg(x,1)
X1 ¼ -2.0000 þ 2.0000i
A1 ¼0.7071

b. For Example 8.27, we obtain

>> x¼[1 2 3 4]
x¼ 1 2 3 4
>> [X0, A0]¼galg(x,1)
X0 ¼ 10
A0 ¼ 2.5000

8.11.4 Dual-Tone Multifrequency Tone Detection Using
the Modified Goertzel Algorithm

Based on the specified frequencies of each DTMF tone shown in Figure 8.48 and the modified Goertzel
algorithm, we can develop the following design principles for DTMF tone detection.

1. When the digitized DTMF tone xðnÞ is received, it has two nonzero frequency components from the
following seven: 697, 770, 852, 941, 1,209, 1,336, and 1,477 Hz.

2. We can apply the modified Goertzel algorithm to compute seven spectral values, which
correspond to the seven frequencies in (1). The single-sided amplitude spectrum is
computed as

Ak ¼ 2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXðkÞj2

q
(8.78)

3. Since the modified Goertzel algorithm is used, there is no complex algebra involved. Ideally, there
are two nonzero spectral components. We will use these two nonzero spectral
components to determine which key is pressed.

4. The frequency bin number (frequency index) can be determined based on the sampling rate
fs, and the data size of N via the following relation:

k ¼ f

fs
� N ðround off to an integerÞ (8.79)

Given the key frequency specification in Table 8.12, we can determine the frequency bin k for each
DTMF frequency with fs ¼ 8;000 Hz and N ¼ 205.
The DTMF detector block diagram is shown in Figure 8.55.

5. The threshold value can be the sum of all seven spectral values divided by a factor of 4. Note
that there are only two nonzero spectral values, hence the threshold value should ideally be half
of the individual nonzero spectral value. If the spectrum value is larger than the threshold
value, then the logic operation outputs logic 1; otherwise, it outputs logic 0. Finally, the
logic operation at the last stage is to decode the key information based on the 7-bit binary
pattern.
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EXAMPLE 8.29
Given a DSP system with fs ¼ 8;000 Hz and data size N ¼ 205, seven Goertzel IIR filters are implemented for
DTMF tone detection. Determine the following for the frequencies corresponding to key 7.

a. Frequency bin numbers
b. The Goertzel filter transfer functions and DSP equations
c. Equations for calculating amplitude spectral values

Table 8.12 DTMF Frequencies and Their Frequency
Bins

DTMF Frequency (Hz) Frequency Bin: k[
f

fs
3N

697 18

770 20

852 22

941 24

1209 31

1336 34

1477 38
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FIGURE 8.55

DTMF detector using the Goertzel algorithm.
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Solution:
For key 7, we have fL ¼ 852 Hz and fH ¼ 1;209 Hz.
a. Using Equation (8.79), we get

kL ¼ 852

8;000
� 205z22 and kH ¼ 1;209

8;000
� 205z31

b. Since 2cos

�
2p� 22

205

�
¼ 1:5623, and 2cos

�
2p� 31

205

�
¼ 1:1631, it follows that

H22ðzÞ ¼ 1

1� 1:5623z�1 þ z�2

and

H31ðzÞ ¼ 1

1� 1:1631z�1 þ z�2

The DSP equations are therefore given by

v22ðnÞ ¼ 1:5623v22ðn � 1Þ � v22ðn � 2Þ þ xðnÞ with xð205Þ ¼ 0; for n ¼ 0;1;/;205

v31ðnÞ ¼ 1:1631v31ðn � 1Þ � v31ðn � 2Þ þ xðnÞ with xð205Þ ¼ 0; for n ¼ 0;1;/;205

c. The amplitude spectral values are determined by

jX ð22Þj2 ¼ ðv22ð205ÞÞ2þðv22ð204ÞÞ2�1:5623ðv22ð205ÞÞ � ðv22ð204ÞÞ

A22 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX ð22Þj2

q
205

and

jX ð31Þj2 ¼ ðv31ð205ÞÞ2þðv31ð204ÞÞ2�1:1631ðv31ð205ÞÞ � ðv31ð204ÞÞ

A31 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX ð31Þj2

q
205

The MATLAB simulation for decoding key 7 is shown in Program 8.21. Figure 8.56(a) shows the
frequency responses of the second-order Goertzel bandpass filters. The input is generated as shown in
Figure 8.52. After filtering, the calculated spectral values and threshold value for decoding key 7 are
displayed in Figure 8.56(b), where only two spectral values corresponding to the frequencies of 770 Hz
and 1,209 Hz are above the threshold, and are encoded as logic 1. According to the key information in
the Figure 8.55, the final logic operation decodes the key as 7.

The principle can easily be extended to transmit the ASCII (American Standard Code for Infor-
mation Interchange) code or other types of code using the parallel Goertzel filter bank. If the calculated
spectral value is larger than the threshold value, then the logic operation outputs logic 1; otherwise,
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it outputs logic 0. Finally, the logic operation at the last stage decodes the key information based on the
7-bit binary pattern.
Program 8.21. DTMF detection using the Goertzel algorithm.

close all;clear all;
% DTMF tone generator
N¼205;
fs¼8000; t¼[0:1:N-1]/fs; % Sampling rate and time vector
x¼zeros(1,length(t));x(1)¼1; % Generate the impulse function
%Generation of tones
y697¼filter([0 sin(2*pi*697/fs)],[1 -2*cos(2*pi*697/fs) 1],x);
y770¼filter([0 sin(2*pi*770/fs)],[1 -2*cos(2*pi*770/fs) 1],x);
y852¼filter([0 sin(2*pi*852/fs)],[1 -2*cos(2*pi*852/fs) 1],x);
y941¼filter([0 sin(2*pi*941/fs)],[1 -2*cos(2*pi*941/fs) 1],x);
y1209¼filter([0 sin(2*pi*1209/fs) ],[1 -2*cos(2*pi*1209/fs) 1],x);
y1336¼filter([0 sin(2*pi*1336/fs)],[1 -2*cos(2*pi*1336/fs) 1],x);
y1477¼filter([0 sin(2*pi*1477/fs)],[1 -2*cos(2*pi*1477/fs) 1],x);
key¼input(’input of the following keys: 1,2,3,4,5,6,7,8,9,*,0,# ¼>’,’s’);
yDTMF¼[];
if key¼¼’1’ yDTMF¼y697þy1209; end
if key¼¼’2’ yDTMF¼y697þy1336; end
if key¼¼’3’ yDTMF¼y697þy1477; end
if key¼¼’4’ yDTMF¼y770þy1209; end
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FIGURE 8.56

(a) Goertzel filter bank frequency responses; (b) display of spectral values and threshold for key 7.
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if key¼¼’5’ yDTMF¼y770þy1336; end
if key¼¼’6’ yDTMF¼y770þy1477; end
if key¼¼’7’ yDTMF¼y852þy1209; end
if key¼¼’8’ yDTMF¼y852þy1336; end
if key¼¼’9’ yDTMF¼y852þy1477; end
if key¼¼’*’ yDTMF¼y941þy1209; end
if key¼¼’0’ yDTMF¼y941þy1336; end
if key¼¼’#’ yDTMF¼y941þy1477; end
if size(yDTMF)¼¼0 disp(’Invalid input key’); return; end
yDTMF¼[yDTMF 0]; % DTMF signal appended with a zero
% DTMF detector (use Goertzel algorithm)
a697¼[1 -2*cos(2*pi*18/N) 1];
a770¼[1 -2*cos(2*pi*20/N) 1];
a852¼[1 -2*cos(2*pi*22/N) 1];
a941¼[1 -2*cos(2*pi*24/N) 1];
a1209¼[1 -2*cos(2*pi*31/N) 1];
a1336¼[1 -2*cos(2*pi*34/N) 1];
a1477¼[1 -2*cos(2*pi*38/N) 1];
% Filter bank frequency responses
[w1, f]¼freqz(1,a697,512,fs);
[w2, f]¼freqz(1,a770,512,fs);
[w3, f]¼freqz(1,a852,512,fs);
[w4, f]¼freqz(1,a941,512,fs);
[w5, f]¼freqz(1,a1209,512,fs);
[w6, f]¼freqz(1,a1336,512,fs);
[w7, f]¼freqz(1,a1477,512,fs);
subplot(2,1,1);plot(f,abs(w1),f,abs(w2),f,abs(w3), .

f,abs(w4),f,abs(w5),f,abs(w6),f,abs(w7));grid
xlabel(’Frequency (Hz)’); ylabel(’(a) Filter bank freq. responses’);
% Filter bank bandpass filtering
y697¼filter(1,a697,yDTMF);
y770¼filter(1,a770,yDTMF);
y852¼filter(1,a852,yDTMF);
y941¼filter(1,a941,yDTMF);
y1209¼filter(1,a1209,yDTMF);
y1336¼filter(1,a1336,yDTMF);
y1477¼filter(1,a1477,yDTMF);
% Determine the absolute magnitude of DFT coefficents
m(1)¼sqrt(y697(206)^2þy697(205)^2- .

2*cos(2*pi*18/205)*y697(206)*y697(205));
m(2)¼sqrt(y770(206)^2þy770(205)^2- .

2*cos(2*pi*20/205)*y770(206)*y770(205));
m(3)¼sqrt(y852(206)^2þy852(205)^2- .

2*cos(2*pi*22/205)*y852(206)*y852(205));
m(4)¼sqrt(y941(206)^2þy941(205)^2- .

2*cos(2*pi*24/205)*y941(206)*y941(205));
m(5)¼sqrt(y1209(206)^2þy1209(205)^2- .

2*cos(2*pi*31/205)*y1209(206)*y1209(205));
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m(6)¼sqrt(y1336(206)^2þy1336(205)^2- .

2*cos(2*pi*34/205)*y1336(206)*y1336(205));
m(7)¼sqrt(y1477(206)^2þy1477(205)^2- .

2*cos(2*pi*38/205)*y1477(206)*y1477(205));
% Convert the magnitude of DFT coefficients to the single-side spectrum
m¼2*m/205;
% Determine the threshold
th¼sum(m)/4;
% Plot the DTMF spectrum with the threshold
f¼[ 697 770 852 941 1209 1336 1477];
f1¼[0 fs/2];
th¼[ th th];
subplot(2,1,2);stem(f,m);grid;hold; plot(f1,th);
xlabel(’Frequency (Hz)’); ylabel(’ (b) Spectral values’);
m¼round(m); % Round to the binary pattern
if m¼¼ [ 1 0 0 0 1 0 0] disp(’Detected Key 1’); end
if m¼¼ [ 1 0 0 0 0 1 0] disp(’Detected Key 2’); end
if m¼¼ [ 1 0 0 0 0 0 1] disp(’Detected Key 3’); end
if m¼¼ [ 0 1 0 0 1 0 0] disp(’Detected Key 4’); end
if m¼¼ [ 0 1 0 0 0 1 0] disp(’Detected Key 5’); end
if m¼¼ [ 0 1 0 0 0 0 1] disp(’Detected Key 6’); end
if m¼¼ [ 0 0 1 0 1 0 0] disp(’Detected Key 7’); end
if m¼¼ [ 0 0 1 0 0 1 0] disp(’Detected Key 8’); end
if m¼¼ [ 0 0 1 0 0 0 1] disp(’Detected Key 9’); end
if m¼¼ [ 0 0 0 1 1 0 0] disp(’Detected Key *’); end
if m¼¼ [ 0 0 0 1 0 1 0] disp(’Detected Key 0’); end
if m¼¼ [ 0 0 0 1 0 0 1] disp(’Detected Key #’); end

8.12 SUMMARY OF INFINITE IMPULSE RESPONSE (IIR) DESIGN
PROCEDURES AND SELECTION OF THE IIR FILTER DESIGN METHODS IN
PRACTICE
In this section, we first summarize the design procedures of the BLT design, impulse-invariant design,
and pole-zero placement design methods, and then discuss the selection of the particular filter for
typical applications.

The BLT design method:

1. Given the digital filter frequency specifications, prewarp each digital frequency edge to the analog
frequency edge using Equations (8.18) and (8.19).

2. Determine the prototype filter order using Equation (8.29) for the Butterworth filter or Equation
(8.35b) for the Chebyshev filter, and perform lowpass prototype transformation using the
lowpass prototype in Table 8.3 (Butterworth function) or Tables 8.4 and 8.5 (Chebyshev
function) using Equations (8.20) to (8.23).

3. Apply the BLT to the analog filter using Equation (8.24) and output the transfer function.
4. Verify the frequency responses, and output the difference equation.
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The impulse-invariant design method:

1. Given the lowpass or bandpass filter frequency specifications, perform analog filter design. For the
highpass or bandstop filter design, quit this method and use the BLT.
a. Determine the prototype filter order using Equation (8.29) for the Butterworth filter or Equation

(8.35b) for the Chebyshev filter.
b. Perform lowpass prototype transformation using the lowpass prototype in Table 8.3

(Butterworth function) or Tables 8.4 and 8.5 (Chebyshev functions) using Equations (8.20)
to (8.23).

c. Skip step 1 if the analog filter transfer function is given to begin with.
2. Determine the impulse response by applying the partial fraction expansion technique to the analog

transfer function and inverse Laplace transform using Equation (8.37).
3. Sample the analog impulse response using Equation (8.38) and apply the z-transform to the digital

impulse function to obtain the digital filter transfer function.
4. Verify the frequency response, and output the difference equation. If the frequency specifications

are not net, quit the design method and use the BLT.

The pole-zero placement method:

1. Given the filter cutoff frequency specifications, determine the pole-zero locations using the
corresponding equations:
a. Second-order bandpass filter: Equations (8.41) and (8.42).
b. Second-order notch filter: Equations (8.45) and (8.46).
c. First-order lowpass filter: Equations (8.49) or (8.50).
d. First-order highpass filter: Equations (8.53) or (8.54).

2. Apply the corresponding equation and scale factor to obtain the digital filter transfer function:
a. Second-order bandpass filter: Equations (8.43) and (8.44).
b. Second-order notch filter: Equations (8.47) and (8.48).
c. First-order lowpass filter: Equations (8.51) and (8.52).
d. First-order highpass filter: Equations (8.55) and (8.56).

3. Verify the frequency response, and output the difference equation. If the frequency specifications
are not net, quit the design method and use BLT.

Table 8.13 compares the design parameters of the three design methods.
Performance comparisons using three methods are given in Figure 8.57, where the bandpass filter is

designed using the following specifications:

Passband ripple ¼ �3 dB
Center frequency ¼ 400 Hz
Bandwidth ¼ 200 Hz
Sampling rate ¼ 2,000 Hz
Butterworth IIR filter ¼ second-order

As we expected, the BLT method satisfies the design requirement, and the pole-zero placement method
has little performance degradation because r ¼ 1� ðf0=fsÞp ¼ 0:6858 < 0:9, and this effect will
also cause the center frequency to be shifted. For the bandpass filter designed using the impulse-
invariant method, the gain at the center frequency is scaled to 1 for a frequency response shape

8.12 Summary of Infinite Impulse Response (IIR) 389



comparison. The performance of the impulse-invariant method is satisfactory in the passband.
However, it has significant performance degradation in the stopband when compared with the other
two methods. This is due to aliasing when sampling the analog impulse response in time domain.

Improvement in using the pole-zero placement and impulse-invariant methods can be achieved by
using a very high sampling rate. Example 8.30 describes the possible selection of the design method by
a DSP engineer to solve a real-world problem.

EXAMPLE 8.30
Determine an appropriate IIR filter design method for each of the following DSP applications. As described in
a previous section, we apply a notch filter to remove the 60-Hz interference and cascade a bandpass filter to
remove noise in an ECG signal for heart rate detection. The following specifications are required:

Notch filter:
Harmonics to be removed ¼ 60 Hz
3dB bandwidth for the notch filter ¼ 4 Hz

Bandpass filter:
Passband frequency range ¼ 0.25 to 40 Hz
Passband ripple ¼ 0.5 dB
Sampling rate ¼ 600 Hz

Table 8.13 Comparisons of Three IIR Design Methods

Design Method

BLT Impulse Invariant Pole-Zero Placement

Filter type Lowpass, highpass,
bandpass, bandstop

Appropriate for lowpass
and bandpass

Second-order for
bandpass and band
stop; first-order for
lowpass and highpass

Linear phase No No No

Ripple and stopband
specifications

Used for determining
the filter order

Used for determining
the filter order

Not required;
3 dB on passband
offered

Special requirement None Very high sampling
relative to the cutoff
frequency (LPF) or to
upper cutoff frequency
(BPF)

Narrow band for BPF or
notch filter;
lower cutoff frequency
or higher cutoff
frequency for LPF or
HPF.

Algorithm complexity High: Frequency
prewarping,
analog filter design,
BLT

Moderate: Analog filter
design
determining digital
impulse response;
apply z-transform

Low: Design
equations

Minimum design tool Calculator, algebra Calculator, algebra Calculator

BLT ¼ blinear transformation; LPF ¼ lowpass filter; BPF ¼ bandpass filter; HPF ¼ highpass filter.
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The pole-zero placement method is the best choice, since the notch filter to be designed has a very narrow 3 dB
bandwidth of 4 Hz. This simple design gives a quick solution. Since the bandpass filter requires a passband ripple
of 0.5 dB from 0.25 to 40 Hz, the BLT can also be an appropriate choice. Even though the impulse-invariant
method could work for this case, since the sampling rate of 600 Hz is much larger than 40 Hz, aliasing cannot be
prevented completely. Hence, the BLT is a preferred design method for the bandpass filter.

8.13 SUMMARY
1. The BLT method is able to transform the transfer function of an anolog filter to the transfer

function of the corresponding digital filter in general.
2. The BLT maps the left half of an s-plane to the inside unit circle of the z-plane. Stability of

mapping is guaranteed.
3. The BLT causes analog frequency warping. The analog frequency range from 0 Hz to infinite is

warped to a digital frequency range from 0 Hz to the folding frequency.
4. Given the digital frequency specifications, analog filter frequency specifications must be

developed using the frequency warping equation before designing the corresponding analog
filter and applying the BLT.
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Performance comparisons for the BLT, pole-zero placement, and impulse-invariant methods.
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5. An analog filter transfer function can be obtained by using a lowpass prototype, which can be
selected from the Butterworth and Chebyshev functions.

6. Higher-order IIR filters can be designed using a cascade form.
7. The impulse-invariant design method maps the analog impulse response to the digital equivalent

impulse response. The method works for lowpass and bandpass filter design with a very high
sampling rate. It is not appropriate for the highpass and bandstop filter design.

8. The pole-zero placement method can be applied for simple IIR filter designs such as second-order
bandpass and bandstop filters with narrow band specifications, and first-order lowpass and
highpass filters with the cutoff frequency close to either DC or the folding frequency.

9. Quantization of IIR filter coefficients has more effect on the magnitude frequency response than
on the phase frequency response. It may cause the quantized IIR filter to be unstable.

10. A simple audio equalizer uses bandpass IIR filter banks to create sound effects.
11. The 60-Hz interference eliminator is designed to enhance biomedical ECG signals for heart rate

detection. It can also be adapted for audio humming noise elimination.
12. A single tone or a DTMF tone can be generated using the IIR filter with the impulse sequence as

the filter input.
13. The Goertzel algorithm is applied for DTMF tone detection. This is an important application in

the telecommunication industry.
14. The procedures for the BLT, impulse-invariant, and pole-zero placement design methods

were summarized, and their design feasibilities were compared, including the filter type, linear
phase, ripple and stopband specifications, special requirements, algorithm comlexity, and design
tool(s).

8.14 PROBLEMS

8.1. Given an analog filter with the transfer function

HðsÞ ¼ 1; 000

sþ 1; 000

convert it to the digital filter transfer function and difference equation using the BLT if the
DSP system has a sampling period of T ¼ 0:001 second.

8.2. The lowpass filter with a cutoff frequency of 1 rad/sec is given as

HPðsÞ ¼ 1

sþ 1

a. Use HPðsÞ and the BLT to obtain a corresponding IIR digital lowpass filter with a cutoff
frequency of 30 Hz, assuming a sampling rate of 200 Hz.

b. Use MATLAB to plot the magnitude and phase frequency responses of HðzÞ.
8.3. The normalized lowpass filter with a cutoff frequency of 1 rad/sec is given as

HPðsÞ ¼ 1

sþ 1
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a. Use HPðsÞ and the BLT to obtain a corresponding IIR digital highpass filter with a cutoff
frequency of 30 Hz, assuming a sampling rate of 200 Hz.

b. Use MATLAB to plot the magnitude and phase frequency responses of HðzÞ.
8.4. Consider the normalized lowpass filter with a cutoff frequency of 1 rad/sec:

HPðsÞ ¼ 1

sþ 1

a. Use HPðsÞ and the BLT to design a corresponding IIR digital notch (bandstop) filter with
a lower cutoff frequency of 20 Hz, an upper cutoff frequency of 40 Hz, and a sampling rate
of 120 Hz.

b. Use MATLAB to plot the magnitude and phase frequency responses of HðzÞ.
8.5. Consider the following normalized lowpass filter with a cutoff frequency of 1 rad/sec:

HPðsÞ ¼ 1

sþ 1

a. Use HPðsÞ and the BLT to design a corresponding IIR digital bandpass filter with a low-
er cutoff frequency of 15 Hz, an upper cutoff frequency of 25 Hz, and a sampling rate of
120 Hz.

b. Use MATLAB to plot the magnitude and phase frequency responses of HðzÞ.
8.6. Design a first-order digital lowpass Butterworth filter with a cutoff frequency of 1.5 kHz and a

passband ripple of 3 dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.7. Design a second-order digital lowpass Butterworth filter with a cutoff frequency of 1.5 kHz
and a passband ripple of 3 dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.8. Design a third-order digital highpass Butterworth filter with a cutoff frequency of 2 kHz and
a passband ripple of 3dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.9. Design a second-order digital bandpass Butterworth filter with a lower cutoff frequency of
1.9 kHz, an upper cutoff frequency 2.1 kHz, and a passband ripple of 3dB at a sampling
frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.
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8.10. Design a second-order digital bandstop Butterworth filter with a center frequency of 1.8 kHz,
a bandwidth of 200 Hz, and a passband ripple of 3dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.11. Design a first-order digital lowpass Chebyshev filter with a cutoff frequency of 1.5 kHz and
a passband ripple of 1 dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.12. Design a second-order digital lowpass Chebyshev filter with a cutoff frequency of 1.5 kHz
and a passband ripple of 0.5 dB at a sampling frequency of 8,000 Hz. Use MATLAB to plot
the magnitude and phase frequency responses.

8.13. Design a third-order digital highpass Chebyshev filter with a cutoff frequency of 2 kHz and
a passband ripple fo 1 dB at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.14. Design a second-order digital bandpass Chebyshev filter with the following specifications:

Center frequency of 1.5 kHz

Bandwidth of 200 Hz

0.5 dB passband ripple

Sampling frequency of 8,000 Hz

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.15. Design a second-order bandstop digital Chebyshev filter with the following specifications:

Center frequency of 2.5 kHz

Bandwidth of 200 Hz

1 dB stopband ripple

Sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.16. Design a fourth-order low pass digital Butterworth filter with a cutoff frequency of 2 kHz,
and a passband ripple of 3 dB at a sampling frequency at 8,000 Hz.

a. Determine transfer function and difference equation;

b. Use MATLAB to plot the magnitude and phase frequency responses.
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8.17. Design a fourth-order digital lowpass Chebyshev filter with a cutoff frequency of 1.5 kHz and
a 0.5 dB passband ripple at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.18. Design a fourth-order digital bandpass Chebyshev filter with a center frequency of 1.5 kHz,
a bandwidth of 200 Hz, and a 0.5 dB passband ripple at a sampling frequency of 8,000 Hz.

a. Determine the transfer function and difference equation.

b. Use MATLAB to plot the magnitude and phase frequency responses.

8.19. Consider the following Laplace transfer function:

HðsÞ ¼ 10

sþ 10

a. Determine HðzÞ and the difference equation using the impulse-invariant method if the
sampling rate fs ¼ 10 Hz.

b. Use MATLAB to plot the magnitude frequency response jHðf Þj and the phase frequency
response fðf Þ with respect to HðsÞ for the frequency range from 0 to fs=2 Hz.

c. Use MATLAB to plot the magnitude frequency response
��HðejUÞ�� ¼ jHðej2pfTÞj and the

phase frequency response fðf Þ with respect to HðzÞ for the frequency range from 0 to
fs=2 Hz.

8.20. Consider the following Laplace transfer function:

HðsÞ ¼ 1

s2 þ 3sþ 2

a. Determine HðzÞ and the difference equation using the impulse-invariant method if the
sampling rate fs ¼ 10 Hz.

b. Use MATLAB to plot the magnitude frequency response jHðf Þj and the phase frequency
response fðf Þ with respect to HðsÞ for the frequency range from 0 to fs=2 Hz.

c. Use MATLAB to plot the magnitude frequency response
��HðejUÞ�� ¼ jHðej2pfTÞj and the

phase frequency response 4ðf Þ with respect to HðzÞ for the frequency range from 0 to
fs=2 Hz.

8.21. Consider the following Laplace transfer function:

HðsÞ ¼ s

s2 þ 4sþ 5

a. Determine HðzÞ and the difference equation using the impulse-invariant method if the
sampling rate fs ¼ 10 Hz.
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b. Use MATLAB to plot the magnitude frequency response jHðf Þj and the phase frequency
response fðf Þ with respect to HðsÞ for the frequency range from 0 to fs=2 Hz;

c. Use MATLAB to plot the magnitude frequency response
��HðejUÞ�� ¼ jHðej2pfTÞj and the

phase frequency response fðf Þ with respect to HðzÞ for the frequency range from 0 to
fs=2 Hz.

8.22. A second-order bandpass filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB bandwidth: BW ¼ 100 Hz

Narrow passband centered at f0 ¼ 2;000 Hz

Zero gain at 0 Hz and 4,000 Hz

Find the transfer function and difference equation by the pole-zero placement method.

8.23. A second-order notch filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB bandwidth: BW ¼ 200 Hz

Narrow passband centered at f0 ¼ 1;000 Hz.

Find the transfer function and difference equation by the pole-zero placement method.

8.24. A first-order lowpass filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB cutoff frequency: fc ¼ 200 Hz

Zero gain at 4,000 Hz

Find the transfer function and difference equation using the pole-zero placement method.

8.25. A first-order lowpass filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB cutoff frequency: fc ¼ 3;800 Hz

Zero gain at 4,000 Hz

Find the transfer function and difference equation by the pole-zero placement method.

8.26. A first-order highpass filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB cutoff frequency: fc ¼ 3;850 Hz

Zero gain at 0 Hz

Find the transfer function and difference equation by the pole-zero placement method.
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8.27. A first-order highpass filter is required to satisfy the following specifications:

Sampling rate ¼ 8,000 Hz

3 dB cutoff frequency: fc ¼ 100 Hz

Zero gain at 0 Hz

Find the transfer function and difference equation by the pole-zero placement method.

8.28. Given a filter transfer function

HðzÞ ¼ 0:3430z2 þ 0:6859zþ 0:3430

z2 þ 0:7075zþ 0:7313

a. realize the digital filter using direct-form I and using direct-form II;

b. determine the difference equations for each implementation.

8.29. Given a fourth-order filter transfer function,

HðzÞ ¼ 0:3430z2 þ 0:6859zþ 0:3430

z2 þ 0:7075zþ 0:7313
� 0:4371z2 þ 0:8742zþ 0:4371

z2 � 0:1316zþ 0:1733

a. realize the digital filter using the cascade (series) form via second-order sections using
direct-form II;

b. determine the difference equations for implementation.

8.30. Given a DSP system with a sampling rate of 1,000 Hz, develop a 200 Hz single tone
generator using the digital IIR filter by completing the following steps:

a. Determine the digital IIR filter transfer function.

b. Determine the DSP equation (difference equation).

8.31. Given a DSP system with a sampling rate of 8,000 Hz, develop a 250 Hz single tone
generator using the digital IIR filter by completing the following steps:

a. Determine the digital IIR filter transfer function.

b. Determine the DSP equation (difference equation).

8.32. Given a DSP system with a sampling rate of 8,000 Hz, develop a DTMF tone generator for
key 9 using the digital IIR filters by completing the following steps:

a. Determine the digital IIR filter transfer functions.

b. Determine the DSP equations (difference equation).

8.33. Given a DSP system with a sampling rate 8,000 Hz, develop a DTMF tone generator for key
3 using the digital IIR filters by completing the following steps:

a. Determine the digital IIR filter transfer functions.

b. Determine the DSP equations (difference equation).
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8.34. Given xð0Þ ¼ 1, xð1Þ ¼ 2, xð2Þ ¼ 0, xð3Þ ¼ �1, use the Goertzel algorithm to compute
the following DFT coefficients and their amplitude spectrum:

a. Xð0Þ
b. jXð0Þj2
c. A0 (single side)

d. Xð1Þ
e. jXð1Þj2
f. A1 (single side)

8.35. Repeat Problem 8.34 for Xð2Þ and Xð3Þ.
8.36. Given a digital data sequence of length 4 as xð0Þ ¼ 4, xð1Þ ¼ 3, xð2Þ ¼ 2, and xð3Þ ¼ 1,

use the modified Goertzel algorithm to compute the spectral amplitude at the frequency bin
k ¼ 0 and k ¼ 2.

8.37. Repeat Problem 8.36 for Xð1Þ and Xð3Þ.
Use MATLAB to solve Problems 8.38 to 8.50.

8.38. A speech sampled at 8,000 Hz is corrupted by a sine wave of 360 Hz. Design a notch filter to
remove the noise with the following specifications:

Chebyshev notch filter

Center frequency: 360 Hz

Bandwidth: 60 Hz

Passband ripple: 0.5 dB

Stopband attenuation: 5 dB at 355 Hz and 365 Hz, respectively.

Determine the transfer function and difference equation.

8.39. In Problem 8.38, if the speech is corrupted by a sine wave of 360 Hz and its third harmonic,
cascading two notch filters can be applied to remove noise signals. The possible specifica-
tions are given as

Chebyshev notch filter 1

Center frequency: 360 Hz

Bandwidth: 60 Hz

Passband ripple: 0.5 dB

Stopband attenuation: 5 dB at 355 Hz and 365 Hz, respectively

Chebyshev notch filter 2

Center frequency: 1,080 Hz
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Bandwidth: 60 Hz

Passband ripple: 0.5 dB

Stopband attenuation: 5 dB at 1,075 Hz 1,085 Hz, respectively

Determine the transfer function and difference equation for each filter (Fig. 8.58).

8.40. In a speech recording system with a sampling frequency of 10,000 Hz, the speech is cor-
rupted by random noise. To remove the random noise while preserving speech information,
the following specifications are given:

Speech frequency range: 0e3,000 Hz

Stopband range: 4,000e5,000 Hz

Passband ripple: 3 dB

Stopband attenuation 25 dB

Butterworth IIR filter

Determine the filter order and transfer function.

8.41. In Problem 8.40, assume we instead use a Chebyshev IIR filter with the following
specifications:

Speech frequency range: 0e3,000 Hz

Stopband range: 4,000e5,000 Hz

Passband ripple: 1 dB

Stopband attenuation: 35 dB

Chebyshev IIR filter

Determine the filter order and transfer function.

8.42. Consider a speech equalizer to compensate for midrange frequency loss of hearing
(Figure 8.59).

The equalizer has the following specifications:

Sampling rate: 8,000 Hz

Notch filter
at 360 Hz

Notch filter
at 1080 Hz

Digital
input x(n)

Digital
output y(n)

FIGURE 8.58

Cascaded notch filter in Problem 8.39.
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Second-order bandpass IIR filter

Frequency range to be emphasized: 1,500e2,000 Hz

Passband ripple: 3 dB

Pole-zero placement design method

Determine the transfer function.

8.43. In Problem 8.42, assume we use an IIR filter with following specifications:

Sampling rate: 8,000 Hz

Butterworth IIR filter

Frequency range to be emphasized: 1,500e2,000 Hz

Lower stopband: 0e1,000 Hz

Upper stopband: 2,500e4,000 Hz

Passband ripple: 3 dB

Stopband attenuation: 20 dB

Determine the filter order and filter transfer function.

8.44. A digital crossover can be designed as shown in Figure 8.60.

Assume the following audio specifications:

Sampling rate: 44,100 Hz

Crossover frequency: 1,000 Hz

Highpass filter: third-order Butterworth type at a cutoff frequency of 1,000 Hz

Lowpass filter: third-order Butterworth type at a cutoff frequency of 1,000 Hz

Use the MATLAB BLT design method to determine

a. the transfer functions and difference equations for the highpass and lowpass filters;

b. frequency responses for the highpass filter and the lowpass filter;

c. combined frequency response for both filters.

Digital
input x(n)

Digital
output y(n)

+Bandpass
filter 5

Gain

FIGURE 8.59

Speech equalizer in Problem 8.42.
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8.45. Given a DSP system with a sampling rate of 8,000 Hz, develop an 800 Hz single-tone
generator using a digital IIR filter by completing the following steps:

a. Determine the digital IIR filter transfer function.

b. Determine the DSP equation (difference equation).

c. Write a MATLAB program using the MATLAB function filter() to generate and plot the
800-Hz tone for a duration of 0.01 second.

8.46. Given a DSP system with a sampling rate of 8,000 Hz, develop a DTMF tone generator for
key “5” using digital IIR filters by completing the following steps:

a. Determine the digital IIR filter transfer functions.

b. Determine the DSP equations (difference equation).

c. Write a MATLAB program using the MATLAB function filter() to generate and plot the
DTMF tone for key 5 for 205 samples.

8.47. Given xð0Þ ¼ 1, xð1Þ ¼ 1, xð2Þ ¼ 0, xð3Þ ¼ �1, use the Goertzel algorithm to compute
the following DFT coefficients and their amplitude spectra:

a. Xð0Þ
b. jXð0Þj2
c. A0 (single sided)

d. Xð1Þ
e. jXð1Þj2
f. A1 (single sided)

8.48. Repeat Problem 8.47 for spectra: A2, and A3.

8.49. Given a DSP system with a sampling rate of 8,000 Hz and data size of 205 ( N ¼ 205), seven
Goertzel IIR filters are implemented for DTMF tone detection. For the frequencies corre-
sponding to key 5, determine

a. the modified Goertzel filter transfer functions;

Digital
audio x(n)

Highpass filter

Lowpass filter Gain_L

Gain_H Tweeter:
The crossover passes

high frequencies

Woofer:
The crossover passes

low frequencies

yH(n)

yL(n)

FIGURE 8.60

Two-band digital crossover system in Problem 8.44.
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b. the filter DSP equations for vkðnÞ; and
c. the DSP equations for the squared magnitudes

jXðkÞj2¼ jykð205Þj2

d. Using the data generated in Problem 8.46 (c), write a program using the MATLAB
function filter() and Goertzel algorithm to detect the spectral values of the DTMF tone for
key 5.

8.50. Given an input data sequence

xðnÞ ¼ 1:2$sinð2pð1; 000Þn=10; 000ÞÞ � 1:5$cosð2pð4; 000Þn=10; 000Þ

assuming a sampling frequency of 10 kHz, implement the designed IIR filter in Problem
8.41 to filter 500 data points of xðnÞ with the following specified method, and plot the 500
samples of the input and output data.

a. Direct-form I implementation

b. Direct-form II implementation

8.14.1 MATLAB Projects

8.51. The 60-Hz hum eliminator with harmonics and heart rate detection:

Given the recorded ECG data (ecgbn.dat) that is corrupted by 60-Hz interference with its
harmonics and assuming a sampling rate of 600 Hz, plot the signal’s spectrum and determine the
harmonics. With the harmonic frequency information, design a notch filter to ehance the ECG
signal. Then use the designed notch filter to process the given ECG signal and apply the zero-
cross algorithm to determine the heart rate.

8.52. Digital speech and audio equalizer:

Design a seven-band audio equalizer using fourth-order bandpass filters. The center frequencies
are listed below:

Center frequency (Hz) 160 320 640 1,280 2,560 5,120 10,240
Bandwidth (Hz) 80 160 320 640 1,280 2,560 5,120

In this project, use the designed equalizer to process stereo audio (“No9seg.wav”). Plot the
magnitude response for each filter bank. Listen to and evaluate the processed audio with the
following gain settings:

a. each filter bank gain ¼ 0 (no equalization)

b. lowpass filtered

c. bandpass filtered

d. highpass filtered
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8.53. DTMF tone generation and detection:

Implement the DTMF tone generation and detection according to Section 8.11 with the
following specifications:

a. Input keys: 1, 2, 3, 4, 5, 6, 7, 8, 9, *, 0, #, A, B, C, D (key frequencies are given in
Figure 8.61).

b. Sampling frequency is 8,000 Hz.

c. Program will respond to each input key with its DTMF tone and display the detected key.

1 2 3

4 5 6

7 8 9

* 0 #

1209 Hz 1336 Hz 1477 Hz

697 Hz

770 Hz

852 Hz

941 Hz

1633 Hz

A

B

C

D

FIGURE 8.61

DTMF key frequencies.
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9.1 DIGITAL SIGNAL PROCESSOR ARCHITECTURE
Unlike microprocessors and microcontrollers, digital signal (DS) processors have special features that
require operations such as fast Fourier transform (FFT), filtering, convolution and correlation, and real-
time sample-based and block-based processing. Therefore, DS processors use a different dedicated
hardware architecture.

We first compare the architecture of the general microprocessor with that of the DS processors. The
design of general microprocessors and microcontrollers is based on the Von Neumann architecture,
which was developed from a research paper written by John Von Neumann and others in 1946. Von
Neumann suggested that computer instructions, as we shall discuss, be numerical codes instead of
special wiring. Figure 9.1 shows the Von Neumann architecture.

As shown in Figure 9.1, a Von Neumann processor contains a single, shared memory for programs
and data, a single bus for memory access, an arithmetic unit, and a program control unit. The processor
proceeds in a serial fashion in terms of fetching and execution cycles. This means that the central
processing unit (CPU) fetches an instruction from memory and decodes it to figure out what operation
to do, then executes the instruction. The instruction (in machine code) has two parts: the opcode and
the operand. The opcode specifies what the operation is, that is, tells the CPU what to do. The operand
informs the CPU what data to operate on. These instructions will modify memory, or input and output
(I/O). After an instruction is completed, the cycles will resume for the next instruction. One instruction
or piece of data can be retrieved at a time. Since the processor proceeds in a serial fashion, it causes
most units to stay in a wait state.

As noted, the Von Neumann architecture operates the cycles of fetching and execution by fetching
an instruction frommemory, decoding it via the program control unit, and finally executing instruction.
When execution requires data movementdthat is, data to be read from or written to memorydthe next
instruction will be fetched after the current instruction is completed. The Von Neumann-based
processor has this bottleneck mainly due to the use of a single, shared memory for both program
instructions and data. Increasing the speed of the bus, memory, and computational units can improve
speed, but not significantly.

Program and
data memory

Address bus

Data bus

Input/Output
devices

Address
generator

Program
control unit

Arithmetic
unit

FIGURE 9.1

General microprocessor based on Von Neumann architecture.
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To accelerate the execution speed of digital signal processing, DS processors are designed based on
theHarvard architecture, which originated from theMark 1 relay-based computers built by IBM in 1944
atHarvardUniversity. This computer stored its instructions on punched tape and data using relay latches.
Figure 9.2 shows today’s Harvard architecture. As depicted, the DS processor has two separate memory
spaces. One is dedicated for the program code, while the other is employed for data. Hence, to
accommodate twomemory spaces, two corresponding address buses and two data buses are used. In this
way, the programmemory and datamemory have their own connections to the programmemory bus and
data memory bus, respectively. This means that the Harvard processor can fetch the program instruction
and data in parallel at the same time, the former via the program memory bus and the latter via the data
memory bus. There is an additional unit called a multiplier and accumulator (MAC), which is the
dedicated hardware used for the digital filtering operation. The last additional unit, the shift unit, is used
for the scaling operation for fixed-point implementation when the processor performs digital filtering.

Let us compare the executions of the two architectures. The Von Neumann architecture generally
has the execution cycles described in Figure 9.3. The fetch cycle obtains the opcode from the memory,
and the control unit will decode the instruction to determine the operation. Next is the execute cycle.
Based the decoded information, execution will modify the content of the register or the memory. Once
this is completed, the process will fetch the next instruction and continue. The processor operates one
instruction at a time in a serial fashion.

To improve the speed of the processor operation, the Harvard architecture takes advantage of
a common DS processor, in which one register holds the filter coefficient while the other register holds
the data to be processed, as depicted in Figure 9.4.

Program
memory

Program memory data bus

Input/Output
devices

Address
generator

Program
control unit

Arithmetic
logic unit

Program memory address bus

Data memory address bus

Data memory data bus

Data
memory

Multiplier/
acummulator Shift unit

FIGURE 9.2

Digital signal processors based on the Harvard architecture.
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As shown in Figure 9.4, the execute and fetch cycles are overlapped. We call this the pipelining
operation. The DS processor performs one execution cycle while also fetching the next instruction to
be executed. Hence, the processing speed is dramatically increased.

The Harvard architecture is preferred for all DS processors due to the requirements of most digital
signal processing (DSP) algorithms, such as filtering, convolution, and FFT, which need repetitive
arithmetic operations, including multiplications, additions, memory access, and heavy data flow
through the CPU.

For the other applications, such as those dependent on simple microcontrollers with less of a timing
requirement, the Von Neumann architecture may be a better choice, since it offers much less silica area
and is thus less expensive.

9.2 DIGITAL SIGNAL PROCESSOR HARDWARE UNITS
In this section, we will briefly discuss special DS processor hardware units.

9.2.1 Multiplier and Accumulator

As compared with the general microprocessors based on the Von Newmann architecture, the DS
processor uses the MAC, a special hardware unit for enhancing the speed of digital filtering. This is

Fetch Execute

Fetch

Fetch

Execute

Execute

FIGURE 9.3

Execution cycle based on the Von Neumann architecture.

Execute

Execute

Execute

Fetch

Fetch

Fetch

FIGURE 9.4

Execution cycle based on Harvard architecture.
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dedicated hardware, and the corresponding instruction is generally referred to as a MAC operation.
The basic structure of the MAC is shown in Figure 9.5.

As shown in Figure 9.5, in a typical hardware MAC, the multiplier has a pair of input registers, each
holding the 16-bit input to the multiplier. The result of the multiplication is accumulated in the 32-bit
accumulator unit. The result register holds the double precision data from the accumulator.

9.2.2 Shifters

In digital filtering, to prevent overflow, a scaling operation is required. A simple scaling-down oper-
ation shifts data to the right, while a scaling-up operation shifts data to the left. Shifting data to the right
is the same as dividing the data by 2 and truncating the fraction part; shifting data to the left is
equivalent to multiplying the data by 2. As an example for a 3-bit data word 0112 ¼ 310, shifting 011
to the right gives 0012 ¼ 1, that is, 3/2¼1.5, and truncating 1.5 results in 1. Shifting the same number
to the left, we have 1102 ¼ 610, that is, 3� 2 ¼ 6. The DS processor often shifts data by several bits
for each data word. To speed up such operation, the special hardware shift unit is designed to
accommodate the scaling operation, as depicted in Figure 9.2.

9.2.3 Address Generators

The DS processor generates the addresses for each datum on the data buffer to be processed. A special
hardware unit for circular buffering is used (see the address generator in Figure 9.2). Figure 9.6
describes the basic mechanism of circular buffering for a buffer having eight data samples.

In circular buffering, a pointer is used and always points to the newest data sample, as shown in
Figure 9.6. After the next sample is obtained from analog-to-digital conversion (ADC), the data will be

X Register Y Register

Multiplier

Accumulator

Result
Register

Operand Operand

1616

32

32

FIGURE 9.5

The multiplier and accumulator (MAC) dedicated to DSP.
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FIGURE 9.6

Illustration of circular buffering.
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Circular buffer and equivalent FIFO.

410 CHAPTER 9 Hardware and Software for Digital Signal Processors



placed at the location of xðn� 7Þ and the oldest sample is pushed out. Thus, the location for xðn� 7Þ
becomes the location for the current sample. The original location for xðnÞ becomes a location for the
past sample of xðn� 1Þ. The process continues according to the mechanism just described. For each
new data sample, only one location on the circular buffer needs to be updated.

The circular buffer acts like a first-in/first-out (FIFO) buffer, but each datum on the buffer does not
have to be moved. Figure 9.7 gives a simple illustration of the 2-bit circular buffer. In the figure, there
is data flow to the ADC (a, b, c, d, e, f, g,.) and a circular buffer initially containing a, b, c, and d. The
pointer specifies the current data of d, and the equivalent FIFO buffer is shown on the right side with
the current data of d at the top of the memory. When e comes in, as shown in the middle drawing in
Figure 9.7, the circular buffer will change the pointer to the next position and update old a with a new
datum e. It costs the pointer only one movement to update one datum in one step. However, on the right
side, the FIFO has to move each of the other data down to let in the new datum e at the top. For this
FIFO, it takes four data movements. In the bottom drawing in Figure 9.7, the incoming datum f for both
the circular buffer and the FIFO buffer continues to confirm our observations.

Like finite impulse response (FIR) filtering, the data buffer size can reach several hundreds. Hence,
using the circular buffer will significantly enhance the processing speed.

9.3 DIGITAL SIGNAL PROCESSORS AND MANUFACTURERS
DS processors are classified for general DSP and special DSP. The general-DSP processor is designed
and optimized for applications such as digital filtering, correlation, convolution, and FFT. In addition
to these applications, the special-DSP processor has features that are optimized for unique applications
such as audio processing, compression, echo cancellation, and adaptive filtering. Here, we will focus
on the general-DSP processor.

The major manufacturers in the DSP industry are Texas Instruments (TI), Analog Devices, and
Motorola. TI and Analog Devices offer both fixed-point DSP families and floating-point DSP families,
while Motorola offers fixed-point DSP families. We will concentrate on TI families, review their
architectures, and study real-time implementation using the fixed- and floating-point formats.

9.4 FIXED-POINT AND FLOATING-POINT FORMATS
In order to process real-world data, we need to select an appropriate DS processor, as well as a DSP
algorithm or algorithms for a certain application. Whether a DS processor uses a fixed- or floating-point
method depends on how the processor’s CPU performs arithmetic. A fixed-point DS processor represents
data in2’s complement integer format andmanipulates data using integer arithmetic,while a floating-point
processor represents number using a mantissa (fractional part) and an exponent in addition to the integer
format and operates data using floating-point arithmetic (discussed in Section 9.4.2).

Since the fixed-point DS processor operates using the integer format, which represents only a very
narrow dynamic range of the integer number, a problem such as overflow of data manipulation may
occur. Hence, we need to spend much more coding effort to deal with such a problem. As we shall see,
we may use floating-point DS processors, which offer a wider dynamic range of data, so that coding
becomes much easier. However, the floating-point DS processor contains more hardware units to
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handle the integer arithmetic and the floating-point arithmetic; hence it is more expensive and slower
than fixed-point processors in terms of instruction cycles. It is usually a choice for prototyping or
proof-of-concept development.

When it is time to make the DSP an application-specific integrated circuit (ASIC), a chip designed
for a particular application, a dedicated hand-coded fixed-point implementation is likely the best
choice in terms of performance and small silica area.

The formats used by DSP implementation can be classified as fixed or floating point.

9.4.1 Fixed-Point Format

We begin with 2’s complement representation. Considering a 3-bit 2’s complement, we can represent
all the decimal numbers shown in Table 9.1.

Let us review the 2’s complement number system using Table 9.1. Converting a decimal number to
its 2’s complement form requires following steps:

1. Convert the magnitude in the decimal to its binary number using the required number of bits.
2. If the decimal number is positive, its binary number is its 2’s complement representation; if the

decimal number is negative, perform the 2’s complement operation, where we negate the binary
number by changing the logic 1s to logic 0s and logic 0s to logic 1s and then add a logic 1 to
the data. For example, a decimal number of 3 is converted to its 3-bit 2’s complement
representation as 011; however, for converting a decimal number of �3, we first get a 3-bit
binary number for the magnitude in decimal, that is, 011. Next, negating the binary number 011
yields the binary number 100. Finally, adding a binary logic 1 achieves the 3-bit 2’s
complement representation of �3, that is, 100 þ1¼101, as shown in Table 9.1.

As we see, a 3-bit 2’s complement number system has a dynamic range from �4 to 3, which is very
narrow. Since the basic DSP operations include multiplications and additions, results of operation can
cause overflow problems. Let us examine multiplication in Example 9.1.

Table 9.1 A 3-Bit 2’s Complement Number Representation

Decimal Number Two’s Complement

3 011

2 010

1 001

0 000

�1 111

�2 110

�3 101

�4 100
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EXAMPLE 9.1
Given

a. 2� ð�1Þ
b. 2� ð�3Þ
operate each expression using 2’s complement.

Solution:
a.

0 1 0
� 0 0 1
0 1 0

0 0 0
þ 0 0 0

0 0 0 1 0

The 2’s complement of 00010 ¼ 11110. Removing two extended sign bits 1 gives 110. The answer is 110 (�2),
which is within the system.

b. 0 1 0
� 0 1 1
0 1 0

0 1 0
þ 1 0 0

0 0 1 1 0

The 2’s complement of 00110 ¼ 11010. Removing two extended sign bits leaves 010. Since the binary number
010 is 2, which is not (�6) as what we expect, overflow occurs; that is, the result of the multiplication (�6) is out of
our dynamic range (�4 to 3).

Let us design a system treating all the decimal values as fractional numbers, so that we obtain the
fractional binary 2’s complement system shown in Table 9.2.

To become familiar with the fractional binary 2’s complement system, let us convert a positive

fraction number
3

4
and a negative fraction number �1

4
in decimals to their 2’s complements. Since

3

4
¼ 0� 20 þ 1� 2�1 þ 1� 2�2

Table 9.2 A 3-Bit 2’s Complement System Using Fractional Representation

Decimal Number Decimal Fraction Two’s Complement

3 3/4 0.11

2 2/4 0.10

1 1/4 0.01

0 0 0.00

�1 �1/4 1.11

�2 �2/4 1.10

�3 �3/4 1.01

�4 �4/4 ¼ �1 1.00
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its 2’s complement is 011. Note that we did not mark the binary point for clarity. Again, since

1

4
¼ 0� 20 þ 0� 2�1 þ 1� 2�2

its positive-number 2’s complement is 001. For the negative number, applying the 2’s complement to
the binary number 001 leads to 110 þ 1 ¼ 111, as we see in Table 9.2. By adding the binary points, we
obtain 0.01 and 1.11, respectively.

Now let us focus on the fractional binary 2’s complement system. The data are normalized to the

fractional range from�1 to 1� 2�2 ¼ 3

4
.Whenwe carry out multiplications with two fractions, the result

should be a fraction, so that multiplication overflow can be prevented. Let us verify the multiplication
(0.10)� (1.01), which is the overflow case in Example 9.1. We first multiply two positive numbers:

0:1 0

� 0:1 1

0 1 0

0 1 0

þ 1 0 0

0:0 1 1 0

The 2’s complement of 0.0110 ¼ 1.1010.
The answer in decimal form should be

1:1010 ¼ ð�1Þ � ð0:0110Þ2 ¼ �ð0� ð2Þ�1 þ 1� ð2Þ�2 þ 1� ð2Þ�3 þ 0� ð2Þ�4Þ ¼ � 3

8

This number is correct, as we can verify from Table 9.2, that is,

�
2

4
�
�
�3

4

��
¼ � 3

8
.

If we truncate the last two least significant bits to keep the 3-bit binary number, we have an
approximate answer:

1:10 ¼ ð�1Þ � ð0:01Þ2 ¼ �
�
0� ð2Þ�1 þ 1� ð2Þ�2

�
¼ �1

2

Truncation error occurs. The error should be bounded by 2�2 ¼ 1

4
. We can verify that

j � 1=2� ð�3=8Þj ¼ 1=8 < 1=4

With such a scheme, we can avoid overflow due to multiplication but cannot prevent overflow due to
addition. Consider the addition example

0:1 1

þ 0:0 1

1:0 0

where the result 1.00 is a negative number. Adding two positive fractional numbers yields a negative
number. Hence, overflow occurs.
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We see that this signed fractional number scheme partially solves the overflow in multiplications.
This fractional number format is called the signed Q-2 format, where there are 2 magnitude bits plus
one sign bit. The overflow from addition will be tackled using a scaling method discussed in a later
section.

Q-format number representation is the most common one used in fixed-point DSP implementation.
It is defined in Figure 9.8.

As indicated in Figure 9.8, Q-15 means that the data are in a sign magnitude form in which there are
15 bits for magnitude and one bit for sign. Note that after the sign bit, the dot shown in Figure 9.8
implies the binary point. The number is normalized to the fractional range from �1 to 1. The range is
divided in to 216 intervals, each with a size of 2�15. The most negative number is �1, while the most
positive number is 1� 2�15. Any result from multiplication is within the fractional range of �1 to 1.
Let us study the following examples to become familiar with Q-format number representation.

EXAMPLE 9.2
Find the signed Q-15 representation for the decimal number 0.560123.

Q-15
�−20 2 1− 2 2− 2 3− 2 4− 2 5− 2 6− 2 7− 2 8− 2 14−2 9− 2 10− 2 11− 2 12− 2 13− 2 15−

Implied binary point

FIGURE 9.8

Q-15 (fixed-point) format.

Table 9.3 Conversion Process of Q-15 Representation

Number Product Carry

0.560123 x 2 1.120246 1 (MSB)

0.120246 x 2 0.240492 0

0.240492 x 2 0.480984 0

0.480984 x 2 0.961968 0

0.961968 x 2 1.923936 1

0.923936 x 2 1.847872 1

0.847872 x 2 1.695744 1

0.695744 x 2 1.391488 1

0.391488 x 2 0.782976 0

0.782976 x 2 1.565952 1

0.565952 x 2 1.131904 1

0.131904 x 2 0.263808 0

0.263808 x 2 0.527616 0

0.527616 x 2 1.055232 1

0.055232 x 2 0.110464 0 (LSB)

MSB, most significant bit; LSB, least-significant bit.

9.4 Fixed-Point and Floating-Point Formats 415



Solution:
The conversion process is illustrated using Table 9.3. For a positive fractional number, we multiply the number by
2 if the product is larger than 1, carry bit 1 as a most significant bit (MSB), and copy the fractional part to the next
line for the next multiplication by 2; if the product is less than 1, we carry bit 0 to MSB. The procedure continues to
collect all 15 magnitude bits.

We yield the Q-15 format representation as

0:100011110110010

Since we only use 16 bits to represent the number, we may lose accuracy after conversion. Like quantization,
truncation error is introduced. However, this error should be less than the interval size, in this case,
2�15 ¼ 0:0000305017. We shall verify this in Example 9.5. An alternative method of conversion is to convert

a fraction, let’s say
3

4
to Q-2 format, multiply it by 22, and then convert the truncated integer to its binary, that is,

ð3=4Þ � 22 ¼ 3 ¼ 0112

In this way, it follows that

ð0:560123Þ � 215 ¼ 18;354

Converting 18,354 to its binary representation will achieve the same answer. The next example illustrates the
signed Q-15 representation for a negative number.

EXAMPLE 9.3
Find the signed Q-15 representation for the decimal number �0.160123.

Solution:
Converting the Q-15 format for the corresponding positive number with the same magnitude using the procedure
described in Example 9.2, we have

0:160123 ¼ 0:001010001111110

Then after applying 2’s complement, the Q-15 format becomes

� 0:160123 ¼ 1:110101110000010

Alternative method: Since ð�0:160123Þ � 215 ¼ �5;246:9, converting the truncated number �5,246 to its
16-bit 2’s complement yields 1110101110000010.

EXAMPLE 9.4
Convert the Q-15 signed number 1.110101110000010 to the decimal number.

Solution:
Since the number is negative, applying the 2’s complement yields

0:001010001111110

Then the decimal number is

� ð2�3 þ 2�5 þ 2�9 þ 2�10 þ 2�11 þ 2�12 þ 2�13 þ 2�14Þ ¼ �0:160095
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EXAMPLE 9.5
Convert the Q-15 signed number 0.100011110110010 to the decimal number.

Solution:
The decimal number is

2�1 þ 2�5 þ 2�6 þ 2�7 þ 2�8 þ 2�10 þ 2�11 þ 2�14 ¼ 0:560120

As we know, the truncation error in Example 9.2 is less than 2�15 ¼ 0:000030517. We verify that the truncation
error is bounded by

j0:560120� 0:560123j ¼ 0:000003 < 0:000030517

Note that the larger the number of bits used, the smaller the truncation error that may accompany it.
Examples 9.6 and 9.7 are devoted to illustrating data manipulations in the Q-15 format.

EXAMPLE 9.6
Add the two numbers in Examples 9.4 and 9.5 in Q-15 format.

Solution:
Binary addition is carried out as follows:

1: 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0

þ 0: 1 0 0 0 1 1 1 1 0 1 1 0 0 1 0

1 0: 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0

Then the result is

0: 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0

This number in decimal form is

2�2 þ 2�3 þ 2�6 þ 2�7 þ 2�10 þ 2�11 þ 2�13 ¼ 0:400024

EXAMPLE 9.7
This is a simple illustration of fixed-point multiplication.

Determine the fixed-point multiplication of 0.25 and 0.5 in Q-3 fixed-point 2’s complement format.

Solution:
Since 0.25 ¼ 0.010 and 0.5 ¼ 0.100, we carry out binary multiplication as follows:

0 : 0 1 0
� 0 : 1 0 0

0 0 0 0
0 0 0 0

0 0 1 0
þ 0 0 0 0

0:0 0 1 0 0 0
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Truncating the least significant bits to convert the result to Q-3 format, we have

0:010� 0:100 ¼ 0:001

Note that 0:001 ¼ 2�3 ¼ 0:125. We can also verify that 0.25 � 0.5 ¼ 0.125.

The Q-format number representation is a better choice than the 2’s complement integer repre-
sentation, it can prevent multiplication overflow. But we need to be concerned with the following
problems.

1. When converting a decimal number to its Q-N format, where N denotes the number of magnitude
bits, we may lose accuracy due to the truncation error, which is bounded by the size of the interval,
that is, 2�N .

2. Addition and subtraction may cause overflow, where adding two positive numbers leads to
a negative number, or adding two negative number yields a positive number; similarly,
subtracting a positive number from a negative number gives a positive number, while
subtracting a negative number from a positive number results in a negative number.

3. Multiplying two numbers in Q-15 format will lead to a Q-30 format, which has 31 bits in total.
As in Example 9.7, the multiplication of Q-3 yields a Q-6 format, that is, 6 magnitude bits and
a sign bit. In practice, it is common for a DS processor to hold the multiplication result using
a double word size such as MAC operation, as shown in Figure 9.9 for multiplying two
numbers in Q-15 format. In Q-30 format, there is one sign-extended bit. We may get rid of
it by shifting left by one bit to obtain Q-31 format and maintaining the Q-31 format for
each MAC operation.

Sometimes, the number in Q-31 format needs to be converted to Q-15; for example, the 32-bit data
in the accumulator needs to be sent for 16-bit digital-to-analog conversion (DAC), where the upper
most-significant 16 bits in the Q-30 format must be used to maintain accuracy. We can shift the
number in Q-30 to the right by 15 bits or shift the Q-31 number to the right by 16 bits. The
useful result is stored in the lower 16-bit memory location. Note that after truncation,
the maximum error is bounded by the interval size of 2�15, which satisfies most applications. In
using the Q-format in the fixed-point DS processor, it is costly to maintain the accuracy of data
manipulation.

4. Underflow can happen when the result of multiplication is too small to be represented in the
Q-format. As an example, in a Q-2 system shown in Table 9.2, multiplying 0.01� 0.01 leads to
0.0001. To keep the result in Q-2, we truncate the last two bits of 0.0001 to achieve 0.00, which
is zero. Hence, underflow occurs.

Q-30

15 magnitude bits

30 magnitude bitsS S

15 magnitude bits SS 51-Q51-Q x

FIGURE 9.9

Sign bit extended Q-30 format.
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9.4.2 Floating-Point Format

To increase the dynamic range of number representation, a floating-point format, which is similar to
scientific notation, is used. The general format for floating-point number representation is given by

x ¼ M$2E (9.1)

where M is the mantissa, or fractional part in Q format, and E is the exponent. The mantissa and
exponent are signed numbers. If we assign 12 bits for the mantissa and 4 bits for the exponent, the
format looks like Figure 9.10.

Since the 12-bit mantissa is limited to between �1 to þ1, the number of bits assigned to the
exponent controls the dynamic range. The bigger the number of bits designated to the exponent, the
larger the dynamic range. The number of bits for the mantissa defines the interval in the normalized
range; as shown in Figure 9.10, the interval size is 2�11 in the normalized range, which is smaller than
the Q-15 format. However, when more mantissa bits are used, there will be a smaller interval size.
Using the format in Figure 9.10, we can determine the most negative and most positive numbers as

most negative number ¼ ð1:00000000000Þ2$201112 ¼ ð�1Þ � 27 ¼ �128:0

most positive number ¼ ð0:11111111111Þ2$201112 ¼ ð1� 2�11Þ � 27 ¼ 127:9375

The smallest positive number is given by

smallest positive number ¼ ð0:00000000001Þ2$21;0002 ¼ ð2�11Þ � 2�8 ¼ 2�19

As we can see, the exponent acts like a scale factor to increase the dynamic range of the number
representation. We study the floating-point format in the following example.

EXAMPLE 9.8
Convert each of the following decimal numbers to a floating-point number using the format specified in Figure 9.10.

a. 0.1601230
b. �20.430527

Solution:
a. We first scale the number 0.1601230 to 0:160123=2�2 ¼ 0:640492 with an exponent of �2 (other choices
could be 0 or �1) to get 0:160123 ¼ 0:640492� 2�2. Using 2’s complement, we have �2 ¼ 1110. Now we
convert the value 0:640492 using the Q-11 format to get 010100011111. Cascading the exponent bits and the
mantissa bits yields

1110010100011111

−20 2 1− 2 2− 2 3− 2 4− 2 5− 2 6− 2 7− 2 8− 2 9− 2 10− 2 11−2021
22−23

12 bit mantissa4 bit exponent

FIGURE 9.10

Floating-point format.
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b. Since �20:430527=25 ¼ �0:638454, we can convert it into the fractional part and exponent part
as �20:430527 ¼ �0:638454� 25. Note that this conversion is not particularly unique; the forms
�20:430527 ¼ �0:319227� 26 and �20:430527 ¼ �0:1596135� 27 are still valid choices. Let us keep
what we have now. Therefore, the exponent bits should be 0101.

Converting the number 0.638454 using the Q-11 format gives

010100011011

Using 2’s complement, we obtain the representation for the decimal number �0.6438454 as

101011100101

Cascading the exponent bits and mantissa bits, we achieve

0101101011100100

Floating-point arithmetic is more complicated. We must obey the rules for manipulating two
floating-point numbers. For arithmetic addition, with two floating point numbers given as

x1 ¼ M12
E1

x2 ¼ M22
E2

the floating-point sum is performed as follows:

x1 þ x2 ¼
( ðM1 þM2 � 2�ðE1�E2ÞÞ � 2E1 ; if E1 � E2

ðM1 � 2�ðE2�E1Þ þM2Þ � 2E2 if E1 < E2

For multiplication, given two properly normalized floating-point numbers

x1 ¼ M12
E1

x2 ¼ M22
E2

where 0:5 � j:M1j: < 1 and 0:5 � j:M2j: < 1, the calculation can be performed as follows:

x1 � x2 ¼ ðM1 �M2Þ � 2E1þE2 ¼ M � 2E

That is, the mantissas are multiplied while the exponents are added:

M ¼ M1 �M2

E ¼ E1 þ E2

Examples 9.9 and 9.10 serve to illustrate manipulators.
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EXAMPLE 9.9
Add the two floating point numbers obtained in Example 9.8:

1110 010100011111 ¼ :640136718� 2�2

0101 101011100101 ¼ � 0:638183593� 25

Solution:
Before addition, we change the first number so it has the same exponent as the second number, that is,

0101 000000001010 ¼ 0:00500168� 25

Then we add the two mantissa numbers:

0: 0 0 0 0 0 0 0 1 0 1 0

þ 1: 0 1 0 1 1 1 0 0 1 0 1

1: 0 1 0 1 1 1 0 1 1 1 1

The floating number is

0101 101011101111

We can verify the result by the following:

0101 101011101111 ¼ � ð2�1 þ 2�3 þ 2�7 þ 2�11Þ � 25 ¼ �0:633300781� 25

¼ � 20:265625

EXAMPLE 9.10
Multiply the two floating-point numbers obtained in Example 9.8:

1110 010100011111 ¼ :640136718� 2�2

0101 101011100101 ¼ � 0:638183593� 25

Solution:
From the results in Example 9.8, we have the bit patterns for these two numbers as

E1 ¼ 1110; E2 ¼ 0101; M1 ¼ 010100011111; M2 ¼ 101011100101

Adding two exponents in 2’s complement form leads to

E ¼ E1 þ E2 ¼ 1110þ 0101 ¼ 0011

which is þ3, as we expected, since in the decimal domain (�2) þ 5 ¼ 3. As previously shown when introducing
the multiplication rule, when multiplying two mantissas, we need to apply their corresponding positive values. If
the sign for the final value is negative, then we convert it to its 2’s complement form. In our example,
M1 ¼ 010100011111 is a positive mantissa. However, M2 ¼ 101011100101 is a negative mantissa, since

9.4 Fixed-Point and Floating-Point Formats 421



the MSB is 1. To perform multiplication, we use 2’s complement to convert M2 to its positive value,
010100011011, and note that the multiplication result is negative. We multiply two positive mantissas and
truncate the result to 12 bits to give

010100011111� 010100011011 ¼ 001101010100

Now we need to add a negative sign to the multiplication result with the 2’s complement operation. Taking the 2’s
complement, we have

M ¼ 110010101100

Hence, the product is achieved by cascading the 4-bit exponent and 12-bit mantissa as

0011110010111100

Converting this number back to the decimal number, we verify the result to be

� 0:408203125� 23 ¼ �3:265625:

Next, we examine overflow and underflow in the floating-point number system.

Overflow
During an operation, overflow will occur when a number is too large to be represented in the floating-
point number system. Adding two mantissa numbers may lead to a number larger than 1 or
less than �1; and multiplying two numbers causes the addition of their two exponents so that the sum
of the two exponents could overflow. Consider the following overflow cases.

Case 1. Add the following two floating-point numbers:

0111 011000000000 þ 011101000000000

Note that the two exponents are the same and they are the biggest positive number in 4-bit 2’s
complement representation. We add two positive mantissa numbers as

0: 1 1 0 0 0 0 0 0 0 0 0

þ 0: 1 0 0 0 0 0 0 0 0 0 0

1: 0 1 0 0 0 0 0 0 0 0 0

The result for adding mantissa numbers is negative. Hence the overflow occurs.
Case 2: Multiply the following two numbers:

0111 011000000000 � 0111 01100000000

Adding the two positive exponents gives

0111þ 0111 ¼ 1000 ðnegative; the overflow occursÞ

Multiplying the two mantissa numbers gives

0:11000000000� 0:1100000000 ¼ 0:10010000000 ðOK!Þ

422 CHAPTER 9 Hardware and Software for Digital Signal Processors



Underflow
As we discussed before, underflow will occur when a number is too small to be represented in the
number system. Let us divide the following two floating-point numbers:

1001 001000000000O 0111 01000000000

First, subtracting the two exponents leads to

1001ðnegativeÞ � 0111ðpositiveÞ ¼ 1001þ 1001 ¼ 0010 ðpositive; the underflow occursÞ

Then, dividing two mantissa numbers, it follows that

0:01000000000O 0:1000000000 ¼ 0:10000000000 ðOK!Þ

However, in this case, the expected resulting exponent is �14 in decimal, which is too small to be
presented in the 4-bit 2’s complement system. Hence the underflow occurs.

Now that we understand the basic principles of the floating-point formats, we can next examine two
floating-point formats of the Institute of Electrical and Electronics Engineers (IEEE).

9.4.3 IEEE Floating-Point Formats

Single Precision Format
IEEE floating-point formats are widely used in many modern DS processors. There are two types
of IEEE floating-point formats (IEEE 754 standard). One is the IEEE single precision format, and
the other is the IEEE double precision format. The single precision format is described in
Figure 9.11.

The format of IEEE single precision floating-point standard representation requires 23 fraction
bits F, 8 exponent bits E, and 1 sign bit S, with a total of 32 bits for each word. F is the mantissa in 2’s
complement positive binary fraction represented from bit 0 to bit 22. The mantissa is within the
normalized range limits between þ1 and þ2. The sign bit S is employed to indicate the sign of
the number, where when S ¼ 1 the number is negative, and when S ¼ 0 the number is positive. The
exponent E is in excess 127 form. The value of 127 is the offset from the 8-bit exponent range from 0 to
255, so that E-127 will have a range from �127 to þ128. The formula shown in Figure 9.11 can be
applied to convert the IEEE 754 standard (single precision) to the decimal number. The following
simple examples also illustrate this conversion:

0 10000000 00000000000000000000000 ¼ ð�1Þ0 � ð1:02Þ � 2128�127 ¼ 2:0

fractionexponents
031 30 23 22

x Fs E( ) ( . )1 1 2 127

FIGURE 9.11

IEEE single precision floating-point format.
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0 10000001 10100000000000000000000 ¼ ð�1Þ0 � ð1:1012Þ � 2129�127 ¼ 6:5

1 10000001 10100000000000000000000 ¼ ð�1Þ1 � ð1:1012Þ � 2129�127 ¼ �6:5

Let us look at Example 9.11 for more explanation.

EXAMPLE 9.11
Convert the following number in IEEE single precision format to decimal format:

110000000:010.0000

Solution:
From the bit pattern in Figure 9.11, we can identify the sign bit, exponent, and fractional as

s ¼ 1; E ¼ 27 ¼ 128

1:F ¼ 1:012 ¼ ð2Þ0 þ ð2Þ�2 ¼ 1:25

Then, applying the conversion formula leads to

x ¼ ð�1Þ1ð1:25Þ � 2128�127 ¼ �1:25� 21 ¼ �2:5

In conclusion, the value x represented by the word can be determined based on the following rules,
including all the exceptional cases:

• If E ¼ 255 and F is nonzero, then x ¼ NaN ("Not a number").
• If E ¼ 255, F is zero, and S is 1, then x ¼ �Infinity.
• If E ¼ 255, F is zero, and S is 0, then x ¼ þInfinity.
• If 0 < E < 255, then x ¼ ð�1Þs � ð1:FÞ � 2E�127, where 1:F represents the binary number created

by prefixing F with an implicit leading 1 and a binary point.
• If E ¼ 0 and F is nonzero, then x ¼ ð�1Þs � ð0:FÞ � 2�126. This is an "unnormalized" value.
• If E ¼ 0, F is zero, and S is 1, then x ¼ �0.
• If E ¼ 0, F is zero, and S is 0, then x ¼ 0.

Typical and exceptional examples are shown as follows:

000000000 00000000000000000000000 ¼ 0
100000000 00000000000000000000000 ¼ �0
011111111 00000000000000000000000 ¼ Infinity
111111111 00000000000000000000000 ¼ �Infinity
011111111 00000100000000000000000 ¼ NaN
111111111 00100010001001010101010 ¼ NaN
000000001 00000000000000000000000 ¼ ð�1Þ0 � ð1:02Þ � 21�127 ¼ 2�126

000000000 10000000000000000000000 ¼ ð�1Þ0 � ð0:12Þ � 20�126 ¼ 2�127
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000000000 00000000000000000000001 ¼
ð�1Þ0 � ð0:000000000000000000000012Þ � 20�126 ¼ 2�149 ðsmallest positive valueÞ

Double Precision Format
The IEEE double precision format is described in Figure 9.12.

The IEEE double precision floating-point standard representation requires a 64-bit word, which
may be numbered from 0 to 63, left to right. The first bit is the sign bit S, the next eleven bits are the
exponent bits E, and the final 52 bits are the fraction bits F. The IEEE floating-point format in double
precision significantly increases the dynamic range of number representation since there are eleven
exponent bits; the double-precision format also reduces the interval size in the mantissa normalized
range ofþ1 toþ2, since there are 52 mantissa bits as compare with the single precision case of 23 bits.
Applying the conversion formula shown in Figure 9.12 is similar to the single precision case.

EXAMPLE 9.12
Convert the following number in IEEE double precision format to the decimal format:

001000.0:110.000

Solution:
Using the bit pattern in Figure 9.12, we have

s ¼ 0; E ¼ 29 ¼ 512 and

1:F ¼ 1:112 ¼ ð2Þ0 þ ð2Þ�1 þ ð2Þ�2 ¼ 1:75

Then, applying the double precision formula yields

x ¼ ð�1Þ0ð1:75Þ � 2512�1023 ¼ 1:75� 2�511 ¼ 2:6104� 10�154

For the purpose of completeness, rules for determining the value x represented by the double-
precision word are listed as follows:

• If E ¼ 2;047 and F is nonzero, then x ¼ NaN ("Not a number").
• If E ¼ 2;047, F is zero, and S is 1, then x ¼ �Inifinity.
• If E ¼ 2;047, F is zero, and S is 0, then x ¼ þInifinity.
• If 0 < E < 2;047, then x ¼ ð�1Þs � ð1:FÞ � 2E�1;023, where "1:F " is intended to represent the

binary number created by prefixing F with an implicit leading 1 and a binary point.

s exponent fraction fraction
0031 3130 1920

x Fs E( ) ( . )1 1 2 1023

retsiger neveretsiger ddo

FIGURE 9.12

IEEE double precision floating-point format.
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• If E ¼ 0 and F is nonzero, then x ¼ ð�1Þs � ð0:FÞ � 2�1022. This is an "unnormalized" value.
• If E ¼ 0, F is zero, and S is 1, then x ¼ �0.
• If E ¼ 0, F is zero, and S is 0, then x ¼ 0.

9.4.5 Fixed-Point Digital Signal Processors

Analog Devices, Texas Instruments, and Motorola all manufacture fixed-point DS processors. Analog
Devices offers a fixed-point DSP family such as the ADSP21xx. Texas Instruments provides various
generations of fixed-point DS processors based on historical development, architecture features, and
computational performance. Some of the most common ones are the TMS320C1x (first generation),
TMS320C2x, TMS320C5x, and TMS320C62x. Motorola manufactures a variety of fixed-point
processors, such as the DSP5600x family. The new families of fixed-point DS processors are expected
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C data memory data bus

Data
memory
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acummulator Shift unit

Program memory address bus

C data memory address bus

D data memory data bus

E data memory data bus
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Program
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Program
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FIGURE 9.13

Basic architecture of the TMSC320C54x family.
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to continue to grow. Since they share some basic common features such as program memory and data
memory with associated address buses, arithmetic logic units (ALUs), program control units, MACs,
shift units, and address generators, here we focus on an overview of the TMS320C54x processor. The
typical TMS320C54x fixed-point DSP architecture appears in Figure 9.13.

The fixed-point TMS320C50 families supporting 16-bit data have on-chip program memory and
data memory in various sizes and configurations. They include data RAM (random access memory)
and program ROM (read-only memory) used for program code, instruction, and data. Four data buses
and four address buses are accommodated to work with the data memory and program memory. The
program memory address bus and program memory data bus are responsible for fetching program
instructions. As shown in Figure 9.13, the C and D data memory address buses and the C and D data
memory data buses deal with fetching data from the data memory while the E data memory address bus
and E data memory data bus are dedicated to moving data into data memory. In addition, the E memory
data bus can access the I/O devices.

Computational units consist of an ALU, a MAC, and a shift unit. For the TMS320C54x family, the
ALU can fetch data from the C, D, and program memory data buses and access the E memory data bus.
It has two independent 40-bit accumulators, which are able to operate 40-bit addition. The multiplier,
which can fetch data from the C and D memory data buses and write data via the E data memory data
bus, is capable of operating 17-bit � 17-bit multiplications. The 40-bit shifter has the same capability
of bus access as the MAC, allowing all possible shifts for scaling and fractional arithmetic such as
those we have discussed for the Q-format.

The program control unit fetches instructions via the program memory data bus. Again, in order to
speed up memory access, there are two address generators available: one responsible for program
addresses and one for data addresses.

Advanced Harvard architecture is employed, where several instructions operate at the same time
for given a given single instruction cycle. Processing performance offers 40 MIPS (million instruction
sets per second). To further explore this subject, the reader is referred to Dahnoun (2000), Embree
(1995), Ifeachor and Jervis (2002), and Van der Vegte (2002), as well as the TI website (www.ti.com).

9.4.6 Floating-Point Processors

Floating-point DS processors perform DSP operations using floating-point arithmetic, as we discussed
before. The advantages of using the floating-point processor include getting rid of finite word length
effects such as overflows, round-off errors, truncation errors, and coefficient quantization error. Hence,
in terms of coding, we do not need to scale input samples to avoid overflow, shift the accumulator
result to fit the DAC word size, scale the filter coefficients, or apply Q-format arithmetic. A floating-
point DS processor with high speed and calculation precision facilitates a friendly environment to
develop and implement DSP algorithms.

Analog Devices provides floating-point DSP families such as ADSP210xx and TigerSHARC.
Texas Instruments offers a wide range of the floating-point DSP families, in which the TMS320C3x is
the first generation, followed by the TMSC320C4x and TMS320C67x families. Since the first
generation of a floating-point DS processor is less complicated than later generations but still has the
common basic features, we review the first-generation architecture first.

Figure 9.14 shows the typical architecture of Texas Instruments’ TMS320C3x family of processors.
We discuss some key features briefly. Further detail can be found in the TMS320C3x User’s Guide
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(Texas Instruments 1991), the TMS320C6x CPU and Instruction Set Reference Guide (Texas
Instruments, 1998), and other studies (Dahnoun, 2000; Embree, 1995; Ifeachor and Jervis, 2002;
Kehtaranavaz and Simsek, 2000; Sorensen and Chen, 1997; Van der Vegte, 2002). The TMS320C3x
family consists of 32-bit single chip floating-point processors that support both integer and floating-
point operations.

The processor has a large memory space and is equipped with dual-access on-chip memories. A
program cache is employed to enhance the execution of commonly used codes. Similar to the fixed-
point processor, it uses the Harvard architecture, where there are separate buses used for program and
data so that instructions can be fetched at the same time that data are being accessed. There also exist
memory buses and data buses for direct-memory access (DMA) for concurrent I/O and CPU opera-
tions, and peripheral access such as serial ports, I/O ports, memory expansion, and an external clock.

The C3x CPU contains the floating-point/integer multiplier; an ALU, which is capable of operating
both integer and floating-point arithmetic; a 32-bit barrel shifter; internal buses; a CPU register file;
and dedicated auxiliary register arithmetic units (ARAUs). The multiplier operates single-cycle
multiplications on 24-bit integers and on 32-bit floating-point values. Using parallel instructions to
perform a multiplication, an ALU will cost a single cycle, which means that a multiplication and an
addition are equally fast. The ARAUs support addressing modes, in which some of them are specific to
DSP such as circular buffering and bit-reversal addressing (digital filtering and FFT operations). The
CPU register file offers 28 registers, which can be operated on by the multiplier and ALU. The special
functions of the registers include eight-extended 40-bit precision registers for maintaining accuracy of
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the floating-point results. Eight auxiliary registers can be used for addressing and for integer arith-
metic. These registers provide internal temporary storage of internal variables instead of external
memory storage, to allow performance of arithmetic between registers. In this way, program efficiency
is greatly increased.

The prominent feature of C3x is its floating-point capability, allowing operation of numbers with
a very large dynamic range. It offers implementation of the DSP algorithm without worrying about
problems such as overflows and coefficient quantization. Three floating-point formats are supported. A
short 16-bit floating-point format has 4 exponent bits, 1 sign bit, and 11 mantissa bits. A 32-bit single
precision format has 8 exponent bits, 1 sign bit, and 23 fraction bits. A 40-bit extended precision
format contains 8 exponent bits, 1 sign bit, and 31 fraction bits. Although the formats are slightly
different from the IEEE 754 standard, conversions are available between these formats.

The TMS320C30 offers high-speed performance with 60-nanosecond single-cycle instruction
execution time, which is equivalent to 16.7 MIPS. For speech quality applications with an 8 kHz
sampling rate, it can handle over 2,000 single-cycle instructions between two samples (125 micro-
seconds). With instruction enhancements such as pipelines executing each instruction in a single cycle
(four cycles required from fetch to execution by the instruction itself) and a multiple interrupt
structure, this high-speed processor validates implementation of real-time applications in floating-
point arithmetic.

9.5 FINITE IMPULSE RESPONSE AND INFINITE IMPULSE RESPONSE
FILTER IMPLEMENTATIONS IN FIXED-POINT SYSTEMS
With knowledge of the IEEE format and of filter realization structures such as direct-form I, direct-
form II, and parallel and cascade forms (Chapter 6), we can study digital filter implementation in
the fixed-point processor. In the fixed-point system, where only integer arithmetic is used, we
prefer input data, filter coefficients, and processed output data to be in the Q-format. In this way,
we avoid overflow due to multiplication and can prevent overflow due to addition by scaling input
data. When the filter coefficients are out of the Q-format range, coefficient scaling must be taken
into account to maintain the Q-format. We develop FIR filter implementation in Q-format first, and
then infinite impulse response (IIR) filter implementation next. In addition, we assume that with
a given input range in Q-format, the filter output is always in Q-format even if the filter passband
gain is larger than 1.

First, to avoid the overflow for an adder, we can scale the input down by a scale factor S, which can
be safely determined by the following equation

S ¼ Imax,
XN
k¼ 0

jhðkÞj ¼ Imax,ðjhð0Þj þ jhð1Þj þ jhð2Þj þ/Þ (9.2)

where hðkÞ is the impulse response of the adder output and Imax the maximum amplitude of the input in
Q-format. Note that this is not an optimal factor in terms of reduced signal-to-noise ratio. However, it
shall prevent the overflow. Equation (9.2) means that the adder output can actually be expressed as
a convolution output:

adder output ¼ hð0ÞxðnÞ þ hð1Þxðn� 1Þ þ hð2Þxðn� 2Þ þ/
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Assuming the worst conditions, that is, that all the inputs xðnÞ reach a maximum value of Imax and all
the impulse coefficients are positive, the sum of the adder gives the most conservative scale factor, as
shown in Equation (9.2). Hence, scaling down the input by a factor of S will guarantee that the output
of the adder is in Q-format.

When some of the FIR coefficients are larger than 1, which is beyond the range of Q-format
representation, coefficient scaling is required. The idea is that scaling down the coefficients will make
them less than 1, and later the filtered output will be scaled up by the same amount before it is sent to
DAC. Figure 9.15 describes the modified implementation.
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b B1 /
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+

x n( )
+

B

1/ S

S

( )sx n ( )sy n

FIGURE 9.15

Direct-form I implementation of the FIR filter.

In the figure, the scale factor B makes the coefficients bk=B convertible to the Q-format. The scale
factors S and B are usually chosen to be a power of 2, so the simple shift operation can be used in the
coding process. Let us implement an FIR filter containing filter coefficients larger than 1 in the fixed-
point implementation.

EXAMPLE 9.13
Given the FIR filter

yðnÞ ¼ 0:9xðnÞ þ 3xðn � 1Þ þ 0:9xðn � 2Þ

with a passband gain of 4, and assuming that the input range only occupies one quarter of the full range for
a particular application, develop the DSP implementation equations in the Q-15 fixed-point system.

Solution:
The adder may cause overflow if the input data exist for one quarter of the full dynamic range. The scale factor is
determined using the impulse response, which consists of the FIR filter coefficients, as discussed in Chapter 3.

S ¼ 1

4
ðjhð0Þj þ jhð1Þj þ jhð2ÞjÞ ¼ 1

4
ð0:9þ 3þ 0:9Þ ¼ 1:2

Overflow may occur. Hence, we select S ¼ 2 (a power of 2). We choose B ¼ 4 to scale all the coefficients to be
less than 1, so the Q-15 format can be used. According to Figure 9.15, the developed difference equations are
given by

xsðnÞ ¼ xðnÞ
2

ysðnÞ ¼ 0:225xsðnÞ þ 0:75xsðn � 1Þ þ 0:225xsðn � 2Þ

yðnÞ ¼ 8ysðnÞ
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Next, the direct-form I implementation of the IIR filter is illustrated in Figure 9.16. As shown in the figure, the
purpose of the scale factor C is to scale down the original filter coefficients to the Q-format. The factor C is usually
chosen to be a power of 2 for using a simple shift operation in DSP.

EXAMPLE 9.14
The IIR filter

yðnÞ ¼ 2xðnÞ þ 0:5yðn � 1Þ

uses the direct-form I realization, and for a particular application, the maximum input is
Imax ¼ 0:010.:02 ¼ 0:25. Develop the DSP implementation equations in the Q-15 fixed-point system.

Solution:
This is an IIR filter whose transfer function is

HðzÞ ¼ 2

1� 0:5z�1
¼ 2z

z � 0:5

Applying the inverse z-transform, we obtain the impulse response

hðnÞ ¼ 2� ð0:5ÞnuðnÞ

To prevent overflow in the adder, we can compute the S factor with the help of the Maclaurin series or approximate
Equation (9.2) numerically. We get

S ¼ 0:25�
�
2ð0:5Þ0 þ 2ð0:5Þ1 þ 2ð0:5Þ2 þ/

�
¼ 0:25� 2� 1

1� 0:5
¼ 1

The MATLAB function impz() can also be applied to find the impulse response and the S factor:
>> h¼impz(2,[1 �0.5]); % Find the impulse response
>> sf¼0.25*sum(abs(h)) % Determine the sum of absolute values of h(k)
sf ¼1

Hence, we do not need to perform input scaling. However, we need scale down all the coefficients to use the
Q-15 format. A factor of C ¼ 4 is selected. From Figure 9.16, we get the difference equations as

xsðnÞ ¼ xðnÞ

ysðnÞ ¼ 0:5sxðnÞ þ 0:125yf ðn � 1Þ
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FIGURE 9.16

Direct-form I implementation of the IIR filter.
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yf ðnÞ ¼ 4ysðnÞ

yðnÞ ¼ yf ðnÞ

We can develop these equations directly. First, we divide the original difference equation by a factor of 4 to scale
down all the coefficients to be less than 1, that is,

1

4
yf ðnÞ ¼ 1

4
� 2xsðnÞ þ 1

4
� 0:5yf ðn � 1Þ

and define a scaled output

ysðnÞ ¼ 1

4
yf ðnÞ

Finally, substituting ysðnÞ on the left side of the scaled equation and rescaling up the filter output as
yf ðnÞ ¼ 4ysðnÞ, we have the same results as before.

The fixed-point implementation for direct-form II is more complicated. The developed direct-form
II implementation of the IIR filter is illustrated in Figure 9.17.

As shown in the figure, two scale factors A and B are designated to scale denominator coefficients
and numerator coefficients to their Q-format representations, respectively. Here S is a special factor to
scale down the input sample so that the numerical overflow in the first sum in Figure 9.17 can be
prevented. The difference equations are given in Chapter 6 and listed here:

wðnÞ ¼ xðnÞ � a1wðn� 1Þ � a2wðn� 2Þ �/� aMwðn�MÞ

yðnÞ ¼ b0wðnÞ þ b1wðn� 1Þ þ/þ bMwðn�MÞ

The first equation is scaled down by the factor A to ensure that all the denominator coefficients are less
than 1, that is,
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1/ S 1/ A

A B S( )sw n ( )sy n

FIGURE 9.17

Direct-form II implementation of the IIR filter.

432 CHAPTER 9 Hardware and Software for Digital Signal Processors



wsðnÞ ¼ 1

A
wðnÞ ¼ 1

A
xðnÞ � 1

A
a1wðn� 1Þ � 1

A
a2wðn� 2Þ �/� 1

A
aMwðn�MÞ

wðnÞ ¼ A� wsðnÞ
Similarly, scaling the second equation yields

ysðnÞ ¼ 1

B
yðnÞ ¼ 1

B
b0wðnÞ þ 1

B
b1wðn� 1Þ þ/þ 1

B
bMwðn�MÞ

and

yðnÞ ¼ B� ysðnÞ
To avoid the first adder overflow (first equation), the scale factor S can be safely determined by
Equation (9.3):

S ¼ Imaxðjhð0Þj þ jhð1Þj þ jhð2Þj þ/Þ (9.3)

where hðkÞ is the impulse response due to the denominator polynomial of the IIR filter, where the poles
can cause a larger value to the first sum. Hence, h(k) is given by

hðnÞ ¼ Z�1

�
1

1þ a1z�1 þ/þ az�M

�
(9.4)

All the scale factors A, B, and S are usually chosen to be a power of 2, respectively, so that the shift
operations can be used in the coding process. Example 9.15 serves as illustration.

EXAMPLE 9.15
Given the IIR filter

yðnÞ ¼ 0:75xðnÞ þ 1:49xðn � 1Þ þ 0:75xðn � 2Þ � 1:52yðn � 1Þ � 0:64yðn � 2Þ

with a passband gain of 1 and a full range of input, use the direct-form II implementation to develop the DSP
implementation equations in the Q-15 fixed-point system.

Solution:
The difference equations without scaling in the direct-form II implementation are given by

wðnÞ ¼ xðnÞ � 1:52wðn � 1Þ � 0:64wðn � 2Þ

yðnÞ ¼ 0:75wðnÞ þ 1:49wðn � 1Þ þ 0:75wðn � 2Þ

To prevent overflow in the first adder, we obtain the reciprocal of the denominator polynomial as

AðzÞ ¼ 1

1þ 1:52z�1 þ 0:64z�2

Using the MATLAB function impz() leads to:
>> h¼impz(1,[1 1.52 0.64]);
>> sf¼sum(abs(h))
sf ¼ 10.4093
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We choose the S factor as S ¼ 16 and we choose A ¼ 2 to scale down the denominator coefficients by half.
Since the second adder output after scaling is

ysðnÞ ¼ 0:75

B
wðnÞ þ 1:49

B
wðn � 1Þ þ 0:75

B
wðn � 2Þ

to avoid second adder overflow we have to ensure that each coefficient is less than 1, along with the sum of the
absolute values:

0:75

B
þ 1:49

B
þ 0:75

B
< 1

Hence B ¼ 4 is selected. We develop the DSP equations as

xsðnÞ ¼ xðnÞ=16

wsðnÞ ¼ 0:5xsðnÞ � 0:76wðn � 1Þ � 0:32wðn � 2Þ

wðnÞ ¼ 2wsðnÞ

ysðnÞ ¼ 0:1875wðnÞ þ 0:3725wðn � 1Þ þ 0:1875wðn � 2Þ

yðnÞ ¼ ðB � SÞysðnÞ ¼ 64ysðnÞ

The implementation for cascading the second-order section filters can be found in Ifeachor and
Jervis (2002).

A practical example will be presented in the next section. Note that if a floating-point DS processor
is used, all the scaling concerns should be ignored, since the floating-point format offers a large
dynamic range, so that overflow hardly ever happens.

9.6 DIGITAL SIGNAL PROCESSING PROGRAMMING EXAMPLES
In this section, we first review the TMS320C67x DSK (DSP Starter Kit), which offers floating-point
and fixed-point arithmetic. We will then investigate real-time implementation of digital filters.

9.6.1 Overview of TMS320C67x DSK

In this section, a Texas Instruments TMS320C6713 DSK (DSP Starter Kit) shown in Figure 9.18 is
chosen for demonstration. This DSK board has an approximate size of 5 x 8 inches, a clock rate of 225
MHz, and a 16-bit stereo codec TLV320AIC23 (AIC23), which deals with analog inputs and outputs.
The onboard codec AIC23 applies sigma-delta technology for analog-to-digital conversion (ADC) and
digital-to-analog conversion (DAC) functions. The codec runs using a 12 MHz system clock and the
sampling rate can be selected from a range of 8 to 96 kHz for speech and audio processing. Other
boards such as a Texas Instruments TMS320C6711 DSK can also be found in the references
(Kehtaranavaz and Simsek, 2001; TMS320C6x CPU and Instruction Set Reference Guide, 1999). The
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FIGURE 9.18

(a) C6713 DSK board and (b) block diagram (courtesy of Texas Instruments).
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on-board daughter card connections facilitate the external units for advanced applications such as
external peripheral and external memory interfaces. The TMS320C6713 DSK board consists of 16 MB
(megabytes) of synchronous dynamic RAM (SDRAM) and 512 kB (kilobytes) of flash memory. There
are four onboard connections: MIC IN for microphone input; LINE IN for line input; LINE OUT for
line output; and HEADPHONE for a headphone output (multiplexed with LINE OUT). The board
components are tied by a CPLD (programmable logic device), which has a register based user
interface. A user can configure the board by reading and writing to the CPLD registers. The DSK
includes the four user DIP switches and four LEDs (light-emitting diodes) which provide a user
a simple form of inputs and outputs. Both can be accessed by the CPLD registers. The onboard voltage
regulators provide 1.26 V for the DSP core and 3.3 V for the memory and peripherals. The USB port
provides the connection between the DSK board and the host computer, where the user program is
developed, compiled, and downloaded to the DSK for real-time applications using the user-friendly
software called Code Composer Studio, which we shall discuss later.

In general, the TMS320C67x operates at a high clock rate of 300 MHz. Combining this high speed
and multiple units operating at the same time has pushed its performance up to 2,400 MIPS at 300
MHz. Using this number, the C67x can handle 0.3 MIPS between two speech samples at a sampling
rate of 8 kHz, and can handle over 54,000 instructions between two audio samples with a sampling rate
of 44.1 kHz. Hence, the C67x offers great flexibility for real-time applications with a high-level
C language.
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FIGURE 9.19

Block diagram of TMS320C67x floating-point DSP.
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Figure 9.19 shows a C67x architecture overview, while Figure 9.20 displays a more detailed block
diagram. The C67x contains three main parts, which are the CPU, the memory, and the peripherals. As
shown in Figure 9.19, these three main parts are joined by an external memory interface (EMIF)
interconnected by internal buses to facilitate interface with common memory devices, DMA, a serial
port, and a host port interface (HPI).

Since this section is devoted to showing DSP coding examples, C67x key features and references
are briefly listed here:

1. Architecture: The system uses Texas Instruments VelociTM architecture, which is an enhancement
of the VLIW (very long instruction word architecture) (Dahnoun, 2000; Ifeachor and Jervis, 2002;
Kehtaranavaz and Simsek, 2000).

2. CPU: As shown in Figure 9.20, the CPU has eight functional units divided into two sides A and B,
each consisting of units .D, .M, .L, and .S. For each side, an .M unit is used for multiplication
operation, an .L unit is used for logical and arithmetic operations, and a .D unit is used for
loading/storing and arithmetic operations. Each side of the C67x CPU has sixteen 32-bit registers
that the CPU must go through for interface. More detail can be found in Appendix D (Texas
Instruments, 1991) as well as in Kehtaranavaz and Simsek (2000) and Texas Instruments (1998).
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FIGURE 9.20

Registers of TMS320C67x floating-point DSP.
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3. Memory and internal buses: Memory space is divided into internal program memory, internal
data memory, and internal peripheral and external memory space. The internal buses include
a 32-bit program address bus, a 256-bit program data bus to carry out eight 32-bit instructions
(VLIW), two 32-bit data address buses, two 64-bit load data buses, two 64-bit store data
buses, two 32-bit DMA buses, and two 32-bit DMA address buses responsible for reading and
writing. There also is a 22-bit address bus and a 32-bit data bus for accessing off-chip or
external memory.

4. Peripherals:
a. EMIF, which provides the required timing for accessing external memory;
b. DMA, which moves data from one memory location to another without interfering with CPU

operations;
c. Multichannel buffered serial port (McBSP) with a high-speed multichannel serial

communication link;
d. HPI, which lets a host access internal memory;
e. Boot loader for loading code from off-chip memory or the HPI to internal memory;
f. Timers (two 32-bit counters);
g. Power-down units for saving power for periods when the CPU is inactive.

The software tool for the C67x is the Code Composer Studio (CCS) provided by TI. It allows the user
to build and debug programs from a user-friendly graphical user interface (GUI) and extends the
capabilities of code development tools to include real-time analysis. Installation, tutorial, coding, and
debugging information can be found in the CCS Getting Started Guide (Texas Instruments, 2001) and
in Kehtaranavaz and Simsek (2000).

Of particular note is the TMS320C6713 DSK with a clock rate of 225 MHz, which has the
capability to fetch eight 32-bit instructions every 4.4 nanoseconds (1/225 MHz). The functional block
diagram is shown in Figure 9.21. A detailed description can be found in Chassaing and Reay (2008).

9.6.2 Concept of Real-Time Processing

We illustrate real-time implementation in Figure 9.22, where the sampling rate is 8,000 samples per
second; that is, the sampling period is T ¼ 1=fs ¼ 125 microseconds, which is the time between two
samples.

As shown in Figure 9.22, the required timing includes an input sample clock and an output sample
clock. The input sample clock maintains the accuracy of the sampling time for each ADC operation,
while the output sample clock keeps the accuracy of the time instant for each DAC operation. The time
between the input sample clock n and output sample clock n consists of the ADC operation, algorithm
processing, and the wait for the next ADC operation. The numbers of instructions for ADC and the
DSP algorithm must be estimated and verified to ensure that all instructions have been completed
before DAC begins. Similarly, the number of instructions for DAC must be verified so that DAC
instructions will be finished between the output sample clock n and the next input sample clock n þ 1.
Timing usually is set up using the DSP interrupts (we will not pursue the interrupt setup here).

Next, we focus on the implementation of the DSP algorithm in a floating-point system for
simplicity. A DSK setup example (Tan and Jiang, 2010) is depicted in Figure 9.23, while a skeleton
code for verification of the input and output is depicted in Figure 9.24.
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FIGURE 9.22

Concept of real-time processing.

FIGURE 9.21

Functional block diagram and registers of TMS320C6713 (courtesy of Texas Instruments).
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FIGURE 9.23

TMS320C6713 DSK setup example.

float x[1]={0.0};
float y[1]={0.0};
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc=(float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
x[0]=lc; /  Input from the left channel /
y[0]=x[0];  /  simplest DSP equation /

// End of the DSP algorithm
rcnew=y[0];
rcnew=y[0];
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.24

Program segment for verifying input and output.

9.6.3 Linear Buffering

During DSP such as digital filtering, past inputs and past outputs are required to be buffered
and updated for processing the next input sample. Let us first study the FIR filter
implementation.
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Finite Impulse Response Filtering
Consider implementation for the following 3-tap FIR filter:

yðnÞ ¼ 0:5xðnÞ þ 0:2xðn� 1Þ þ 0:5xðn� 2Þ
The buffer requirements are shown in Figure 9.25. The coefficient buffer b[3] contains 3 FIR coef-
ficients, and the coefficient buffer is fixed during the process. The input buffer x[3], which holds the

Coefficient buffer b[3]

Update of input
buffer x[3]

(FIFO)

b[0]

b[1]

b[2]

0.5

0.5

0.2

x[0]

x[1]

x[2]

x(n)

x(n-1)

x(n-2)

New input x(n)

kicked out
First step

Free for new sample

float x[3]={0.0, 0.0, 0.0};
float b[3]={0.5, 0.2, 0.5};
float y[1]={0.0};
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc=(float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
for(i=2; i>0; i--)    /

/

 Update the input buffer x[3] /
{   x[i]=x[i-1]; }
x[0]= (float) lc;  Input from the left channel /
y[0]=0;
for(i=0; i<3; i++)

{  y[0]=y[0]+b[i] x[i]; } /  FIR filtering /
// End of the DSP algorithm

rcnew=y[0]; 
rcnew=y[0];
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.25

Example of FIR filtering with linear buffer update.
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current and past inputs, must be updated. The FIFO update process is adopted here with the segment of
code shown in Figure 9.25. For each input sample, we update the input buffer using FIFO, which
begins at the end of the data buffer; the oldest sample is kicked out first from the buffer and updated
with the value from the upper location. When the FIFO process is completed, the first memory location
x[0] will be free to be used to store the current input sample. The segment of code in Figure 9.25
explains the implementation.

Note that in the code segment, x½0� holds the current input sample xðnÞ, while b½0� is the corre-
sponding coefficient; x½1� and x½2� hold the past input samples xðn� 1Þ and xðn� 2Þ, respectively;
similarly, b½1� and b½2� are the corresponding coefficients.

Again, note that using the array and loop structures in the code segment is for simplicity in notation
and the assumption is that the reader is not familiar with C pointers in the C language. The concern for
simplicity has to do mainly with the DSP algorithm. More coding efficiency can be achieved using C
pointers and a circular buffer. The DSP-oriented coding implementation can be found in Kehtarnavaz
and Simsek (2000) and Chassaing and Reay (2008).

Infinite Impulse Response Filtering
Similarly, we can implement an IIR filter. It requires an input buffer, which holds the current and past
inputs; an output buffer, which holds the past outputs; a numerator coefficient buffer; and a denomi-
nator coefficient buffer. Consider the following IIR filter for implementation:

yðnÞ ¼ 0:5xðnÞ þ 0:7xðn� 1Þ � 0:5xðn� 2Þ � 0:4yðn� 1Þ þ 0:6yðn� 2Þ
We accommodate the numerator coefficient buffer b[3], the denominator coefficient buffer a[3], the
input buffer x[3], and the output buffer y[3] shown in Figure 9.26. The buffer updates for input x[3] and
output y[3] are FIFO. The implementation is illustrated in the segment of code listed in Figure 9.26.

Again, note that in the code segment, x½0� holds the current input sample, while y½0� holds the
current processed output, which will be sent to the DAC unit for conversion. The coefficient a½0� is
never modified in the code. We keep that for a purpose of notation simplicity and consistency during
the programming process.

Digital Oscillation with Infinite Impulse Response Filtering
The principle for generating digital oscillation is described in Chapter 8, where the input to the digital
filter is the impulse sequence, and the transfer function is obtained by applying the z-transform of the
digital sinusoid function. Applications can be found in dual-tone multifrequency (DTMF) tone genera-
tion, digital carrier generation for communications, and so on. Hence, we can modify the implementation
of IIR filtering for tone generation with the input generated internally instead of using the ADC channel.

Let us generate an 800 Hz tone with a digital amplitude of 5,000. According to Section 8.11
“Application: Generation and Detection of DTMF Tones Using the Goertzel Algorithm” in Chapter 8,
the transfer function, difference equation, and the impulse input sequence are found to be, respectively,

HðzÞ ¼ 0:587785z�1

1� 1:618034z�1 þ z�2

yðnÞ ¼ 0:587785xðn� 1Þ þ 1:618034yðn� 1Þ � yðn� 2Þ
xðnÞ ¼ 5000dðnÞ
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float x[3]={0.0, 0.0, 0.0};
float b[3]={0.5, 0.7, -0.5};
float a[3]={1, 0.4, -0.6};
float y[3]={0.0, 0.0, 0.0};
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc=(float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
for(i=2; i>0; i--) / Update the input buffer /
{   x[i]=x[i-1];   }
x[0]= lc; / Input from the left channel /
for (i=2;i>0;i--) / Update the output buffer /
{    y[i]=y[i-1];  }
y[0]=b[0] x[0]+b[1] x[1]+b[2] x[2]-a[1] y[1]-a[2] y[2];

// End of the DSP algorithm
rcnew=y[0]; 
rcnew=y[0];
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.26

Example of IIR filtering using linear buffer update.
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We define the numerator coefficient buffer b[2], the denominator coefficient buffer a[3], the input
buffer x[2], and the output buffer y[3] in Figure 9.27, which also shows the modified implementation
for tone generation.

Coefficients b[2] Coefficents a[3]

Update of input
buffer x[2]

(FIFO)

b[0]

b[1]

0.0

0.587785

a[0]

a[1]

a[2]

x[0]

x[1]

1.0

-1.618034

1.0
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x(n-1)

New input x(n)=0

Kicked out
First step

Free for new sample

Update of output
buffer y[3]

(FIFO)

y[0]

y[1]

y[2]

y(n)

y(n-1)

y(n-2)

Kicked out
First step

Free for output sample

float x[2]={5000, 0.0}; / initialize the impulse input /
float b[2]={0.0, 0.587785};
float a[3]={1.0, -1.618034,  1.0};
float y[3]={0.0};
interrupt void c_int11()
{    float lc; /*left channel input */

float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc=(float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
y[0]=b[0] x[0]+b[1] x[1]+b[2] x[2]-a[1] y[1]-a[2] y[2];
for(i=2; i>0; i--)     /  Update the input buffer with zero input /
{   x[i]=x[i-1];   }
x[0]= 0; 
for (i=2;i>0;i--)     /  Update the output buffer /
{    y[i]=y[i-1];  }

// End of the DSP algorithm
rcnew=y[0]; 
rcnew=y[0];
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.27

Example of IIR filtering using linear buffer update and the impulse sequence input.
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Initially, we set x½0� ¼ 5;000. Then it will be updated with x½0� ¼ 0 for each current processed
output sample y½0�.

9.6.4 Sample C Programs

Floating-Point Implementation Example
Real-time DSP implementation using a floating-point processor is easy to program. The overflow
problem hardly ever occurs. Therefore, we do not need to consider scaling factors, as described in the
last section. The code segment shown in Figure 9.28 demonstrates the simplicity of coding the
floating-point IIR filter using the direct-form I structure.

Fixed-Point Implementation Example
When the execution time is critical, fixed-point implementation is preferred in a floating-point
processor. We implement the following IIR filter with a unit passband gain in direct-form II:

float a[5]={1.00, -2.1192, 2.6952, -1.6924, 0.6414};
float b[5]={0.0201, 0.00, -0.0402, 0.00, 0.0201};
float x[5]={0.0, 0.0, 0.0, 0.0, 0.0};
float y[5]={0.0, 0.0, 0.0, 0.0, 0.0};

interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc=(float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
for(i=4; i>0; i--) /  Update the input buffer /
{   

x[i]=x[i-1];   
}
x[0]= lc; /  Input from the left channel /
for (i=2;i>0;i--)      /  Update the output buffer /
{   

y[i]=y[i-1];  
}
y[0]=b[0] x[0]+b[1] x[1]+b[2] x[2]+b[3] x[3]+b[4] x[4]-a[1] y[1]-a[2] y[2]-a[3] y[3]-a[4] y[4];

// End of the DSP algorithm
rcnew=y[0]; 
rcnew=y[0];
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.28

Sample C code for IIR filtering (floating-point implementation).
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HðzÞ ¼ 0:0201� 0:0402z�2 þ 0:0201z�4

1� 2:1192z�1 þ 2:6952z�2 � 1:6924z�3 þ 0:6414z�4

wðnÞ ¼ xðnÞ þ 2:1192wðn� 1Þ � 2:6952wðn� 2Þ þ 1:6924wðn� 3Þ � 0:6414wðn� 4Þ

yðnÞ ¼ 0:0201wðnÞ � 0:0402wðn� 2Þ þ 0:0201wðn� 4Þ
Using MATLAB to calculate the scale factor S, it follows that

» h¼impz([1],[1 �2.1192 2.6952 �1.6924 0.6414]);
» sf¼sum(abs(h))

sf¼28.2196

Hence we choose S ¼ 32. To scale the filter coefficients in the Q-15 format, we use the factors A ¼ 4
and B ¼ 1. Then the developed DSP equations are

xsðnÞ ¼ xðnÞ=32

wsðnÞ ¼ 0:25xsðnÞ þ 0:5298wsðn� 1Þ � 0:6738wsðn� 2Þ þ 0:4231wsðn� 3Þ � 0:16035wsðn� 4Þ

wðnÞ ¼ 4wsðnÞ

ysðnÞ ¼ 0:0201wðnÞ � 0:0402wðn� 2Þ þ 0:0201wðn� 4Þ

yðnÞ ¼ 32ysðnÞ

Using the method described in Section 9.5, we can convert filter coefficients into the Q-15 format; each
coefficient is listed in Table 9.4.

Table 9.4 Filter Coefficients in Q-15 Format

IIR Filter Filter Coefficients Q-15 Format (Hex)

�a1
0.5298 0 � 43D0

�a2
�0.6738 0 � A9C1

�a3
0.4230 0 � 3628

�a4
�0.16035 0 � EB7A

b0
0.0201 0 � 0293

b1
0.0000 0 � 0000

b2
�0.0402 0 � FADB

b3
0.0000 0 � 000

b4
0.0201 0 � 0293
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/*float a[5]={1.00, -2.1192, 2.6952, -1.6924, 0.6414}; float b[5]={0.0201, 0.00, -0.0402, 0.00, 0.0201};*/
short a[5]={0x2000, 0x43D0, 0xA9C1, 0x3628, 0xEB7A}; /* coefficients in Q-15 format */
short b[5]={0x0293, 0x0000, 0xFADB, 0x0000, 0x0293};
int w[5]={0, 0, 0, 0, 0};
int sample;

interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i, sum=0;

//Left channel and right channel inputs
AIC23_data.combo=input_sample();
lc= (float) (AIC23_data.channel[LEFT]);
rc= (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below 
sample = (int) lc; /*input sample from the left channel*/
sample = (sample << 16);  /  move to high 16 bits /
sample = (sample>>5); /  scaled down by 32 to avoid overflow /
for (i=4;i>0;i--)
{

w[i]=w[i-1];
}
sum= (sample >> 2); /  scaled down by 4 to use Q-15 /
for (i=1;i<5;i++)
{

sum += (_mpyhl(w[i],a[i])) <<1;
}
sum = (sum <<2); /  scaled up by 4 /
w[0]=sum;
sum =0;
for(i=0;i<5;i++)
{ 

sum += (_mpyhl(w[i],b[i]))<<1;
}
sum = (sum << 5);  /  scaled up by 32 to get y(n) /
sample= (sum>>16); /  move to low 16 bits /

// End of the DSP algorithm
rcnew=sample; 
rcnew=sample;
AIC23_data.channel[LEFT]=(short) lcnew;
AIC23_data.channel[RIGHT]=(short) rcnew;
output_sample(AIC23_data.combo);

}

FIGURE 9.29

Sample C code for IIR filtering (fixed point implementation).
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The code for the fixed-point implementation is displayed in Figure 9.29, and some coding notations
are given in Figure 9.30.

Note that this chapter has provided only basic concepts and an introduction to real-time DSP
implementation. The coding detail and real-time DSP applications will be treated in a separate DSP
course, which deals with real-time implementations.

9.7 SUMMARY
1. The Von Neumann architecture consists of a single, shared memory for programs and data, a single

bus for memory access, an arithmetic unit, and a program control unit. The Von Neumann
processor operates fetching and execution cycles seriously.

2. The Harvard architecture has two separate memory spaces dedicated to program code and to data,
respectively, two corresponding address buses, and two data buses for accessing two memory
spaces. The Harvard processor offers fetching and executions in parallel.

3. The DSP special hardware units include a MAC dedicated to DSP filtering operations, a shifter unit
for scaling, and address generators for circular buffering.

4. The fixed-point DS processor uses integer arithmetic. The data format Q-15 for the fixed-point
system is preferred to avoid the overflows.

5. The floating-point processor uses floating-point arithmetic. The standard floating-point formats
include the IEEE single precision and double precision formats.

6. The architectures and features of fixed-point processors and floating-point processors were briefly
reviewed.

7. Implementing digital filters in the fixed-point DSP system requires scaling filter coefficients so that
the filters are in Q-15 format, and input scaling for the adder so that overflow during MAC
operations can be avoided.

8. The floating-point processor is easy to code using floating-point arithmetic and develops the
prototype quickly. However, it is not efficient in terms of the number of instructions it has to
complete compared with the fixed-point processor.

9. The fixed-point processor using fixed-point arithmetic takes much effort to code. But it offers the
least number of the instructions for the CPU to execute.

short coefficient; declaration of 16 bit signed integer
int sample, result; declaration of 32 bit signed integer
MPYHL assembly instruction (signed multiply high low 16 MSB x 16 LSB)

result = (_mpyhl(sample,coefficient) ) <<1;
sample must be shifted left by 16 bits to be stored in the high 16 MSB.
coefficient is the 16 bit data to be stored in the low 16 LSB.
result is shifted left by one bit to get rid of the extended sign bit, and high 16 
MSB’s are designated for the processed data.
Final result will be shifted down to right by 16 bits before DAC conversion.

sample = (result>>16);

FIGURE 9.30

Some coding notations for the Q-15 fixed-point implementation.
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9.8 PROBLEMS

9.1. Find the signed Q-15 representation for the decimal number 0.2560123.

9.2. Find the signed Q-15 representation for the decimal number �0.2160123.

9.3. Find the signed Q-15 representation for the decimal number �0.3567921.

9.4. Find the signed Q-15 representation for the decimal number 0.4798762.

9.5. Convert the Q-15 signed number ¼ 1.010101110100010 to a decimal number.

9.6. Convert the Q-15 signed number ¼ 0.001000111101110 to a decimal number.

9.7. Convert the Q-15 signed number ¼ 0.110101000100010 to a decimal number.

9.8. Convert the Q-15 signed number ¼ 1.101000100101111 to a decimal number.

9.9. Add the following two Q-15 numbers:

1: 1 0 1 0 1 0 1 1 1 0 0 0 0 0 1 þ 0: 0 1 0 0 0 1 1 1 1 0 1 1 0 1 0

9.10. Add the following two Q-15 numbers:

0: 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 þ 0: 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0

9.11. Add the following two Q-15 numbers:

1: 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 þ 1: 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0

9.12. Add the following two Q-15 numbers:

0: 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 þ 1: 0 1 0 1 0 1 1 1 1 0 1 0 0 1 0

9.13. Convert each of the following decimal numbers to a floating-point number using the format
specified in Figure 9.10.

a. 0.1101235

b. �10.430527

9.14. Convert each of the following decimal numbers to a floating-point number using the format
specified in Figure 9.10.

a. 2.5568921

b. �0.678903

c. 0.0000000

d. �1.0000000
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9.15. Add the following floating-point numbers whose formats are defined in Figure 9.10, and
determine the sum in decimal format:

1101 011100011011 þ 0100 101111100101

9.16. Add the following floating-point numbers whose formats are defined in Figure 9.10, and
determine the sum in decimal format:

0111 110100011011 þ 0101 001000100101

9.17. Add the following floating-point numbers whose formats are defined in Figure 9.10, and
determine the sum in decimal format:

0001 000000010011 þ 0100 001000000101

9.18. Convert the following number in IEEE single precision format to the decimal format:

110100000.010. 0000

9.19. Convert the following number in IEEE single precision format to the decimal format:

010100100.101. 0000

9.20. Convert the following number in IEEE double precision format to the decimal format:

011000.0:1010.000

9.21. Convert the following number in IEEE double precision format to the decimal format:

011000.0:0110.0000

9.22. Given the FIR filter

yðnÞ ¼ �0:2xðnÞ þ 0:6xðn� 1Þ þ 0:2xðn� 2Þ
with a passband gain of 1 and the input being a full range, develop the DSP implementation
equations in the Q-15 fixed-point system.

9.23. Given the IIR filter
yðnÞ ¼ 0:6xðnÞ þ 0:3yðn� 1Þ

with a passband gain of 1 and the input being a full range, use the direct-form I method to
develop the DSP implementation equations in the Q-15 fixed-point system.

9.24. Repeat Problem 9.23 using the direct-form II method.

9.25. Given the FIR filter
yðnÞ ¼ �0:36xðnÞ þ 1:6xðn� 1Þ þ 0:36xðn� 2Þ

with a passband gain of 2 and the input being half of the range, develop the DSP imple-
mentation equations in the Q-15 fixed-point system.

9.26. Given the IIR filter

yðnÞ ¼ 1:35xðnÞ þ 0:3yðn� 1Þ
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with a passband gain of 2, and the input being half of the range, use the direct-form I method
to develop the DSP implementation equations in the Q-15 fixed-point system.

9.27. Repeat Problem 9.26 using the direct-form II method.

9.28. Given the IIR filter

yðnÞ ¼ 0:72xðnÞ þ 1:42xðn� 2Þ þ 0:72xðn� 2Þ � 1:35yðn� 1Þ � 0:5yðn� 2Þ
with a passband gain of 1 and a full range of input, use the direct-form I to develop the DSP
implementation equations in the Q-15 fixed-point system.

9.29. Repeat Problem 9.28 using the direct-form II method.
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OBJECTIVES

This chapter introduces principles of adaptive filters and the adaptive least mean square algorithm and
illustrates how to apply the adaptive filters to solve the real-world application problems such as adaptive
noise cancellation, system modeling, adaptive line enhancement, and telephone echo cancellation.

10.1 INTRODUCTION TO LEAST MEAN SQUARE ADAPTIVE
FINITE IMPULSE RESPONSE FILTERS
An adaptive filter is a digital filter that has self-adjusting characteristics. It is capable of adjusting its
filter coefficients automatically to adapt the input signal via an adaptive algorithm. Adaptive filters
play an important role in modern digital signal processing (DSP) products in areas such as telephone
echo cancellation, noise cancellation, equalization of communications channels, biomedical signal
enhancement, active noise control, and adaptive control systems. Adaptive filters work generally for
adaptation of signal-changing environments, spectral overlap between noise and signal, and
unknown or time-varying noise. For example, when the interference noise is strong and its spectrum
overlaps that of the desired signal, removing the interference using a traditional filter such as a notch
filter with fixed filter coefficients will fail to preserve the desired signal spectrum, as shown in
Figure 10.1.

However, an adaptive filter will do the job. Note that adaptive filtering, with its applications, has
existed for more than two decades in the research community and is still active there. This chapter can
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only introduce some fundaments of the subject, that is, adaptive finite impulse response (FIR) filters
with a simple and popular least mean square (LMS) algorithm. Further exploration into adaptive
infinite impulse response (IIR) filters, adaptive lattice filters, their associated algorithms and appli-
cations, and so on, can be found in comprehensive texts by Haykin (1991), Stearns (2003), andWidrow
and Stearns (1985).

To understand the concept of adaptive filtering, we will first look at an illustrative example of the
simplest noise canceller to see how it works before diving into detail. The block diagram for such
a noise canceller is shown in Figure 10.2.

As shown in Figure 10.2, first, the DSP system consists of two analog-to-digital conversion (ADC)
channels. The first microphone with ADC is used to capture the desired speech sðnÞ. However, due to
a noisy environment, the signal is contaminated and the ADC channel produces a signal with the noise;
that is, dðnÞ ¼ sðnÞ þ nðnÞ. The second microphone is placed where only noise is picked up and the
second ADC channel captured noise xðnÞ, which is fed to the adaptive filter.

Note that the corrupting noise nðnÞ in the first channel is uncorrelated to the desired signal sðnÞ, so
that separation between them is possible. The noise signal xðnÞ from the second channel is correlated

f

Spectrum
Noise spectum

Desired signal spectrum

FIGURE 10.1

Spectrum illustration for using adaptive filters.
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FIGURE 10.2

Simplest noise canceller using a one-tap adaptive filter.
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to the corrupting noise nðnÞ in the first channel, since both come from the same noise source. Similarly,
the noise signal xðnÞ is not correlated to the desired speech signal sðnÞ.

We assume that the corrupting noise in the first channel is a linear filtered version of the second-
channel noise, since it has a different physical path from the second-channel noise, and the noise source
is time varying, so that we can estimate the corrupting noise nðnÞ using an adaptive filter. The adaptive
filter contains a digital filter with adjustable coefficient(s) and the LMS algorithm tomodify the value(s)
of coefficient(s) for filtering each sample. The adaptive filter then produces an estimate of noise yðnÞ,
which will be subtracted from the corrupted signal dðnÞ ¼ sðnÞ þ nðnÞ. When the noise estimate yðnÞ
equals or approximates the noise nðnÞ in the corrupted signal, that is, yðnÞznðnÞ, the error signal eðnÞ ¼
sðnÞ þ nðnÞ � yðnÞz~sðnÞ will approximate the clean speech signal sðnÞ. Hence, the noise is cancelled.

In our illustrative numerical example, the adaptive filter is set to be one-tap FIR filter to simplify
numerical algebra. The filter adjustable coefficient wn is adjusted based on the LMS algorithm (dis-
cussed later in detail) in the following:

wnþ1 ¼ wn þ 0:01$eðnÞ$xðnÞ
where wn is the coefficient used currently, while wnþ1 is the coefficient obtained from the LMS
algorithm and will be used for the next coming input sample. The value of 0.01 controls the speed of
the coefficient change. To illustrate the concept of the adaptive filter in Figure 10.2, the LMS algorithm
has the initial coefficient set to w0 ¼ 0:3 and leads to

yðnÞ ¼ wnxðnÞ
eðnÞ ¼ dðnÞ � yðnÞ
wnþ1¼ wn þ 0:01eðnÞxðnÞ

The corrupted signal is generated by adding noise to a sine wave. The corrupted signal and noise
reference are shown in Figure 10.3, and their first 16 values are listed in Table 10.1.

Let us perform adaptive filtering for several samples using the values for the corrupted signal and
reference noise in Table 10.1. We see that

n ¼ 0; yð0Þ ¼ w0xð0Þ ¼ 0:3� ð� 0:5893Þ ¼ �0:1768

eð0Þ ¼ dð0Þ � yð0Þ ¼ �0:2947� ð�0:1768Þ ¼ �0:1179 ¼ ~sð0Þ
w1 ¼ w0 þ 0:01eð0Þxð0Þ ¼ 0:3þ 0:01� ð�0:1179Þ � ð�0:5893Þ ¼ 0:3007

n ¼ 1; yð1Þ ¼ w1xð1Þ ¼ 0:3007� 0:5893 ¼ 0:1772

eð1Þ ¼ dð1Þ � yð1Þ ¼ 1:0017� 0:1772 ¼ 0:8245 ¼ ~sð1Þ
w2 ¼ w1 þ 0:01eð1Þxð1Þ ¼ 0:3007þ 0:01� 0:8245� 0:5893 ¼ 0:3056

n ¼ 2; yð2Þ ¼ w2xð2Þ ¼ 0:3056� 3:1654 ¼ 0:9673

eð2Þ ¼ dð2Þ � yð2Þ ¼ 2:5827� 0:9673 ¼ 1:6155 ¼ ~sð2Þ
w3 ¼ w2 þ 0:01eð2Þxð2Þ ¼ 0:3056þ 0:01� 1:6155� 3:1654 ¼ 0:3567

n ¼ 3; /
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FIGURE 10.3

Original signal, reference noise, corrupted signal, enhanced signal, and adaptive coefficient in the noise

cancellation.

TABLE 10.1 Adaptive Filtering Results for the Simplest Noise Canceller Example

n dðnÞ xðnÞ ~sðnÞ[eðnÞ Original sðnÞ wnD1

0 �0.2947 �0.5893 �0.1179 0 0.3000

1 1.0017 0.5893 0.8245 0.7071 0.3007

2 2.5827 3.1654 1.6155 1.0000 0.3056

3 �1.6019 �4.6179 0.0453 0.7071 0.3567

4 0.5622 1.1244 0.1635 0.0000 0.3546

5 0.4456 2.3054 �0.3761 �0.7071 0.3564

6 �4.2674 �6.5348 �1.9948 �1.0000 0.3478

7 �0.8418 �0.2694 �0.7130 �0.7071 0.4781

8 �0.3862 �0.7724 �0.0154 �0.0000 0.4800

9 1.2274 1.0406 0.7278 0.7071 0.4802

10 0.6021 �0.7958 0.9902 1.0000 0.4877

11 1.1647 0.9152 0.7255 0.7071 0.4799

12 0.9630 1.9260 0.0260 0.0000 0.4865

13 �1.5065 �1.5988 �0.7279 �0.7071 0.4870

14 �0.1329 1.7342 �0.9976 �1.0000 0.4986

15 0.8146 3.0434 �0.6503 �0.7071 0.4813
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For comparison, results of the first 16 processed output samples, original samples, and filter coefficient
values are also included in Table 10.1. Figure 10.3 also shows the original signal samples, reference
noise samples, corrupted signal samples, enhanced signal samples, and filter coefficient values for each
incoming sample, respectively.

As shown in Figure 10.3, after seven adaptations, the adaptive filter learns noise characteristics
and cancels the noise in the corrupted signal. The adaptive coefficient is close to the optimal value of
0.5. The processed output is close to the original signal. The first 16 processed values for corrupted
signal, reference noise, clean signal, original signal, and adaptive filter coefficient used at each step are
listed in Table 10.1.

Clearly, the enhanced signal samples look much like the sinusoid input samples. Now our simplest
one-tap adaptive filter works for this particular case. In general, an FIR filter with multiple taps is used
and has the following format:

yðnÞ ¼
XN�1

i¼ 0

wnðiÞxðn� iÞ ¼ wnð0ÞxðnÞ þ wnð1Þxðn� 1Þ þ/þ wnðN � 1Þxðn� N þ 1Þ (10.1)

The LMS algorithm for the adaptive FIR filter will be developed next.

10.2 BASIC WIENER FILTER THEORY AND LEAST MEAN
SQUARE ALGORITHM
Many adaptive algorithms can be viewed as approximations of the discrete Wiener filter shown in
Figure 10.4, where the Wiener filter output yðnÞ is a sum of its N weighted inputs, that is,

yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ.þ wðN � 1Þxðn� N þ 1Þ:
The Wiener filter adjusts its weight(s) to produce a desired filter output yðnÞ which is close to the

noise nðnÞ contained in the corrupted signal dðnÞ. At the subtracted output, the noise nðnÞ is cancelled
or attenuated. Hence, the output eðnÞ contains a clean signal.

Consider a single-weight case of yðnÞ ¼ wxðnÞ, and note that the error signal eðnÞ is given by

eðnÞ ¼ dðnÞ � wxðnÞ (10.2)

Now let us determine the best weight w�. Taking the square or enhanced the output error leads to

e2ðnÞ ¼ ðdðnÞ � wxðnÞÞ2¼ d2ðnÞ � 2dðnÞwxðnÞ þ w2x2ðnÞ (10.3)

e n( )

x n( )

d n s n n n( ) ( ) ( )

y n( )
Wiener filter

Output

Noise

Signal and noise

FIGURE 10.4

Wiener filter for noise cancellation.
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Taking the statistical expectation of Equation (10.3), we have

E
�
e2
�
n
�� ¼ E

�
d2
�
n
��� 2wEðdðnÞxðnÞÞ þ w2E

�
x2
�
n
��

(10.4)

Using the notations in statistics, we define

J ¼ E
�
e2
�
n
�� ¼ MSE ¼ mean squared error

s2 ¼ E
�
d2
�
n
�� ¼ power of corrupted signal

P ¼ EðdðnÞxðnÞÞ ¼ cross-correlation between dðnÞ and xðnÞ
R ¼ E

�
x2
�
n
�� ¼ autocorrelation

We can view the statistical expectation as an average of the N signal terms, each being a product of two
individual samples

E
�
e2
�
n
�� ¼ e2

�
0
�þ e2

�
1
�þ/þ e2

�
N � 1

�
N

or

EðdðnÞxðnÞÞ ¼ dð0Þxð0Þ þ dð1Þxð1Þ þ/þ dðN � 1ÞxðN � 1Þ
N

for a sufficiently large sample number of N. We can write Equation (10.4) as

J ¼ s2 � 2wPþ w2R (10.5)

Since s2, P, and R are constants, J is a quadratic function of w that may be plotted as shown in
Figure 10.5.

The best weight (optimal) w� is at the location where the minimum MSE Jmin is achieved. To
obtain w�, taking a derivative of J and setting it to zero leads to

dJ

dw
¼ �2Pþ 2wR ¼ 0 (10.6)

Solving Equation (10.6), we get the best weight solution as

w� ¼ R�1P (10.7)

J

w
w*

Jmin

FIGURE 10.5

Mean square error quadratic function.
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EXAMPLE 10.1
Consider the following quadratic MSE function for the Wiener filter:

J ¼ 40� 20w þ 10w2

Find the optimal solution for w� to achieve the minimum MSE Jmin and determine Jmin.

Solution:
Taking a derivative of the MSE function and setting it to zero, we have

dJ

dw
¼ �20þ 10� 2w ¼ 0

Solving the equation leads to

w� ¼ 1

Finally, substituting w� ¼ 1 into the MSE function, we get the minimum Jmin as

Jmin ¼ J
��
w¼w � ¼ 40� 20w þ 10w2

��
w¼1

¼ 40� 20� 1þ 10� 12 ¼ 30

Notice that a few points need to be clarified for Equation (10.7):

1. Optimal coefficient (s) can be different for every block of data, since the corrupted signal and
reference signal are unknown. The autocorrelation and cross-correlation may vary.

2. If a larger number of coefficients (weights) are used, the inverse matrix of R�1 may require a
larger number of computations and may become ill-conditioned. This will make real-time
implementation impossible.

3. The optimal solution is based on the statistics, assuming that the size of the data block, N, is
sufficient long. This will cause a long processing delay that will make real-time implementation
impossible.

As we pointed out, solving the Wiener solution, Equation (10.7), requires a lot of computations,
including matrix inversion for a general multiple-tap FIR filter. The well-known textbook authored by
Widrow and Stearns (1985) described a powerful LMS algorithm by using the steepest descent
algorithm to minimize the MSE sample by sample to locate the filter coefficient(s). We first study the
steepest descent algorithm illustrated in the following:

wnþ1 ¼ wn � m
dJ

dw
(10.8)

where m ¼ constant controlling speed of convergence.
The illustration of the steepest decent algorithm for solving the optimal coefficient(s) is described

in Figure 10.6.

As shown in the first plot in Figure 10.6, if
dJ

dw
< 0, notice that �m

dJ

dw
> 0. The new coefficient

wnþ1 will be increased to approach the optimal value w� by Equation (10.8). On the other

hand, if
dJ

dw
> 0, as shown in the second plot in Figure 10.6, we see that �m

dJ

dw
< 0. The new
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coefficient wnþ1 will be decreased to approach the optimal value w�. When
dJ

dw
¼ 0, the best coef-

ficient wnþ1 is reached.

EXAMPLE 10.2
Consider the following quadratic MSE function for the Wiener filter:

J ¼ 40� 20w þ 10w2

Use the steepest decent method with an initial guess of w0 ¼ 0 and m ¼ 0:04 to find the optimal solution for w�
and determine Jmin by iterating three times.

Solution:
Taking a derivative of the MSE function, we have

dJ

dw
¼ �20þ 10� 2wn

When n ¼ 0, we calculate

m
dJ

dw
¼ 0:04� ð�20þ 10� 2w0Þ

��
w0¼0

¼ �0:8

Applying the steepest decent algorithm, it follows that

w1 ¼ w0 � m
dJ

dw
¼ 0� ð�0:8Þ ¼ 0:8

Similarly for n ¼ 1, we get

m
dJ

dw
¼ 0:04� ð�20þ 10� 2w1Þ

��
w1¼0:8

¼ �0:16

w2 ¼ w1 � m
dJ

dw
¼ 0:8� ð�0:16Þ ¼ 0:96

and for n ¼ 2, it follows that

m
dJ

dw
¼ 0:04� ð�20þ 10� 2w2Þ

��
w2¼0:96

¼ �0:032

w* wwn 1wn

Jmin

Jn

Jn 1

J

w* wwn 1 wn

Jmin

Jn

Jn 1

J

Case
dJ

dw
and

dJ

dw
0 0 Case

dJ

dw
and

dJ

dw
0 0

FIGURE 10.6

Illustration of the steepest descent algorithm.
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w3 ¼ w2 � m
dJ

dw
¼ 0:96� ð�0:032Þ ¼ 0:992

Finally, substituting w�zw3 ¼ 0:992 into the MSE function, we get the minimum Jmin as

Jmin z40� 20w þ 10w2
��
w¼0:992

¼ 40� 20� 0:992þ 10� 0:9922 ¼ 30:0006

As we can see, after three iterations, the filter coefficient andminimumMSE values are very close to the theoretical
values obtained in Example 10.1.

Application of the steepest descent algorithm still needs an estimation of the derivative of the MSE
function that could include statistical calculation of a block of data. To change the algorithm to do
sample-based processing, an LMS algorithm must be used. To develop the LMS algorithm in terms of
sample-based processing, we take the statistical expectation out of J and then take the derivative to

obtain an approximation of
dJ

dw
, that is,

J ¼ e2ðnÞ ¼ ðdðnÞ � wxðnÞÞ2 (10.9)

dJ

dw
¼ 2ðdðnÞ � wxðnÞÞ dðdðnÞ � wxðnÞÞ

dw
¼ �2eðnÞxðnÞ (10.10)

Substituting
dJ

dw
into the steepest descent algorithm in Equation (10.8), we achieve the LMS algorithm

for updating a single-weight case as

wnþ1 ¼ wn þ 2meðnÞxðnÞ (10.11)

where m is the convergence parameter controlling speed of convergence. For example, let us choose
2m ¼ 0:01. In general, with an adaptive FIR filter of length N, we extend the single-tap LMS algo-
rithm without going through derivation, as shown in the following equations:

yðnÞ ¼ wnð0ÞxðnÞ þ wnð1Þxðn� 1Þ þ/þ wnðN � 1Þxðn� N þ 1Þ (10.12)

for i ¼ 0;/;N � 1

wnþ1ðiÞ ¼ wnðiÞ þ 2meðnÞxðn� iÞ (10.13)

The convergence factor is chosen to be

0 < m <
1

NPx
(10.14)

where Px is the input signal power. In practice, if the ADC has 16-bit data, the maximum signal
amplitude should be A ¼ 215. Then the maximum input power must be less than

Px <
�
215

�2¼ 230
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Hence, we may make a selection of the convergence parameter as

m ¼ 1

N � 230
z

9:3� 10�10

N
(10.15)

We further neglect time index for wnðiÞ and use the notation wðiÞ ¼ wnðiÞ, since only the current
updated coefficients are needed for next sample adaptation. We conclude the implementation of the
LMS algorithm with the following steps:

1. Initialize wð0Þ, wð1Þ, . wðN � 1Þ to arbitrary values.
2. Read dðnÞ, xðnÞ, and perform digital filtering:

yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ/þ wðN � 1Þxðn� N þ 1Þ
3. Compute the output error:

eðnÞ ¼ dðnÞ � yðnÞ
4. Update each filter coefficient using the LMS algorithm:

for i ¼ 0;/;N � 1

wðiÞ ¼ wðiÞ þ 2meðnÞxðn� iÞ

We will apply the adaptive filter to solve real-world problems in the next section.

10.3 APPLICATIONS: NOISE CANCELLATION, SYSTEM MODELING, AND
LINE ENHANCEMENT
We now examine several applications of the LMS algorithm, such as noise cancellation, system
modeling, and line enhancement via application examples. First, we begin with the noise cancellation
problem to illustrate operations of the LMS adaptive FIR filter.

10.3.1 Noise Cancellation

The concept of noise cancellation was introduced in the previous section. Figure 10.7 shows the main
concept.

The DSP system consists of two ADC channels. The first microphone with ADC captures the noisy
speech, dðnÞ ¼ sðnÞ þ nðnÞ, which contains the clean speech sðnÞ and noise nðnÞ due to a noisy
environment, while the second microphone with ADC resides where it picks up only the correlated
noise and feeds the noise reference xðnÞ to the adaptive filter. The adaptive filter uses the LMS
algorithm to adjust its coefficients to produce the best estimate of noise yðnÞznðnÞ, which will be
subtracted from the corrupted signal dðnÞ ¼ sðnÞ þ nðnÞ. The output of the error signal
eðnÞ ¼ sðnÞ þ nðnÞ � yðnÞz~sðnÞ is expected to be the best estimate of the clean speech signal.
Through digital-to-analog conversion (DAC), the cleaned digital speech becomes analog voltage,
which drives the speaker.
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We first study the noise cancellation problem using a simple two-tap adaptive filter via Example
10.3 and assumed data. The purpose of doing so is to become familiar with the setup and operations of
the adaptive filter and LMS algorithm. The simulation for real adaptive noise cancellation follows.

EXAMPLE 10.3
Consider the DSP system for the noise cancellation application using an adaptive filter with two coefficients shown
in Figure 10.8.

a. Set up the LMS algorithm for the adaptive filter.
b. Perform adaptive filtering to obtain outputs eðnÞ for n ¼ 0;1;2 given the following inputs and outputs:

xð0Þ ¼ 1; xð1Þ ¼ 1; xð2Þ ¼ �1; dð0Þ ¼ 2; dð1Þ ¼ 1; dð2Þ ¼ �2

The initial weights are wð0Þ ¼ wð1Þ ¼ 0, and the convergence factor is set to be m ¼ 0:1.

Solution:

a. The adaptive LMS algorithm is set up as:

Initialization: wð0Þ ¼ 0, wð1Þ ¼ 0

Digital filtering: yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn � 1Þ

e n( )

y n w x n w x n( ) ( ) ( ) ( ) ( )0 1 1x n( )

d n s n n n( ) ( ) ( )

y n( )

Adaptive filter

Output

Noise

Signal and noise

FIGURE 10.8

Noise cancellation in Example 10.3.
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d n s n n n( ) ( ) ( )

x n( )

e n d n y n s n( ) ( ) ( ) ~( )
ADC
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DAC

Adaptive filter

LMS algorithm

Noise

langisrorrEesiondnalangiS

FIGURE 10.7

Simplest noise canceller using a one-tap adaptive filter.
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Computing the output: eðnÞ ¼ dðnÞ � yðnÞ
Updating each weight to be used for the next coming sample:

wðiÞ ¼ wðiÞ þ 2meðnÞxðn � iÞ; for i ¼ 0;1

or

wð0Þ ¼ wð0Þ þ 2meðnÞxðnÞ

wð1Þ ¼ wð1Þ þ 2meðnÞxðn � 1Þ

b. We can see the adaptive filtering operations as follows:

For n ¼ 0
Digital filtering:

yð0Þ ¼ wð0Þxð0Þ þ wð1Þxð�1Þ ¼ 0� 1þ 0� 0 ¼ 0

Computing the output:

eð0Þ ¼ dð0Þ � yð0Þ ¼ 2� 0 ¼ 2

Updating coefficients:

wð0Þ ¼ wð0Þ þ 2� 0:1� eð0Þxð0Þ ¼ 0þ 2� 0:1� 2� 1 ¼ 0:4

wð1Þ ¼ wð1Þ þ 2� 0:1� eð0Þxð�1Þ ¼ 0þ 2� 0:1� 2� 0 ¼ 0:0

For n ¼ 1
Digital filtering:

yð1Þ ¼ wð0Þxð1Þ þ wð1Þxð0Þ ¼ 0:4� 1þ 0� 1 ¼ 0:4

Computing the output:

eð1Þ ¼ dð1Þ � yð1Þ ¼ 1� 0:4 ¼ 0:6

Updating coefficients:

wð0Þ ¼ wð0Þ þ 2� 0:1� eð1Þxð1Þ ¼ 0:4þ 2� 0:1� 0:6� 1 ¼ 0:52

wð1Þ ¼ wð1Þ þ 2� 0:1� eð1Þxð0Þ ¼ 0þ 2� 0:1� 0:6� 1 ¼ 0:12

For n ¼ 2
Digital filtering:

yð2Þ ¼ wð0Þxð2Þ þ wð1Þxð1Þ ¼ 0:52� ð � 1Þ þ 0:12� 1 ¼ �0:4

Computing the output:

eð2Þ ¼ dð2Þ � yð2Þ ¼ �2� ð � 0:4Þ ¼ �1:6

Updating coefficients:

wð0Þ ¼ wð0Þ þ 2� 0:1� eð2Þxð2Þ ¼ 0:52þ 2� 0:1� ð � 1:6Þ � ð � 1Þ ¼ 0:84

wð1Þ ¼ wð1Þ þ 2� 0:1� eð2Þxð1Þ ¼ 0:12þ 2� 0:1� ð � 1:6Þ � 1 ¼ �0:2

Hence, the adaptive filter outputs for the first three samples are listed as

eð0Þ ¼ 2; eð1Þ ¼ 0:6; eð2Þ ¼ �1:6
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Next we examine the MSE function assuming the following statistical data for the two-tap adaptive
filter yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ :

s2 ¼ E
�
d2
�
n
�� ¼ 4; E

�
x2
�
n
�� ¼ E

�
x2
�
n� 1

�� ¼ 1; E½xðnÞxðn� 1Þ� ¼ 0

E½dðnÞxðnÞ� ¼ 1; and E½dðnÞxðn� 1Þ� ¼ �1

We follow Equations (10.2) to (10.5) to achieve the minimum MSE function in two dimensions as

J ¼ 4þ w2
�
0
�þ w2

�
1
�� 2w

�
0
�þ 2w

�
1
�

Figure 10.9 shows the MSE function versus the weights, where the optimal weights and the
minimum MSE are w�ð0Þ ¼ 1, w�ð1Þ ¼ �1, and Jmin ¼ 2. If the adaptive filter continues to
process the data, it will converge to the optimal weights, which locate the minimum MSE. The plot
also indicates that the function is quadratic and that there exists only one minimum of the MSE
surface.

FIGURE 10.9

Plot of the MSE function versus two weights.
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Next, a simulation example is given to illustrate this idea and its results. The noise cancellation
system is assumed to have the following specifications:

• Sample rate ¼ 8,000 Hz
• Original speech data: wen.dat
• Speech corrupted by Gaussian noise with a power of 1 delayed by 5 samples from the noise

reference
• Noise reference containing Gaussian noise with a power of 1
• Adaptive FIR filter used to remove the noise
• Number of FIR filter taps ¼ 21
• Convergence factor for the LMS algorithm is chosen to be 0.01 (<1/21).

The speech waveforms and spectral plots for the original, corrupted, and reference noise and for the
cleaned speech are plotted in Figures 10.10A and Figure 10.10B. From the figures, it is observed that
the enhanced speech waveform and spectrum are very close to the original ones. The LMS algorithm
converges after approximately 400 iterations. The method is a very effective approach for noise
canceling. The MATLAB implementation is detailed in Program 10.1.
Program 10.1. MATLAB program for adaptive noise cancellation.

close all; clear all
load wen.dat % Given by the instructor
fs¼8000; % Sampling rate
t¼0:1:length(wen)-1; % Create index array
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FIGURE 10.10A

Waveforms for original speech, corrupted speech, reference noise, and clean speech.
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t¼t/fs; % Convert indices to time instant
x¼randn(1,length(wen)); % Generate random noise
n¼filter([ 0 0 0 0 0 0.5 ],1,x); % Generate the corruption noise
d¼wenþn; % Generate signal plus noise
mu¼0.01; % Initialize step size
w¼zeros(1,21); % Initialize adaptive filter coefficients
y¼zeros(1,length(t)); % Initialize the adaptive filter output array
e¼y; % Initialize the output array
% Adaptive filtering using LMS algorithm
for m¼22:1:length(t)-1

sum¼0;
for i¼1:1:21
sum¼sumþw(i)*x(m-i);
end
y(m)¼sum;
e(m)¼d(m)-y(m);
for i¼1:1:21
w(i)¼w(i)þ2*mu*e(m)*x(m-i);
end

end
% Calculate the single-sided amplitude spectrum for the original signal
WEN¼2*abs(fft(wen))/length(wen);WEN(1)¼WEN(1)/2;
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FIGURE 10.10B

Spectrum for original speech, corrupted speech, and clean speech.
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% Calculate the single-sided amplitude spectrum for the corrupted signal
D¼2*abs(fft(d))/length(d);D(1)¼D(1)/2;
f¼[0:1:length(wen)/2]*8000/length(wen);
% Calculate the single-sided amplitude spectrum for the noise-cancelled signal
E¼2*abs(fft(e))/length(e);E(1)¼E(1)/2;
% Plot signals and spectrums
subplot(4,1,1), plot(wen);grid; ylabel(’Orig. speech’);
subplot(4,1,2),plot(d);grid; ylabel(’Corrupt. speech’)
subplot(4,1,3),plot(x);grid;ylabel(’Ref. noise’);
subplot(4,1,4),plot(e);grid; ylabel(’Clean speech’);
xlabel(’Number of samples’);
figure
subplot(3,1,1),plot(f,WEN(1:length(f)));grid
ylabel(’Orig. spectrum’)
subplot(3,1,2),plot(f,D(1:length(f)));grid; ylabel(’Corrupt. spectrum’)
subplot(3,1,3),plot(f,E(1:length(f)));grid
ylabel(’Clean spectrum’); xlabel(’Frequency (Hz)’);

Other interference cancellations include that of 60-Hz interference cancellation in electrocardi-
ography (ECG) (Chapter 8) and echo cancellation in long-distance telephone circuits, which will be
described in Section 10.4.

10.3.2 System Modeling

Another application of the adaptive filter is system modeling. The adaptive filter can keep tracking the
behavior of anunknownsystembyusing the unknownsystem input andoutput, asdepicted inFigure10.11.

As shown in the figure, after the adaptive filter converges, the adaptive filter output yðnÞ will
approach to the unknown system’s output. Since both the unknown system and the adaptive filter
respond to the same input, the transfer function of the adaptive filter approximates the transfer function
of the unknown system.

EXAMPLE 10.4
Given the system modeling described in this section and using a single-weight adaptive filter yðnÞ ¼ wxðnÞ to
perform the system-modeling task,

x n( )

d n( )

y n( )

e n( )

Unknown system

Adaptive
FIR filter

Input

Output

FIGURE 10.11

Adaptive filter for system modeling.
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a. set up the LMS algorithm to implement the adaptive filter assuming that initially w ¼ 0 and m ¼ 0:5;
b. perform adaptive filtering to obtain yð0Þ, yð1Þ, yð2Þ, and yð3Þ, given

dð0Þ ¼ 1; dð1Þ ¼ 2; dð2Þ ¼ �2; dð3Þ ¼ 2;

xð0Þ ¼ 0:5; xð1Þ ¼ 1; xð2Þ ¼ �1; xð3Þ ¼ 1

Solution:

a. Adaptive filtering equations are set up as

w ¼ 0 and 2m ¼ 2� 0:5 ¼ 1

yðnÞ ¼ wxðnÞ

eðnÞ ¼ dðnÞ � yðnÞ

w ¼ w þ eðnÞxðnÞ

b. Adaptive filtering:

n ¼ 0; yð0Þ ¼ wxð0Þ ¼ 0� 0:5 ¼ 0

eð0Þ ¼ dð0Þ � yð0Þ ¼ 1� 0 ¼ 1

w ¼ w þ eð0Þxð0Þ ¼ 0þ 1� 0:5 ¼ 0:5

n ¼ 1; yð1Þ ¼ wxð1Þ ¼ 0:5� 1 ¼ 0:5

eð1Þ ¼ dð1Þ � yð1Þ ¼ 2� 0:5 ¼ 1:5

w ¼ w þ eð1Þxð1Þ ¼ 0:5þ 1:5� 1 ¼ 2:0

n ¼ 2; yð2Þ ¼ wxð2Þ ¼ 2� ð � 1Þ ¼ �2

eð2Þ ¼ dð2Þ � yð2Þ ¼ �2� ð � 2Þ ¼ 0

w ¼ w þ eð2Þxð2Þ ¼ 2þ 0� ð � 1Þ ¼ 2

n ¼ 3; yð3Þ ¼ wxð3Þ ¼ 2� 1 ¼ 2

eð3Þ ¼ dð3Þ � yð3Þ ¼ 2� 2 ¼ 0

w ¼ w þ eð3Þxð3Þ ¼ 2þ 0� 1 ¼ 2

For this particular case, the system is actually a digital amplifier with a gain of 2.

Next, we assume the unknown system is a fourth-order bandpass IIR filter whose 3-dB lower and
upper cutoff frequencies are 1,400 Hz and 1,600 Hz operating at 8,000 Hz. We use an input consisting
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of tones of 500, 1,500, and 2,500 Hz. The unknown system’s frequency responses are shown in
Figure 10.12.

The input waveform xðnÞ with three tones is shown as the first plot in Figure 10.13. We can
predict that the output of the unknown system will contain a 1,500 Hz tone only, since the other two
tones are rejected by the unknown system. Now, let us look at adaptive filter results. We use an FIR
adaptive filter with the number of taps being 21, and a convergence factor set to 0.01. In the time
domain, the output waveforms of the unknown system dðnÞ and adaptive filter output yðnÞ are almost
identical after 70 samples when the LMS algorithm converges. The error signal eðnÞ is also plotted
to show the adaptive filter keeps tracking the unknown system’s output with no difference after the
first 50 samples.

Figure 10.14 depicts the frequency domain comparisons. The first plot displays the frequency
components of the input signal, which clearly shows 500 Hz, 1,500 Hz, and 2,500 Hz. The second plot
shows the unknown system’s output spectrum, which contains only a 1,500 Hz tone, while the third
plot displays the spectrum of the adaptive filter output. As we can see, in the frequency domain, the
adaptive filter tracks the characteristics of the unknown system. The MATLAB implementation is
given in Program 10.2.
Program 10.2. MATLAB program for adaptive system identification.

close all; clear all
%Design unknown system
fs¼8000; T¼1/fs; % Sampling rate and sampling period
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The unknown system’s frequency responses.
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% Bandpass filter design
% for the assumed unknown system using the bilinear transformation
%(BLT) method (see Chapter 8)
wd1¼1400*2*pi; wd2¼1600*2*pi;
wa1¼(2/T)*tan(wd1*T/2); wa2¼(2/T)*tan(wd2*T/2);
BW¼wa2-wa1;
w0¼sqrt(wa2*wa1);
[B,A]¼lp2bp([1],[1 1.4141 1],w0,BW);
[b,a]¼bilinear(B,A,fs);
freqz(b,a,512,fs); axis([0 fs/2 -80 1]); % Frequency response plots
figure
t¼0:T:0.1; % Generate the time vector
x¼cos(2*pi*500*t)þsin(2*pi*1500*t)þcos(2*pi*2500*tþpi/4);
d¼filter(b,a,x); % Produce unknown system output
mu¼0.01; % Convergence factor
w¼zeros(1,21); y¼zeros(1,length(t)); % Initialize the coefficients and output
e¼y; % Initialize the error vector
% Perform adaptive filtering using LMS algorithm
for m¼22:1:length(t)-1

sum¼0;
for i¼1:1:21

0 100 200 300 400 500 600 700 800
-2
0
2

Sy
st

em
 in

pu
t

0 100 200 300 400 500 600 700 800
-1
0
1

Sy
st

em
 o

ut
pu

t

0 100 200 300 400 500 600 700 800
-1
0
1

AD
F 

ou
tp

ut

0 100 200 300 400 500 600 700 800
-1
0
1

Er
ro

r

Number of samples

FIGURE 10.13

The waveforms for the unknown system’s output, adaptive filter output, and error output.
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sum¼sumþw(i)*x(m-i);
end
y(m)¼sum;
e(m)¼d(m)-y(m);
for i¼1:1:21
w(i)¼w(i)þ2*mu*e(m)*x(m-i);
end

end
% Calculate the single-sided amplitude spectrum for the input
X¼2*abs(fft(x))/length(x);X(1)¼X(1)/2;
% Calculate the single-sided amplitude spectrum for the unknown system output
D¼2*abs(fft(d))/length(d);D(1)¼D(1)/2;
% Calculate the single-sided amplitude spectrum for the adaptive filter output
Y¼2*abs(fft(y))/length(y);Y(1)¼Y(1)/2;
% Map the frequency index to its frequency in Hz
f¼[0:1:length(x)/2]*fs/length(x);
% Plot signals and spectra
subplot(4,1,1), plot(x);grid; axis([0 length(x) -3 3]);
ylabel(’System input’);
subplot(4,1,2), plot(d);grid; axis([0 length(x) -1.5 1.5]);
ylabel(’System output’);
subplot(4,1,3),plot(y);grid; axis([0 length(y) -1.5 1.5]);
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Spectrum for the input signal, unknown system output, and the adaptive filter output.
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ylabel(’ADF output’)
subplot(4,1,4),plot(e);grid; axis([0 length(e) -1.5 1.5]);
ylabel(’Error’); xlabel(’Number of samples’)
figure
subplot(3,1,1),plot(f,X(1:length(f)));grid; ylabel(’Syst. input spect.’)
subplot(3,1,2),plot(f,D(1:length(f)));grid; ylabel(’Syst. output spect.’)
subplot(3,1,3),plot(f,Y(1:length(f)));grid
ylabel(’ADF output spect.’); xlabel(’Frequency (Hz)’);

10.3.3 Line Enhancement Using Linear Prediction

We study adaptive filtering via another application example: line enhancement. If the signal frequency
content is very narrow compared with the bandwidth and changes with time, then the signal can
efficiently be enhanced by the adaptive filter, which is line enhancement. Figure 10.15 shows line
enhancement using the adaptive filter where the LMS algorithm is used. As illustrated in the figure,
the signal dðnÞ is the sine wave signal corrupted by the white Gaussian noise nðnÞ. The enhanced line
consists of the delay element to delay the corrupted signal by D samples to produce an input to
the adaptive filter. The adaptive filter is actually a linear predictor of the desired narrow band signal.
A two-tap FIR adaptive filter can predict one sinusoid (proof is beyond the scope of this text). The
value of D is usually determined by experiments or experience in practice to achieve the best enhanced
signal.

Our simulation example has the following specifications:

• Sampling rate ¼ 8,000 Hz
• Corrupted signal ¼ 500 Hz tone with white Gaussian noise added to the unit amplitude
• Adaptive filter ¼ FIR type, 21 taps
• Convergence factor ¼ 0.001
• Delay value D ¼ 7
• LMS algorithm is applied

Figure 10.16 shows the time domain results. The first plot is the noisy signal, while the second plot
clearly demonstrates the enhanced signal. Figure 10.17 describes the frequency domain point of view.
The spectrum of the noisy signal is shown in the top plot, where we can see the white noise is populated
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FIGURE 10.15

Line enhancement using an adaptive filter.
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over the entire bandwidth. The bottom plot is the enhanced signal spectrum. Since the method is
adaptive, it is especially effective when the enhanced signal frequency is changing with time. Program
10.3 lists the MATLAB program for this simulation.
Program 10.3. MATLAB program for adaptive line enhancement.

close all; clear all
fs¼8000; T¼1/fs; % Sampling rate and sampling period
t¼0:T:0.1; % 1 second time instant
n¼randn(1,length(t)); % Generate Gaussian random noise
d¼cos(2*pi*500*t)þn; % Generate 500-Hz tone plus noise
x¼filter([ 0 0 0 0 0 0 0 1 ],1,d); % Delay filter
mu¼0.001; % Initialize the step size for LMS algorithms
w¼zeros(1,21); % Initialize the adaptive filter coefficients
y¼zeros(1,length(t)); % Initialize the adaptive filter output
e¼y; % Initialize the error vector
% Perform adaptive filtering using the LMS algorithm
for m¼22:1:length(t)-1

sum¼0;
for i¼1:1:21
sum¼sumþw(i)*x(m-i);
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Noisy signal and enhanced signal.
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end
y(m)¼sum;
e(m)¼d(m)-y(m);
for i¼1:1:21
w(i)¼w(i)þ2*mu*e(m)*x(m-i);
end

end
% Calculate the single-sided amplitude spectrum for corrupted signal
D¼2*abs(fft(d))/length(d);D(1)¼D(1)/2;
% Calculate the single-sided amplitude spectrum for enhanced signal
Y¼2*abs(fft(y))/length(y);Y(1)¼Y(1)/2;
% Map the frequency index to its frequency in Hz
f¼[0:1:length(x)/2]*8000/length(x);
% Plot the signals and spectra
subplot(2,1,1), plot(d);grid; axis([0 length(x) -2.5 2.5]); ylabel(’Noisy signal’);
subplot(2,1,2),plot(y);grid; axis([0 length(y) -2.5 2.5]);
ylabel(’ADF output (enhanced signal)’); xlabel(’Number of samples’)
figure
subplot(2,1,1),plot(f,D(1:length(f)));grid; axis([0 fs/2 0 1.5]);
ylabel(’Noisy signal spectrum’)
subplot(2,1,2),plot(f,Y(1:length(f)));grid; axis([0 fs/2 0 1.5]);
ylabel(’ADF output spectrum’); xlabel(’Frequency (Hz)’);
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Spectrum plots for the noisy signal and enhanced signal.
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10.4 OTHER APPLICATION EXAMPLES
This section continues to explore other adaptive filter applications briefly, without showing
computer simulations. The topics include periodic interference cancellation, ECG interference
cancellation, and echo cancellation in long-distance telephone circuits. Detailed information can
also be explored in Haykin (1991), Ifeachor and Jervis (2002), Stearns (2003), and Widrow and
Stearns (1985).

10.4.1 Canceling Periodic Interferences Using Linear Prediction

An audio signal may be corrupted by periodic interference with no noise reference available. Such
examples include the playback of speech or music with tape hum interference, turntable rumble, or
vehicle engine or power line interference. We can use the modified line enhancement structure as
shown in Figure 10.18.

The adaptive filter uses the delayed version of the corrupted signal xðnÞ to predict the periodic
interference. The number of delayed samples is selected through experiments that determine the
performance of the adaptive filter. Note that a two-tap FIR adaptive filter can predict one sinusoid, as
noted earlier. After convergence, the adaptive filter would predict the interference as

yðnÞ ¼
XN�1

i¼ 0

wðiÞxðn� iÞzAcosð2pfn=fsÞ (10.16)

Therefore, the error signal contains only the desired audio signal

eðnÞz sðnÞ (10.17)

10.4.2 Electrocardiography Interference Cancellation

As we discussed in Chapters 1 and 8, in recording of electrocardiograms (ECG), there often exists
unwanted 60-Hz interference, along with its harmonics, in the recorded data. This interference comes
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FIGURE 10.18

Canceling periodic interference using the adaptive filter.
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from the power line, including effects from magnetic induction, displacement currents in leads or in
the body of the patient, and equipment interconnections and imperfections.

Figure 10.19 illustrates the application of adaptive noise canceling in ECG. The primary input
is taken from the ECG preamplifier, while a 60-Hz reference input is taken from a wall outlet
with proper attenuation. After proper signal conditioning, the digital interference xðnÞ is acquired
by the digital signal (DS) processor. The digital adaptive filter uses this reference input signal to
produce an estimate, which approximates the 60-Hz interference nðnÞ sensed from the ECG
amplifier:

yðnÞz nðnÞ (10.18)

Here, an FIR adaptive filter with N taps and the LMS algorithm can be used for this application:

yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ/þ wðN � 1Þxðn� N þ 1Þ (10.19)

Then after convergence of the adaptive filter, the estimated interference is subtracted from the primary
signal of the ECG preamplifier to produce the output signal eðnÞ, in which the 60-Hz interference is
cancelled:

eðnÞ ¼ dðnÞ � yðnÞ ¼ sðnÞ þ nðnÞ � xðnÞz sðnÞ (10.20)

With enhanced ECG recording, doctors in clinics can give more accurate diagnoses for patients.
Canceling the maternal ECG in fetal monitoring is another important application. The block

diagram is shown in Figure 10.20(a). Fetal ECG plays an important role in monitoring the
condition of the baby before or during birth. However, the ECG acquired from the mother’s
abdomen is contaminated by noise such as muscle activity and fetal motion, as well as the
mother’s own ECG. In order to reduce the effect of the mother’s ECG, four (or more) chest leads
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Illustration of canceling 60-Hz interference in ECG.
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(electrodes) are used to acquire the reference inputs: x0ðnÞ, x1ðnÞ, x2ðnÞ, and x3ðnÞ, with the
assumption that these channels only contain the mother’s ECG (see Figure 10.20(b)). One lead
(electrode) placed on the mother’s abdomen is used to capture the fetal information dðnÞ, which
may be corrupted by the mother’s ECG as shown in Figure 10.20(c). An adaptive filter uses its
references to predict the mother ECG, which will be subtracted from the corrupted fetus signal.
Then the fetal ECG with the reduced mother’s ECG is obtained, as depicted in Figure 10.20(d).
One possible LMS algorithm is listed below:

For k ¼ 0;1;2;3

ykðnÞ ¼ wkð0ÞxkðnÞ þ wkð1Þxkðn� 1Þ þ/þ wkðN � 1Þxkðn� N þ 1Þ

yðnÞ ¼ y0ðnÞ þ y1ðnÞ þ y2ðnÞ þ y3ðnÞ

sðnÞ ¼ eðnÞ ¼ dðnÞ � yðnÞ
For k ¼ 0;1;2;3

wkðn� iÞ ¼ wkðn� iÞ þ 2meðnÞxkðn� iÞ; for i ¼ 0; 1;/N � 1
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Canceling the maternal ECG in fetal monitoring.
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10.4.3 Echo Cancellation in Long-Distance Telephone Circuits

Long-distance telephone transmission often suffers from impedance mismatches. This occurs
primarily at the hybrid circuit interface. Balancing electric networks within the hybrid can never
perfectly match the hybrid to the subscriber loop due to temperature variations, degradation of
transmission lines, and so on. As a result, a small portion of the received signal is leaked for trans-
mission. For example, in Figure 10.21A, if speaker B talks, the speech indicated as xBðnÞ will pass the
transmission line to reach user A, and a portion of xBðnÞ at site A is leaked and transmitted back to the
user B, forcing caller B to hear his or her own voice. This is known as an echo for speaker B. A similar
echo illustration can be conducted for speaker A. When the telephone call is made over a long distance
(more than 1,000 miles, such as geostationary satellites), the echo can be delayed by as much as
540 milliseconds. The echo impairment can be annoying to the customer and increases with distance.

To circumvent the problem of echo in long-distance communications, an adaptive filter is applied
at each end of the communication system, as shown in Figure 10.21B. Let us examine the adaptive
filter installed at the speaker A site. The incoming signal is xBðnÞ from speaker B, while the out-
going signal contains the speech from the speaker A and a portion of leakage from the hybrid circuit
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Simplified long-distance circuit.
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dAðnÞ ¼ xAðnÞ þ xBðnÞ. If the leakage xBðnÞ returns back to speaker B, it becomes an annoying echo.
To prevent the echo, the adaptive filter at the speaker A site uses the incoming signal from speaker B as
an input and makes its output approximate to the leaked speaker B signal by adjusting its filter
coefficients; that is,

yAðnÞ ¼
XN�1

i¼ 0

wðiÞxBðn� iÞz xBðnÞ (10.21)

As shown in Figure 10.21B, the estimated echo yAðnÞzxBðnÞ is subtracted from the outgoing signal,
thus producing the signal that contains only speech A; that is, eAðnÞzxAðnÞ. As a result, the echo of
speaker B is removed. We can illustrate similar operations for the adaptive filter used at the speaker B
site. In practice, an FIR adaptive filter with several hundred coefficients or more is commonly used to
effectively cancel the echo. If nonlinearities are concerned in the echo path, a corresponding nonlinear
adaptive canceller can be used to improve the performance of the echo cancellation.

Other forms of adaptive filters and other applications are beyond the scope of this book. The reader
is referred to the references for further development.

10.5 LABORATORY EXAMPLES USING THE TMS320C6713 DSK
The implementation for system modeling in Section 10.4.3 is shown in Figure 10.22, where the input is
fed from a function generator. The unknown system is a bandpass filter with a lower cutoff frequency
of 1,400 Hz and upper cutoff frequency of 1,600 Hz. As shown in Figure 10.22, the left input channel
(Left Line In [LCI]) is used for the input while the left output channel (Left Line Out [LCO]) and the
right output channel (Right Line Out [RCO]) are designated as the system output and error output,
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Setup for system modeling using the LMS adaptive filter.
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respectively. Note that the right input channel (Right Line In [RCI]) is not used. When the input
frequency is swept from 200 Hz to 3,000 Hz, the output shows a maximum peak when the input
frequency is dialed to around 1,500 Hz. Hence, the adaptive filter acts like the unknown system.
Program 10.4 gives the sample program segment.
Program 10.4. Program segment for system modeling.

/*Numerator coefficients */
/*for the bandpass filter (unknown system) with fL¼1.4 kHz, fH¼1.6 kHz*/
float b[5]¼{ 0.005542761540433, 0.000000000000002, -0.011085523080870,

0.000000000000003 0.005542761540431};
/*Denominator coefficients */
/*for the bandpass filter (unknown system) with fL¼1.4 kHz, fH¼1.6 kHz*/
float a[5]¼{ 1.000000000000000, -1.450496619180500. 2.306093105231476,

-1.297577189144526 0.800817049322883};
float x[40]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Reference input buffer*/
float w[40]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Adaptive filter coefficients*/
float d[1]¼{0.0}; /*Unknown system output */
float y[1]¼{0,0}; /*Adaptive filter output */
float e[1]¼{0.0}; /*Error signal */
float mu¼0.000000000002; /*Adaptive filter convergence factor*/
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
for(i¼39;i>0;i--) /*Update the input buffer*/
{ x[i]¼x[i-1]; }
x[0]¼lc;
d[0]¼b[0]*x[0]þ b[1]*x[1]þ b[2]*x[2]þ b[3]*x[3]þ b[4]*x[4]

-a[1]*d[1]-a[2]*d[2]- a[3]*d[3]- a[4]*d[4]; /*Unknown system output*/
// Adaptive filter

y[0]¼0;
for(i¼0;i<40; iþþ)
{ y[0]¼y[0]þw[i]*x[i];}
e[0]¼d[0]-y[0]; /* Error output */
for(i¼0;i<40; iþþ)
{ w[i]¼w[i]þ2*mu*e[0]*x[i];} /* LMS algorithm */

// End of the DSP algorithm
lcnew¼y[0]; /* Send the tracked output */
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rcnew¼e[0]; /* Send the error signal*/
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

With the advantage of the stereo input and output channels, we can conduct system modeling for an
unknown analog system illustrated in Figure 10.23, where RCI is used to feed the unknown analog
system output to the DSK. The program segment is listed in Program 10.5.
Program 10.5. Program segment for modeling an analog system.

float x[40]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Reference input buffer*/

float w[40]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Adaptive filter coefficients*/

float d[1]¼{0.0}; /*Unknown system output */
float y[1]¼{0,0}; /*Adaptive filter output */
float e[1]¼{0.0}; /*Error signal */
float mu¼0.000000000002; /*Adaptive filter convergence factor*/
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
for(i¼39;i>0;i--) /*Update the input buffer*/
{ x[i]¼x[i-1]; }
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System modeling using an LMS adaptive filter.
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x[0]¼lc;
d[0]¼rc; /*Unknown system output*/

// Adaptive filter
y[0]¼0;
for(i¼0;i<40; iþþ)
{ y[0]¼y[0]þw[i]*x[i];}
e[0]¼d[0]-y[0]; /* Error output */
for(i¼0;i<40; iþþ)
{ w[i]¼w[i]þ2*mu*e[0]*x[i];} /* LMS algorithm */

// End of the DSP algorithm
lcnew¼y[0]; /* Send the tracked output */
rcnew¼e[0]; /* Send the error signal*/
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

Figure 10.24A shows an example of a tonal noise reduction system, and Figure 10.24B shows the
details of the adaptive noise cancellation. The first DSP board is used to create the real-time corrupted
signal, which is obtained by mixing the mono audio source (Left Line In [LCI1]) from any audio
device and the tonal noise (Right Line In [RCI1]) generated from a function generator. The output
(Left line Out [LCO1]) is the corrupted signal, which is fed to the second DSP board for noise
cancellation application. The adaptive FIR filter in the second DSP board uses the reference input
(Right Line In [RCI2]) to generate the output, which is used to cancel the tonal noise embedded in the
corrupted signal (Left Line In [LCI2]). The output (Left Line Out [LCO2]) produces the clean mono
audio signal (Jiang and Tan, 2012). Program 10.6 details the implementation.
Program 10.6. Program segments for noise cancellation.

(a) Program segment for DSK 1 (generation of the corrupted signal).

float x[1]¼{0.0}; /* Tonal reference noise */
Float s[1]¼{0,0}; /* Audio signal */
float d[1]¼{0.0}; /* Corrupted signal*/
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Adaptive filter
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Noise
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FIGURE 10.24A

Block diagram for tonal noise cancellation.
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interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
s[0]¼lc;
x[0]¼rc;
D[0]¼s[0]þx[0];

// End of the DSP algorithm
lcnew¼d[0]; /* Send to DAC */
rcnew¼rc; /* keep the original data */
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

(b) Program segment for DSK 2 (LMS adaptive filter).

float x[20]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Reference input buffer*/
float w[20]¼{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; /*Adaptive filter
coefficients*/
float d[1]¼{0.0}; /* Corrupted signal*/
float y[1]¼{0,0}; /* Adaptive filter output */
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Left Line In
LCI2

Right Line In
RCI2

Left Line Out

Right Line Out

Mono Audio
Source

TI TMS320C6713
DSP Board 1
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RCO1
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Noise
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Audio
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and tonal noise

FIR adaptive filtering
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FIGURE 10.24B

Tonal noise cancellation with the adaptive filter.
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float e[1]¼{0.0}; /* Enhanced signal */
float mu¼0.000000000004; /*Adaptive filter convergence factor*/
interrupt void c_int11()
{

float lc; /*left channel input */
float rc; /*right channel input */
float lcnew; /*left channel output */
float rcnew; /*right channel output */
int i;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
d[0]¼lc; /*Corrupted signal*/
for(i¼19;i>0;i--) /*Update the reference noise buffer input buffer*/
{ x[i]¼xn[i-1]; }
x[0]¼lc;

// Adaptive filter
y[0]¼0;
for(i¼0;i<20; iþþ)
{ y[0]¼y[0]þw[i]*x[i];}
e[0]¼d[0]-y[0]; /* Enhanced output */
for(i¼0;i<20; iþþ)
{ w[i]¼w[i]þ2*mu*e[0]*x[i]; }/* LMS algorithm */

// End of the DSP algorithm
lcnew¼e[0]; /* Send to DAC */
rcnew¼rc; /* keep the original data */
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

Many other practical configurations can be implemented similarly.

10.6 SUMMARY
1. Adaptive filters can be applied to signal-changing environments, spectral overlap between noise

and signal, and unknown, or time-varying, noise.
2. Wiener filter theory provides optimal weight solutions based on statistics. It involves collection of

a large block of data, calculation of an autocorrelation matrix and a cross-correlation matrix, and
inversion of a large autocorrelation matrix.

3. The steepest decent algorithm can find the optimal weight solution using an iterative method, so
a large matrix inversion is not needed. But it still requires calculating an autocorrelation matrix
and cross-correlation matrix.

4. The LMS is a sample-based algorithm, which does not need collection of data or computation of
statistics and does not involve matrix inversion.
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5. The convergence factor for the LMS algorithm is bounded by the reciprocal of the product of the
number of filter coefficients and input signal power.

6. The LMS adaptive FIR filter can be effectively applied for noise cancellation, system modeling,
and line enhancement.

7. Further exploration includes other applications such as cancellation of periodic interference,
biomedical ECG signal enhancement, and adaptive telephone echo cancellation.

10.7 PROBLEMS

10.1. Given a quadratic MSE function for the Wiener filter

J ¼ 50� 40wþ 10w2

find the optimal solution for w� to achieve the minimum MSE Jmin and determine Jmin.

10.2. Given a quadratic MSE function for the Wiener filter

J ¼ 15þ 20wþ 10w2

find the optimal solution for w� to achieve the minimum MSE Jmin and determine Jmin.

10.3. Given a quadratic MSE function for the Wiener filter

J ¼ 100þ 20wþ 2w2

find the optimal solution for w� to achieve the minimum MSE Jmin and determine Jmin.

10.4. Given a quadratic MSE function for the Wiener filter

J ¼ 10� 30wþ 15w2

find the optimal solution for w� to achieve the minimum MSE Jmin and determine Jmin.

10.5. Given a quadratic MSE function for the Wiener filter

J ¼ 50� 40wþ 10w2

use the steepest descent method with an initial guess of w0 ¼ 0 and a convergence factor
m ¼ 0:04 to find the optimal solution for w� and determine Jmin by iterating three times.

10.6. Given a quadratic MSE function for the Wiener filter

J ¼ 15þ 20wþ 10w2

use the steepest descent method with an initial guess of w0 ¼ 0 and a convergence factor
m ¼ 0:04 to find the optimal solution for w� and determine Jmin by iterating three times.

10.7. Given a quadratic MSE function for the Wiener filter

J ¼ 100þ 20wþ 2w2

use the steepest descent method with an initial guess of w0 ¼ �4 and a convergence factor
m ¼ 0:2 to find the optimal solution for w� and determine Jmin by iterating three times.
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10.8. Given a quadratic MSE function for the Wiener filter

J ¼ 10� 30wþ 15w2

use the steepest descent method with an initial guess of w0 ¼ 2 and a convergence factor
m ¼ 0:02 to find the optimal solution for w� and determine Jmin by iterating three times.

10.9. Consider the following DSP system used for noise cancellation applications (Figure 10.25),
in which dð0Þ ¼ 3, dð1Þ ¼ �2, dð2Þ ¼ 1, xð0Þ ¼ 3, xð1Þ ¼ �1, xð2Þ ¼ 2, and there is
an adaptive filter with two taps yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ with initial values
wð0Þ ¼ 0, wð1Þ ¼ 1, and m ¼ 0:1,

a. Determine the LMS algorithm equations

yðnÞ ¼
eðnÞ ¼
wð0Þ ¼
wð1Þ ¼

b. Perform adaptive filtering for each n ¼ 0; 1; 2.

10.10. Given a DSP system with a sampling rate of 8,000 samples per second, implement an
adaptive filter with five taps for system modeling.

As shown in Figure 10.26, assume the unknown system transfer function is

HðzÞ ¼ 0:25þ 0:25z�1

1� 0:5z�1

Determine the DSP equations

yðnÞ ¼
eðnÞ ¼
wðiÞ ¼

x n( )

d n( )

y n( )

e n( )

Adaptive
FIR filter

Input

Output

FIGURE 10.25

Noise cancellation in Problem 10.9.
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using the LMS algorithm for i ¼ 0; 1; 2; 3; 4; that is, write the equations for all adaptive
coefficients:

wð0Þ ¼
wð1Þ ¼
wð2Þ ¼
wð3Þ ¼
wð4Þ ¼

10.11. Consider the adaptive filter used for the noise cancellation application in Problem 10.9, in
which dð0Þ ¼ 3, dð1Þ ¼ �2, dð2Þ ¼ 1, xð0Þ ¼ 3, xð1Þ ¼ �1, xð2Þ ¼ 2, and an adap-
tive filter with three taps yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ wð2Þxðn� 2Þ with initial
values wð0Þ ¼ 0, wð1Þ ¼ 0, wð2Þ ¼ 0 and m ¼ 0:2.

a. Determine the LMS algorithm equations

yðnÞ ¼
eðnÞ ¼
wð0Þ ¼
wð1Þ ¼
wð2Þ ¼

b. Perform adaptive filtering for each of n ¼ 0; 1; 2.

10.12. Consider the DSP system with a sampling rate of 8,000 samples per second in Problem
10.10. Implement an adaptive filter with five taps for system modeling, assuming the
unknown system transfer function is

H
�
z
� ¼ 0:2þ 0:3z�1 þ 0:2z�2

Determine the DSP equations

yðnÞ ¼
eðnÞ ¼
wðiÞ ¼

x n( )

H z
z

z
( )

.

02. .5 025
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1

d n( )
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Adaptive
FIR filter
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FIGURE 10.26

System modeling in Problem 10.10.
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using the LMS algorithm for i ¼ 0; 1; 2; 3; 4; that is, write the equations for all adaptive
coefficients:

wð0Þ ¼
wð1Þ ¼
wð2Þ ¼
wð3Þ ¼
wð4Þ ¼

10.13. Consider the DSP system set up for noise cancellation applications with a sampling rate of
8,000 Hz shown in Figure 10.27. The desired 1,000 Hz tone is generated internally via
a tone generator, and the generated tone is corrupted by the noise captured from a micro-
phone. An FIR adaptive filter with 25 taps is applied to reduce the noise in the corrupted
tone.

a. Determine the DSP equation for the channel noise nðnÞ.
b. Determine the DSP equation for signal tone yyðnÞ.
c. Determine the DSP equation for the corrupted tone dðnÞ.
d. Set up the LMS algorithm for the adaptive FIR filter.

10.14. Consider the DSP system for noise cancellation applications with two taps in Figure 10.28.

a. Set up the LMS algorithm for the adaptive filter.
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xx n n( ) ( )5000
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0 5.
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Delay for 5 samples
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Adaptive
filter

y n( )
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FIGURE 10.27

Noise cancellation in Problem 10.13.
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FIGURE 10.28

Noise cancellation in Problem 10.14.
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b. Assume the inputs and outputs xð0Þ ¼ 1, xð1Þ ¼ 1, xð2Þ ¼ �1, xð3Þ ¼ 2, dð0Þ ¼ 0,
dð1Þ ¼ 2, dð2Þ ¼ �1, and dð3Þ ¼ 1; initial weights wð0Þ ¼ wð1Þ ¼ 0; and
convergence factor m ¼ 0:1. Perform adaptive filtering to obtain outputs eðnÞ for
n ¼ 0; 1; 2.

10.15. Again consider the DSP system for noise cancellation applications with three taps in
Figure 10.28.

a. Set up the LMS algorithm for the adaptive filter.

b. Assume the inputs and outputs xð0Þ ¼ 1, xð1Þ ¼ 1, xð2Þ ¼ �1, xð3Þ ¼ 2, dð0Þ ¼ 0,
dð1Þ ¼ 2, dð2Þ ¼ �1, and dð3Þ ¼ 1; initial weights wð0Þ ¼ wð1Þ ¼ wð2Þ ¼ 0, and
convergence factor m ¼ 0:1. Perform adaptive filtering to obtain outputs eðnÞ for
n ¼ 0; 1; 2.

10.16. For a line enhancement application using the FIR adaptive filter depicted in Figure 10.29.

a. Set up the LMS algorithm for the adaptive filter using two filter coefficients and delay
D ¼ 2.

b. Assume the inputs and outputs dð0Þ ¼ �1, dð1Þ ¼ 1, dð2Þ ¼ �1, dð3Þ ¼ 1,
dð4Þ ¼ �1, dð5Þ ¼ 1 and dð6Þ ¼ �1; initial weights wð0Þ ¼ wð1Þ ¼ 0; and
convergence factor m ¼ 0:1. Perform adaptive filtering to obtain outputs yðnÞ for
n ¼ 0; 1; 2; 3; 4.

10.17. Repeat Problem 10.16 using a three-tap FIR filter and D ¼ 3.

10.18. An audio playback application is described in Figure 10.30.

Due to the interference environment, the audio is corrupted by 15 different periodic interfer-
ences. The DSP engineer uses an FIR adaptive filter to remove such interferences as shown in
Figure 10.30.

a. What is the minimum number of filter coefficients?

b. Set up the LMS algorithm for the adaptive filter using the number of taps obtained in (a).

10.19. Repeat Problem 10.18 for corrupted audio that contains five different periodic
interferences.

z 1

( )d n

y n( )

e n( )z

x n( )

Adaptive
FIR filter Enhanced

output

FIGURE 10.29

Line enhancement in Problem 10.16.
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10.20. In a noisy ECG acquisition environment, the DSP engineer uses an adaptive FIR filter with
20 coefficients to remove 60-Hz interference. The system is set up as shown in Figure 10.19,
where the corrupted ECG and enhanced ECG are represented as dðnÞ and eðnÞ, respectively;
xðnÞ is the captured reference signal from the 60-Hz interference; and yðnÞ is the adaptive
filter output. Determine all difference equations to implement the adaptive filter.

10.21. Given an application of the echo cancellation shown in Figure 10.21B, determine all
difference equations to implement the adaptive filter with four adaptive coefficients at the
speaker A site.

10.22. Given an application of the echo cancellation shown in Figure 10.21B,

a. explain the concepts and benefits using the echo canceller;

b. explain the operations of the adaptive filter at the speaker B site;

c. determine all difference equations to implement the adaptive filter at the speaker A site.

10.7.1 Computer Problems with MATLAB
Use MATLAB to solve Problems 10.23 to 10.26.

10.23. Write a MATLAB program for minimizing the two-weight MSE (mean squared error)
function

J ¼ 100þ 100w2
1 þ 4w2

2 � 100w1 � 8w2 þ 10w1w2

zz
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FIGURE 10.30

Interference cancellation in Problem 10.18.
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A line enhancement system in Problem 10.26
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by applying the steepest descent algorithm for 500 iterations. The derivatives are

dJ

dw1
¼ 200w1 � 100þ 10w2 and

dJ

dw2
¼ 8w2 � 8þ 10w1

and the initial weights are assumed as w1ð0Þ ¼ 0, w2ð0Þ ¼ 0, m ¼ 0:001. Plot w1ðkÞ, w2ðkÞ,
and JðkÞ versus the number of iterations, respectively. Summarize your results.

10.24. In Problem 10.10, the unknown system is assumed to be a fourth-order Butterworth
bandpass filter with a lower cutoff frequency of 700 Hz and an upper cutoff frequency of
900 Hz. Design a bandpass filter by the bilinear transformation method for simulating the
unknown system with a sampling rate of 8,000 Hz.

a. Generate the input signal for 0.1 second using a sum of three sinusoids with 100 Hz, 800
Hz, and 1,500 Hz and a sampling rate of 8,000 Hz.

b. Use the generated input as the unknown system input to produce the system output.

The adaptive FIR filter is then applied to model the designed bandpass filter. The following
parameters are assumed:

Adaptive FIR filter
Number of taps: 15 coefficients
Algorithm: LMS algorithm
Convergence factor: 0.01

c. Implement the adaptive FIR filter, and plot the system input, system output, adaptive
filter output, and error signal, respectively.

d. Plot the input spectrum, system output spectrum, and adaptive filter output spectrum,
respectively.

10.25. Use the following MATLAB code to generate reference noise and a signal of 300 Hz
corrupted by the noise with a sampling rate of 8,000 Hz.

fs¼8000; T¼1/fs; % Sampling rate and sampling period

t¼0:T:1; % Create time instants

x¼randn(1,length(t)); % Generate reference noise

n¼filter([ 0 0 0 0 0 0 0 0 0 0.8 ],1,x);% Generate the corruption noise

d¼sin(2*pi*300*t)+n; % Generate the corrupted signal

a. Implement an adaptive FIR filter to remove the noise. The adaptive filter specifications
are as follows:

Sample rate ¼ 8,000 Hz
Signal corrupted by Gaussian noise delayed by nine samples from the reference noise
Reference noise: Gaussian noise with a power of 1
Number of FIR filter taps: 16
Convergence factor for the LMS algorithm: 0.01
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b. Plot the corrupted signal, reference noise, and enhanced signal, respectively.

c. Compare the spectral plots between the corrupted signal and the enhanced signal.

10.26. A line enhancement system (Figure 10.31) has following specifications:

Sampling rate ¼ 1,000 Hz

Corrupted signal: 100 Hz tone with the unit amplitude added with the unit power Gaussian
noise

Adaptive filter: FIR type, 16 taps

Convergence factor: 0.001

Delay value D: to be decided according to the experiment

LMS algorithm

a. Write a MATLAB program to perform the line enhancement for a one-second corrupted
signal. Run the developed program with a trail of delay value D and plot the noisy signal,
the enhanced signals, and their spectra.

b. Run your simulation to find the delay value D that achieves the largest noise reduction.

10.7.2 MATLAB Projects

10.27. Active noise control:

The ANC (active noise control) system is based on the principle of superposition of the primary
noise source and secondary source with its acoustic output being the same amplitude but the
opposite phase of the primary noise source, as shown in Figure 10.32. The primary noise is
captured using the reference microphone, which is located close to the noise source. The ANC
system uses the sensed reference signal xðnÞ to generate a canceling signal yðnÞ, which drives
the secondary speaker to destructively attenuate the primary noise. An error microphone is
used to detect the residue noise eðnÞ, which is fed back to the ANC system to monitor the
system performance. The residue noise eðnÞ together with the reference signal xðnÞ are used
by the linear adaptive controller whose coefficients are adjusted via an adaptive algorithm to
minimize the measured error signal eðnÞ, or the residue acoustic noise. PðzÞ designates the
physical primary path between the reference sensor and the error sensor, and SðzÞ designates
the physical secondary path between the ANC adaptive filter output and the error sensor. To
control the noise at the cancelling point, the instantaneous power e2ðnÞ must be minimized.
Note that

EðzÞ ¼ DðzÞ � YðzÞSðzÞ ¼ DðzÞ � ½WðzÞXðzÞ�SðzÞ
whereWðzÞ denotes the adaptive control filter. Exchange of the filter order (since the filters are
linear filters) gives

EðzÞ ¼ DðzÞ �WðzÞ½SðzÞXðzÞ� ¼ DðzÞ � YðzÞ
Assuming that SðzÞ is the secondary path estimate and noticing that UðzÞ ¼ SðzÞXðzÞ and
YðzÞ ¼ WðzÞXðzÞ are the filtered reference signal and adaptive filter output, applying the
LMS algorithm gives the filtered-x LMS algorithm

wðiÞ ¼ wðiÞ þ 2meðnÞuðn� iÞ

10.6 Summary 493



Note that eðnÞ is measured from the error microphone.

The completed filtered-x LMS algorithm is summarized below:

1. Initialize wð0Þ, wð1Þ, . wðN � 1Þ to arbitrary values.

2. Read xðnÞ and perform digital filtering:

yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ/þ wðN � 1Þxðn� N þ 1Þ
3. Compute the filtered inputs:

uðnÞ ¼ sð0ÞxðnÞ þ sð1Þxðn� 1Þ þ/þ sðM � 1Þxðn�M þ 1Þ
4. Read eðnÞ and update each filter coefficient:

for i ¼ 0;/;N � 1; wðiÞ ¼ wðiÞ þ 2meðnÞuðn� iÞ;
Assuming the following:

Sampling rate ¼ 8,000 Hz and simulation duration ¼ 10 seconds
Primary noise: xðnÞ ¼ 500-Hz sine wave
Primary path: PðzÞ ¼ 0:2þ 0:25z�1 þ 0:2z�2

Secondary path: SðzÞ ¼ 0:25þ 0:2z�1

Secondary path estimate: SðzÞ ¼ SðzÞ ¼ 0:2þ 0:2z�1 (can have slight error as compared
to SðzÞ)
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FIGURE 10.32

An active noise control system.
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Residue error signal: eðnÞ ¼ dðnÞ � filtering yðnÞ using coefficients sðnÞ ¼ dðnÞ � yðnÞ�
sðnÞ, where the symbol “*” denotes the filter convolution.
Implement the ANC system and plot the residue sensor signal to verify the effectiveness. The
primary noise at cancelling point dðnÞ, and filtered reference signal uðnÞ can be generated in
MATLAB as follows:
d ¼ filter([0.2 0.25 0.2],1,x); % Simulate physical media
u¼filter([0.2 0.2],1,x);
The residue error signal eðnÞ should be generated sample by sample and embedded into the
adaptive algorithm, that is,
e(n)¼d(n)-(s(1)*y(n)+s(2)*y(n-1)); % Simulate the residue error
where s(1)¼ 0.2 and s(2) ¼ 0.2. Details of active control systems can be found in the textbook
by Kuo and Morgan (1996).

10.28. Frequency tracking:

An adaptive filter can be applied for real-time frequency tracking (estimation). In this appli-
cation, a special second notch IIR filter structure, as shown in Figure 10.33, is preferred for
simplicity.

The notch filter transfer function

HðzÞ ¼ 1� 2cos
�
q
�
z�1 þ z�2

1� 2rcosðqÞz�1 þ r2z�2

has only one adaptive parameter q. It has two zeros on the unit circle resulting in an infinite-
depth notch. The parameter r controls the notch bandwidth. It requires 0 << r < 1 for
achieving a narrowband notch. When r is close to 1, the 3-dB notch filter bandwidth can be
approximated as BWz2ð1� rÞ (see Chapter 8). The input sinusoid whose frequency f
needs to be estimated and tracked is given below:

xðnÞ ¼ Acosð2pfn=fs þ aÞ
where A and a are the amplitude and phase angle. The filter output is expressed as

y
�
n
� ¼ x

�
n
�� 2cos

�
q
�
n
��
x
�
n� 1

�þ x
�
n� 2

�þ 2rcos
�
q
�
n
��
y
�
n� 1

�� r2y
�
n� 2

�
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FIGURE 10.33

A frequency tracking system.
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The objective is to minimize the filter instantaneous output power y2ðnÞ. Once the output power
is minimized, the filter parameter q ¼ 2pf=fs will converge to its corresponding frequency
f Hz. The LMS algorithm to minimize the instantaneous output power y2ðnÞ is given as

qðnþ 1Þ ¼ qðnÞ � 2myðnÞbðnÞ;
where the gradient function bðnÞ ¼ vyðnÞ=vqðnÞ can be derived as follows:

b
�
n
� ¼ 2sin

�
q
�
n
��
x
�
n� 1

�� 2rsin
�
q
�
n
��
y
�
n� 1

�þ 2rcos
�
q
�
n
��
b
�
n� 1

�� r2b
�
n� 2

�
m is the convergence factor which controls speed of algorithm convergence.

In this project, plot and verify the notch frequency response by setting fs ¼ 8,000 Hz,
f ¼ 1,000 Hz, and r ¼ 0:95. Then generate the sinusoid with a duration of 10 seconds,
frequency of 1,000 Hz, and amplitude of 1. Implement the adaptive algorithm using an initial
guess qð0Þ ¼ 2p� 2000=fs ¼ 0:5p and plot the tracked frequency f ðnÞ ¼ qðnÞfs=2p for
tracking verification.

Notice that this particular notch filter only works for a single frequency tracking, since the
mean squares error function E½y2ðnÞ� has one global minimum (one best solution when the
LMS algorithm converges). Details of the adaptive notch filter can be found in Tan and Jiang
(2012). Notice that the general IIR adaptive filter suffers from local minima, that is, the LMS
algorithm converges to local minimum and the nonoptimal solution results.
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OBJECTIVES:

This chapter studies speech quantization and compression techniques such as signal companding,
differential pulse code modulation, and adaptive differential pulse code modulation. The chapter
continues to explore the discrete-cosine transform (DCT) and the modified DCT and shows how to apply the
developed concepts to understand the MP3 audio format. The chapter also introduces industry standards
that are widely used in the digital signal processing field.

11.1 LINEAR MIDTREAD QUANTIZATION
Aswe discussed in Chapter 2, in the digital signal processing (DSP) system, the first step is to sample and
quantize the continuous signal. Quantization is the process of rounding off the sampled signal voltage to
the predetermined levels that will be encoded by analog-to-digital conversion (ADC). We described the
quantization process in Chapter 2, in which we studied unipolar and bipolar linear quantizers in detail. In
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this section, we focus on a linear midtread quantizer, which is used in digital communications (Rod-
dy and Coolen, 1997; Tomasi, 2004), and its use to quantize speech waveforms. The linear midtread
quantizer is similar to the bipolar linear quantizer discussed in Chapter 2 except that the midtread
quantizer offers the same decoded magnitude range for both positive and negative voltages.

Let us look at a midtread quantizer. The characteristics and binary codes for a 3-bit midtread
quantizer are depicted in Figure 11.1, where the code is in a sign magnitude format. Positive voltage is
coded using a sign bit of logic 1, while negative voltage is coded by a sign bit of logic 0; the next two
bits are the magnitude bits. The key feature of the linear midtread quantizer is noted as follows: when
0 � x < D=2, the binary code of 100 is produced; when �D=2 � x < 0, the binary code of 000 is
generated, where D is the quantization step size. However, the quantized values for both codes 100 and
000 are the same and equal to xq ¼ 0. We can also see details in Table 11.1. For the 3-bit midtread

001

011

100 000/

101

110

111

010

eq

/ 2
/ 2

x

x

xq

3

2

0
2 3 424

2

3

Binary code

FIGURE 11.1

Characteristics of a 3-bit midtread quantizer.

Table 11.1 Quantization Table for the 3-bit Midtread Quantizer

Binary Code Quantization Level xq (V) Input Signal Subrange (V)

0 1 1
0 1 0
0 0 1
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

�3D
�2D
�D
0
0
D

2D
3D

�3:5D � x < �2:5D
�2:5D � x < �1:5D
�1:5D � x < �0:5D
�0:5 � x < 0

0 � x < 0:5D
0:5D � x < 1:5D
1:5D � x < 2:5D
2:5D � x < 3:5D

Note: Step size¼D ¼ ðxmax � xminÞ=ð23 � 1Þ; xmax ¼maximum voltage; and xmin ¼ �xmax. Coding format: a. sign bit:
1¼ plus, 0¼minus; b. 2 magnitude bits.
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qunatizer, we expect seven quantized values instead of eight; that is; there are 2n � 1 quantization
levels for the n-bit midtread quantizer. Notice that quantization signal range is ð2n � 1ÞD and the
magnitudes of the quantized values are symmetric, as shown in Table 11.1. We apply the midtread
quantizer particularly for speech waveform coding.

The following example serves to illustrate the coding principles of the 3-bit midtread quantizer.

EXAMPLE 11.1
For the 3-bit midtread quantizer described in Figure 11.1 and the analog signal with a range from �5 volts to 5
volts,

a. determine the quantization step size;
b. determine the binary codes, recovered voltages, and quantization errors when the input is �3.6 volts and

0.5 volt, respectively.

Solution:

a. The quantization step size is calculated as

D ¼ 5� ð � 5Þ
23 � 1

¼ 1:43 volts

b. For x ¼ �3:6 volts, we have x ¼ �3:6

1:43
¼ �2:52D. From quantization characteristics, it follows that the

binary code¼ 011 and the recovered voltage is xq ¼ �3D ¼ �4:29 volts. Thus the quantization error is

computed as

eq ¼ xq � x ¼ �4:29� �� 3:6
� ¼ �0:69 volt

For x ¼ 0:5 ¼ 0:5

1:43
D ¼ 0:35D, we get binary code ¼ 100. Based on Figure 11.1, the recovered voltage and

quantization error are found to be

xq ¼ 0 and eq ¼ 0� 0:5 ¼ �0:5 volt

As discussed in Chapter 2, the linear midtread quantizer introduces quantization noise, as shown in
Figure 11.1; the signal-to-noise power ratio (SNR) is given by

SNR ¼ 10:79þ 20$log10

�xrms
D

�
dB (11.1)

where xrms designates the root mean squared value of the speech data to be quantized. The practical
equation for estimating the SNR for the speech data sequence xðnÞ of N data points is written as

SNR ¼
 PN�1

n¼ 0 x
2
�
n
�

PN�1
n¼ 0

�
xq
�
n
�� x

�
n
��2
!

(11.2)

SNR dB ¼ 10$log10ðSNRÞ dB (11.3)
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Notice that xðnÞ and xqðnÞ are the speech data to be quantized and the quantized speech data, respectively.
Equation (11.2) gives the absolute SNR, and Equation (11.3) produces the SNR in terms of decibels (dB).
Quantization error is the difference between the quantized speech data (or quantized voltage level)
and speech data (or analog voltage), that is, xqðnÞ � xðnÞ. Also note that from Equation (11.1), adding 1
bit to the linear quantizer would improve SNR by approximately 6 dB. Let us examine performance of
the 5-bit linear midtread quantizer.

In the following simulation, we use a 5-bit midtread quantizer to quantize the speech data. After
quantization, the original speech, quantized speech, and quantized error after quantization are plotted in
Figure 11.2. Since the program calculates xrms=xmax ¼ 0:203, we yield xrms as xrms ¼ 0:203� xmax ¼
0:0203� 5 ¼ 1:015 andD ¼ 10=ð25 � 1Þ ¼ 0:3226. Applying Equation (11.1) gives SNR ¼ 21:02
dB. The SNR using Equations (11.2) and (11.3) is approximately 21.6 dB.

The first plot in Figure 11.2 is the original speech, and the second plot shows the quantized speech.
Quantization error is displayed in the third plot, where the error amplitude interval is uniformly
distributed between –0.1613 and 0.1613, indicating the bounds of the quantized error (D=2). The
details of the MATLAB implementation are given in Program 11.1 in Section 11.7.

To improve the SNR, the number of bits must be increased. However, increasing the number of
encoding bits will cost an expansive ADC device, larger storage media for storing the speech data, and
more bandwidth for transmitting the digital data. To gain a more efficient quantization approach, we
will study m-law companding in the next section.
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FIGURE 11.2

Plots of original speech, quantized speech, and quantization error.
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11.2 m-LAW COMPANDING
In this section, we will study analog m-law companding, which takes an analog input signal; and digital
m-law companding, which deals with linear pulse code modulation (PCM) codes.

11.2.1 Analog m-Law Companding

To reduce the number of bits required to encode each speech datum, m-law companding, called log-
PCM coding, is applied. m-law companding (Roddy and Coolen, 1997; Tomasi, 2004) was first used in
the United States and Japan in the telephone industry (G.711 standard). m-law companding is
a compression process. It explores the principle that the higher amplitudes of analog signals are
compressed before ADC and expanded after digital-to-analog conversion (DAC). As studied in the
linear quantizer, the quantization error is uniformly distributed. This means that the maximum
quantization error stays the same no matter how big or small the speech samples are. m-law com-
panding can be employed to make the quantization error smaller when the sample amplitude is smaller
and to make the quantization error bigger when the sample amplitude is bigger, using the same number
of bits per sample. It is described in Figure 11.3.

As shown in Figure 11.3, x is the original speech sample, which is the input to the compressor,
while y is the output from the m-law compressor; then the output y is uniformly quantized. Assuming
that the quantized sample yq is encoded and sent to the m-law expander, the expander will perform the
reverse process to obtain the quantized speech sample xq. The compression and decompression
processes cause the maximum quantization error jxq � xjmax to be small for the smaller sample
amplitudes and large for the larger sample amplitudes.

The equation for the m-law compressor is given by

y ¼ signðxÞ
ln

�
1þ m

jxj
jxjmax

�
lnð1þ mÞ (11.4)

where jxjmax is the maximum amplitude of the inputs, while m is a positive parameter to control the
degree of the compression. m ¼ 0 corresponds to no compression, while m ¼ 255 is adopted in the
industry. The compression curve with m ¼ 255 is plotted in Figure 11.4. Note that the sign function
signðxÞ shown in Equation (11.4) is defined as

signðxÞ ¼
(

1 x � 0

�1 x < 0
(11.5)

µ-law
compressor

Uniform
quantizer

µ-law
expander

x y yq xq

FIGURE 11.3

Block diagram for m-law compressor and m-law expander.
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Solving Equation (11.4) by substituting the quantized value, that is, y ¼ yq we achieve the expander
equation as

xq ¼ jxjmaxsignðyqÞ
ð1þ mÞjyqj�1

m
(11.6)

For the case m ¼ 255, the expander curve is plotted in Figure 11.5.
Let’s look at Example 11.2 on m-law compression.

EXAMPLE 11.2
For the m-law compression and expansion process shown in Figure 11.3, with m ¼ 255, the 3-bit midtread
quantizer described in Figure 11.1, and an analog signal ranging from �5 to 5 volts, determine the binary codes,
recovered voltages, and quantization errors when the input is

a. �3.6 volts
b. 0.5 volt

Solution:

a. For m-law compression and x ¼ �3:6 volts, we can determine the quantization input as
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FIGURE 11.4

Characteristics for the m-law compander.
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y ¼ signð�3:6Þ
ln

�
1þ 255

j�3:6j
j5jmax

�
lnð1þ 255Þ ¼ �0:94

As shown in Figure 11.4, the range of y is 2, thus the quantization step size is calculated as

D ¼ 2

23 � 1
¼ 0:286 and y ¼ �0:94

0:286
¼ �3:28D

From quantization characteristics, it follows that the binary code is 011 and the recovered signal is
yq ¼ �3D ¼ �0:858.

Applying the m-law expander leads to

xq ¼ j5jmaxsignð�0:858Þð1þ 255Þj�0:858j�1

255
¼ �2:264

Thus the quantization error is computed as

eq ¼ xq � x ¼ �2:264� �� 3:6
� ¼ 1:336 volts

b. Similarly, for x ¼ 0:5, we get

y ¼ signð0:5Þ
ln

�
1þ 255

j0:5j
j5jmax

�
lnð1þ 255Þ ¼ 0:591
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Characteristics for the m-law expander.
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In terms of the quantization step, we get

y ¼ 0:519

0:286
D ¼ 2:1D and binary code ¼ 110

Based on Figure 11.1, the recovered signal is

yq ¼ 2D ¼ 0:572

and the expander gives

xq ¼ j5jmaxsignð0:572Þ
ð1þ 255Þj0:572j�1

255
¼ 0:448 volt

Finally, the quantization error is given by

eq ¼ 0:448� 0:5 ¼ �0:052 volt

As we can see, with 3 bits per sample, the stronger signal is encoded with more quantization error, while the weak
signal is encoded with less quantization error.

In the following simulation, we apply a 5-bit m-law compander with m ¼ 255 in order to quantize
and encode the speech data used in the last section. Figure 11.6 is a block diagram of compression and
decompression.

Figure 11.7 shows the original speech data, the quantized speech data using m-law compression,
and the quantization error for comparisons. The quantized speech wave is very close to the original
speech wave. From the plots in Figure 11.7, we can observe that the amplitude of the quantization error
changes according to the amplitude of the speech being quantized. More quantization error is intro-
duced when the amplitude of speech data is larger; on the other hand, a smaller quantization error is
produced when the amplitude of speech data is smaller.

Compared with the quantized speech using the linear quantizer shown in Figure 11.2, the
decompressed signal using the m-law compander looks and sounds much better, since the quantized
signal can better track the original large amplitude signal and original small amplitude signal as well.
The MATLAB implementation is shown in Program 11.2 in Section 11.7.

11.2.2 Digital m-Law Companding

In many multimedia applications, the analog signal is first sampled and then it is digitized into a linear
PCM code with a larger number of bits per sample. Digital m-law companding further compresses the
linear PCM code using the compressed PCM code with a smaller number of bits per sample without
losing sound quality. The block diagram of a digital m-law compressor and expander is shown in
Figure 11.8.

µ-law
compressor

µ=255

5-bit code
midtread
 quantizer

µ-law
expander

µ=255

x y yq xq

FIGURE 11.6

The 5-bit midtread uniform quantizer with m ¼ 255 used for simulation.

504 CHAPTER 11 Waveform Quantization and Compression



The typical digital m-law companding system compresses a 12-bit linear PCM code to an 8-bit
compressed code. This companding characteristic is depicted in Figure 11.9, where it closely
resembles an analog compression curve with m ¼ 255 by approximating the curve using a set of eight
straight-line segments. The slope of each successive segment is exactly one-half that of the previous
segment. Figure 11.9 shows the 12-bit to 8-bit digital companding curve for the positive portion only.
There are 16 segments, accounting for both positive and negative portions.

However, like the midtread quantizer discussed in the first section of this chapter, only 13 segments
are used, since segments þ0, �0, þ1, and �1 form a straight line with a constant slope and are
considered one segment. As shown in Figure 11.9, when the relative input is very small, such as in
segment 0 or segment 1, there is no compression, while when the relative input is larger such as in
segment 3 or segment 4, the compression occurs with compression ratios of 2:1 and 4:1, respectively.
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FIGURE 11.7

Plots of the original speech, quantized speech, and quantization error with the m-law compressor and expander.
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Digital µ-law
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Compressed
PCM

FIGURE 11.8

The block diagram for a m-law compressor and expander.
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The format of the 12-bit linear PCM code is in the sign-magnitude form with the most significant bit
(MSB) as the sign bit (1¼ positive value and 0¼ negative value) plus 11 magnitude bits. The
compressed 8-bit code has the format shown in Table 11.2, where it consists of a sign bit, a 3-bit
segment identifier, and a 4-bit quantization interval within the specified segment. Encoding and
decoding procedures are very simple, as illustrated in Tables 11.3 and 11.4, respectively.

As shown in those two tables, the prefix “S” is used to indicate the sign bit, which could be either
1 or 0; A, B, C, and D, are transmitted bits; and the bit position with an “X” is the truncated bit during
the compression and hence would be lost during decompression. For the 8-bit compressed PCM code
in Table 11.3, the 3 bits between “S” and “ABCD” indicate the segment number that is obtained by
subtracting the number of consecutive zeros (less than or equal to 7) after the “S” bit in the original
12-bit PCM code from 7. Similarly, to recover the 12-bit linear code in Table 11.4, the number of
consecutive zeros after the “S” bit can be determined by subtracting the segment number in the 8-bit
compressed code from 7. We will illustrate the encoding and decoding processes in Examples 11.3
and 11.4.

10.

10.

0 0.

Segment +0  1:1 no compression

Segment +1  1:1 no compression

Segment +2  2:1 compression ratio

Segment +3  4:1 compression ratio

Segment +4  8:1 compression ratio

Segment +5  16:1 compression ratio

Segment +7  64:1 compression ratio
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Segment +6  32:1 compression ratio

FIGURE 11.9

m� 255 compression characteristics (for positive portion only).

Table 11.2 The Format of 8-Bit Compressed PCM Code

Sign bit:
1¼þ
0¼�

3-bit segment
identifier: 000 to 111

4-bit
quantization
interval:
A B C D
0000 to 1111
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EXAMPLE 11.3
In a digital companding system, encode each of the following 12-bit linear PCM codes into an 8-bit compressed
PCM code.

a. 1 0 0 0 0 0 0 0 0 1 0 1
b. 0 0 0 0 1 1 1 0 1 0 1 0

Solution:

a. Based on Table 11.3, we identify the 12-bit PCM code as S¼ 1, A¼ 0, B¼ 1, C¼ 0, and D¼ 1, which is in
segment 0. From the fourth column in Table 11.3, we get the 8-bit compressed code as

1 0 0 0 0 1 0 1

b. For the second 12 bit PCM code, we note that S¼ 0, A¼ 1, B¼ 1, C¼ 0, D¼ 1, and XXX¼ 010, and the code
belongs to segment 4. Thus, from the fourth column in Table 11.3, we have

0 1 0 0 1 1 0 1

Table 11.3 m� 255 Encoding Table

Segment 12-Bit Linear Code
12-Bit Amplitude Range
in Decimal

8-Bit Compressed
Code

0
1
2
3
4
5
6
7

S0000000ABCD
S0000001ABCD
S000001ABCDX
S00001ABCDXX
S0001ABCDXXX
S001ABCDXXXX
S01ABCDXXXXX
S1ABCDXXXXXX

0 to 15
16 to 31
32 to 63
64 to 127

128 to 255
256 to 511
512 to 1023

1023 to 2047

S000ABCD
S001ABCD
S010ABCD
S011ABCD
S100ABCD
S101ABCD
S110ABCD
S111ABCD

Table 11.4 m� 255 Decoding Table

8-Bit Compressed Code
8-Bit Amplitude Range
in Decimal Segment 12-Bit Linear Code

S000ABCD
S001ABCD
S010ABCD
S011ABCD
S100ABCD
S101ABCD
S110ABCD
S111ABCD

0 to 15
16 to 31
32 to 47
48 to 63
64 to 79
80 to 95
96 to 111

112 to 127

0
1
2
3
4
5
6
7

S0000000ABCD
S0000001ABCD
S000001ABCD1
S00001ABCD10
S0001ABCD100
S001ABCD1000
S01ABCD10000
S1ABCD100000
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EXAMPLE 11.4
In a digital companding system, decode each of the following 8-bit compressed PCM codes into a 12-bit linear
PCM code.

a. 1 0 0 0 0 1 0 1
b. 0 1 0 0 1 1 0 1

Solution:

a. Using Table 11.4, we notice that S¼ 1, A¼ 0, B¼ 1, C¼ 0, and D¼ 1, and the code is in segment 0. Decoding
leads to 1 0 0 0 0 0 0 0 0 1 0 1, which is identical to the 12-bit PCM code in (a) in Example 11.3. We expect
this result, since there is no compression for segment 0 and segment 1.

b. Applying Table 11.4, it follows that S¼ 0, A¼ 1, B¼ 1, C¼ 0, and D¼ 1, and the code resides in segment 4.
Decoding achieves 0 0 0 0 1 1 1 0 1 1 0 0. As expected, this code is the approximation of the code in (b) in
Example 11.3. Since segment 4 has compression, the last 3 bits in the original 12-bit linear code, that is,
XXX¼ 010¼ 2 in decimal, are discarded during transmission or storage. When we recover these three bits,
the best guess should be the middle value: XXX¼ 100¼ 4 in decimal for the 3-bit coding range from 0 to 7.

Now we apply the m� 255 compander to compress 12-bit speech data as shown in Figure 11.10(a).
The 8-bit compressed code is plotted in Figure 11.10(b). Plots (c) and (d) in the figure show the 12-bit
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FIGURE 11.10

The m� 255 compressor and expander: (a) 12-bit speech data; (b) 8-bit compressed data; (c) 12-bit decoded

speech; (d) quantization error.
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speech after decoding and quantization error, respectively. We can see that the quantization error
follows the amplitude of speech data relatively. The decoded speech sounds no different when
compared with the original speech. Programs 11.8 to 11.10 in Section 11.7 show the details of the
MATLAB implementation.

11.3 EXAMPLES OF DIFFERENTIAL PULSE CODE MODULATION (DPCM),
DELTA MODULATION, AND ADAPTIVE DPCM G.721
Data compression can be further achieved using differential pulse code modulation (DPCM). The
general idea is to use past recovered values as the basis to predict the current input data and then
encode the difference between the current input and the predicted input. Since the difference has
a significantly reduced signal dynamic range, it can be encoded with fewer bits per sample. Therefore,
we obtain data compression. First, we study the principles of the DPCM concept that will help us
understand adaptive DPCM in the next subsection.

11.3.1 Examples of Differential Pulse Code Modulation and Delta Modulation

Figure 11.11 shows a schematic diagram for the DPCM encoder and decoder. We denote the original
signal xðnÞ; the predicted signal ~xðnÞ; the quantized or recovered signal x̂ðnÞ; the difference signal to be
quantized dðnÞ; and the quantized difference signal dqðnÞ. The quantizer can be chosen as a uniform
quantizer, a midtread quantizer (e.g., see Table 11.5), or any others available. The encoding block
produces a binary bit stream in the DPCM encoding. The predictor uses the past predicted signal and
quantized difference signal to predict the current input value xðnÞ as close as possible. The digital filter
or adaptive filter can serve as the predictor. On the other hand, the decoder recovers the quantized
difference signal, which can be added to the predictor output signal to produce the quantized and
recovered signal, as shown in Figure 11.11(b).

(a)

(b)

FIGURE 11.11

DPCM block diagram: (a) encoder; (b) decoder.
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Table 11.5 Quantization Table for the 3-bit Quantizer in Example 11.5

Binary Code Quantization Value dqðnÞ Subrange in dðnÞ
0 1 1
0 1 0
0 0 1
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

�11
�5
�2
0
0
2
5

11

�15 � dðnÞ < �7
�7 � dðnÞ < �3
�3 � dðnÞ < �1
�1 � dðnÞ < 0
0 � dðnÞ � 1
1 < dðnÞ � 3
3 < dðnÞ � 7
7 < dðnÞ � 15

In Example 11.5, we examine a simple DPCM coding system via the process of encoding and decoding
numerical actual data.

EXAMPLE 11.5
A DPCM system has the following specifications:

Encoder scheme : ~xðnÞ ¼ x̂ðn � 1Þ; predictor
dðnÞ ¼ xðnÞ � ~xðnÞ
dq
�
n
� ¼ Q½dðnÞ� ¼ quantizer in Table 11:5

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

Decoding scheme : ~xðnÞ ¼ x̂ðn � 1Þ; predictor
dq
�
n
� ¼ quantizer in Table 11:5

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

5-bit input data: xð0Þ ¼ 6, xð1Þ ¼ 8, xð2Þ ¼ 13.

a. Perform DPCM encoding to produce the binary code for each input datum.
b. Perform DCPM decoding to recover the data using the binary code in (a).

Solution:

a. Let us perform encoding according to the encoding scheme.
For n ¼ 0, we have
~xð0Þ ¼ x̂ð�1Þ ¼ 0
dð0Þ ¼ xð0Þ � ~xð0Þ ¼ 6� 0 ¼ 6
dqð0Þ ¼ Q½dð0Þ� ¼ 5
x̂ð0Þ ¼ ~xð0Þ þ dqð0Þ ¼ 0þ 5 ¼ 5
Binary code ¼110

For n ¼ 1, it follows that
~xð1Þ ¼ x̂ð0Þ ¼ 5
dð1Þ ¼ xð1Þ � ~xð1Þ ¼ 8� 5 ¼ 3
dqð1Þ ¼ Q½dð1Þ� ¼ 2
x̂ð1Þ ¼ ~xð1Þ þ dqð1Þ ¼ 5þ 2 ¼ 7
Binary code¼ 101

For n ¼ 2, the results are
~xð2Þ ¼ x̂ð1Þ ¼ 7
dð2Þ ¼ xð2Þ � ~xð2Þ ¼ 13� 7 ¼ 6
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dqð2Þ ¼ Q½dð2Þ� ¼ 5
x̂ð2Þ ¼ ~xð2Þ þ dqð2Þ ¼ 7þ 5 ¼ 12
Binary code¼ 110

b. We conduct the decoding scheme as follows.
For n ¼ 0, we get
Binary code¼ 110
dqð0Þ ¼ 5; from Table 11.5
~xð0Þ ¼ x̂ð�1Þ ¼ 0
x̂ð0Þ ¼ ~xð0Þ þ dqð0Þ ¼ 0þ 5 ¼ 5 (recovered)

For n ¼ 1, decoding shows:
Binary code¼ 101
dqð1Þ ¼ 2; from Table 11.5
~xð1Þ ¼ x̂ð0Þ ¼ 5
x̂ð1Þ ¼ ~xð1Þ þ dqð1Þ ¼ 5þ 2 ¼ 7 (recovered)

For n ¼ 2, we have:
Binary code¼ 110
dqð2Þ ¼ 5; from Table 11.5
~xð2Þ ¼ x̂ð1Þ ¼ 7
x̂ð2Þ ¼ ~xð2Þ þ dqð2Þ ¼ 7þ 5 ¼ 12 (recovered)

From this example, we can verify that the 5-bit code is compressed to the 3-bit code. However, we can see that
each piece of recovered data has a quantization error. Hence, DPCM is a lossy data compression scheme.

DPCM for which a single bit is used in the quantization table becomes delta modulation (DM). The quanti-
zation table contains two quantized values, A and �A, where A is the quantization step size. Delta modulation
quantizes the difference of the current input sample and the previous input sample using a 1-bit code word. To
conclude the idea, we list the equations for encoding and decoding as follows:

Encoder scheme : ~xðnÞ ¼ x̂ðn � 1Þ; predictor
dðnÞ ¼ xðnÞ � ~xðnÞ

dq
�
n
� ¼

(
þA dq

�
n
� � 0; output bit : 1

�A dq
�
n
��
0; output bit : 0

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

Decoding scheme : ~xðnÞ ¼ x̂ðn � 1Þ; predictor

dq
�
n
� ¼

(
þA input bit: 1

�A input bit: 0

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

Note that the predictor has a sample delay.

EXAMPLE 11.6
Consider a DM system with 5-bit input data

xð0Þ ¼ 6; xð1Þ ¼ 8; xð2Þ ¼ 13

and a quantized constant of A ¼ 7.

a. Perform DM encoding to produce the binary code for each input datum.
b. Perform DM decoding to recover the data using the binary code in (a).
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Solution:

a. Applying encoding accordingly, we have
For n ¼ 0,
~xð0Þ ¼ x̂ð�1Þ ¼ 0, dð0Þ ¼ xð0Þ � ~xð0Þ ¼ 6� 0 ¼ 6
dqð0Þ ¼ 7, x̂ð0Þ ¼ ~xð0Þ þ dqð0Þ ¼ 0þ 7 ¼ 7
Binary code¼ 1

For n ¼ 1,
~xð1Þ ¼ x̂ð0Þ ¼ 7, dð1Þ ¼ xð1Þ � ~xð1Þ ¼ 8� 7 ¼ 1
dqð1Þ ¼ 7, x̂ð1Þ ¼ ~xð1Þ þ dqð1Þ ¼ 7þ 7 ¼ 14
Binary code¼ 1.

For n ¼ 2,
~xð2Þ ¼ x̂ð1Þ ¼ 14, dð2Þ ¼ xð2Þ � ~xð2Þ ¼ 13� 14 ¼ �1
dqð2Þ ¼ �7, x̂ð2Þ ¼ ~xð2Þ þ dqð2Þ ¼ 14� 7 ¼ 7
Binary code¼ 0

b. Applying the decoding scheme leads to
For n ¼ 0,
Binary code¼ 1
dqð0Þ ¼ 7, ~xð0Þ ¼ x̂ð�1Þ ¼ 0
x̂ð0Þ ¼ ~xð0Þ þ dqð0Þ ¼ 0þ 7 ¼ 7 (recovered)

For n ¼ 1,
Binary code 1
dqð1Þ ¼ 7, ~xð1Þ ¼ x̂ð0Þ ¼ 7
x̂ð1Þ ¼ ~xð1Þ þ dqð1Þ ¼ 7þ 7 ¼ 14 (recovered)

For n ¼ 2,
Binary code 0
dqð2Þ ¼ �7, ~xð2Þ ¼ x̂ð1Þ ¼ 14
x̂ð2Þ ¼ ~xð2Þ þ dqð2Þ ¼ 14� 7 ¼ 7 (recovered)

We can see that coding causes a larger quantization error for each recovered sample. In practice,
this can be solved by using a very high sampling rate (much larger than the Nyquist rate), and by
making the quantization step size A adaptive. The quantization step size increases by a factor when
the slope magnitude of the input sample curve becomes bigger, that is, the condition in which the
encoder produces continuous logic 1s or continuous logic 0s in the coded bit stream. Similarly, the
quantization step decreases by a factor when the encoder generates logic 1 and logic 0 alternatively.
Hence, the resultant DM is called adaptive DM. In practice, the DM chip replaces the predictor,
feedback path, and summer (see Figure 11.11) with an integrator for both the encoder and the
decoder. Detailed information can be found in Li and Drew (2004), Roddy and Coolen (1997), and
Tomasi (2004).

11.3.2 Adaptive Differential Pulse Code Modulation G.721

In this subsection, an efficient compression technique for speech waveform is described, that is,
adaptive DPCM (ADPCM), per recommendation G.721 of the CCITT (the Comité Consultatif
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International Téléphonique et Télégraphique). General discussion can be found in Li and Drew (2004),
Roddy and Coolen (1997), and Tomasi (2004). The simplified block diagrams of the ADPCM encoder
and decoder are shown in Figures 11.12A and 11.12B.

As shown in Figure 11.12A for the ADPCM encoder, first a difference signal dðnÞ is obtained, by
subtracting an estimate of the input signal ~xðnÞ from the input signal xðnÞ. An adaptive 16-level
quantizer is used to assign four binary digits IðnÞ to the value of the difference signal for transmission
to the decoder. At the same time, the inverse quantizer produces a quantized difference signal dqðnÞ
from the same four binary digits IðnÞ. The adaptive quantizer and inverse quantizer operate based on
the quantization table and the scale factor obtained from the quantizer adaptation to keep tracking
the energy change of the difference signal to be quantized. The input signal estimate from the

16-level adaptive
quantizer

 Encoder

Adaptive
predictor
B(z)/A(z) +

+
x n( )

~( )x n

d n( )

d nq ( )

Quantizer
adaptation

16-level inverse
adaptive
quantizer

+

+

+

I n( )

FIGURE 11.12A

ADPCM encoder.

16-level inverse
adaptive
quantizer

Adaptive
predictor
B(z)/A(z)

+
I n( ) ˆ( )x n

Quantizer
adaptation

+

+
d nq ( )

~( )x n

FIGURE 11.12B

ADPCM decoder.
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adaptive predictor is then added to this quantized difference signal to produce the reconstructed
version of the input x̂ðnÞ. Both the reconstructed signal and the quantized difference signal are
operated on by an adaptive predictor, which generates the estimate of the input signal, thereby
completing the feedback loop.

The decoder shown in Figure 11.12B includes a structure identical to the feedback part of the
encoder as depicted in Figure 11.12A. It first converts the received 4-bit data IðnÞ to the quantized
difference signal dqðnÞ using the adaptive quantizer. Then, at the second stage, the adaptive predictor
uses the recovered quantized difference signal dqðnÞ and recovered current output ~xðnÞ to generate the
next output. Notice that the adaptive predictors of both the encoder and the decoder change corre-
spondingly based on the signal to be quantized. The details of the adaptive predictor will be discussed.

Now, let us examine the ADPCM encoder principles. As shown in Figure 11.12A, the difference
signal is computed as

dðnÞ ¼ xðnÞ � ~xðnÞ (11.7)

A 16-level nonuniform adaptive quantizer is used to quantize the difference signal dðnÞ. Before
quantization, dðnÞ is converted to a base-2 logarithmic representation and scaled by yðnÞ, which is
computed by the scale factor algorithm. Four binary codes IðnÞ are used to specify the quantized signal
level representing dqðnÞ, and the quantized difference dqðnÞ is also fed to the inverse adaptive
quantizer. Table 11.6 shows the quantizer normalized input and output characteristics.

The scaling factor for the quantizer and the inverse quantizer yðnÞ is computed according to the
4-bit quantizer output IðnÞ and the adaptation speed control parameter alðnÞ, the fast (unlocked) scale
factor yuðnÞ, the slow (locked) scale factor ylðnÞ, and the discrete functionWðIÞ, defined in Table 11.7:

yu
�
n
� ¼ �

1� 2�5
�
y
�
n
�þ 2�5W

�
I
�
n
��

(11.8)

where 1:06 � yuðnÞ � 10:00.
The slow scale factor ylðnÞ is derived from the fast scale factor yuðnÞ using a lowpass filter as follows:

yl
�
n
� ¼ �

1� 2�6
�
yl
�
n� 1

�þ 2�6yu
�
n
�

(11.9)

Table 11.6 Quantizer Normalized Input and Output Characteristics

Normalized Quantizer
Input Range:
log2jdðnÞjLyðnÞ

Magnitude:
jIðnÞj

Normalized Quantizer
Output:
log2jdqðnÞjLyðnÞ

[3.12, þN) 7 3.32

[2.72, 3.12) 6 2.91

[2.34, 2.72) 5 2.52

[1.91, 2.34) 4 2.13

[1.38, 1.91) 3 1.66

[0.62, 1.38) 2 1.05

[�0.98, 0.62) 1 0.031

(�N, �0.98) 0 �N

514 CHAPTER 11 Waveform Quantization and Compression



The fast and slow scale factors are then combined to compute the scale factor:

yðnÞ ¼ alðnÞyuðn� 1Þ þ ð1� alðnÞÞylðn� 1Þ (11.10)

Next the controlling parameter 0� alðnÞ � 1 tends toward unity for speech signals and toward zero for
voice band data signals and tones. It is updated based on the following parameters: dmsðnÞ, which is the
relatively short-term average of FðIðnÞÞ; dmlðnÞ, which is the relatively long-term average of FðIðnÞÞ;
and the variable apðnÞ, where FðIðnÞÞ is defined as in Table 11.8.

Hence, we have

dms
�
n
� ¼ �

1� 2�5
�
dms
�
n� 1

�þ 2�5F
�
I
�
n
��

(11.11)

and

dml
�
n
� ¼ �

1� 2�7
�
dml
�
n� 1

�þ 2�7F
�
I
�
n
��

(11.12)

while the variable apðnÞ is given by

apðnÞ ¼

8>>>>>>><
>>>>>>>:

�
1� 2�4

�
ap
�
n� 1

�þ 2�3 if jdmsðnÞ � dmlðnÞj � 2�3dml
�
n
�

�
1� 2�4

�
ap
�
n� 1

�þ 2�3 if yðnÞh3�
1� 2�4

�
ap
�
n
�þ 2�3 if tdðnÞ ¼ 1

1 if trðnÞ ¼ 1�
1� 2�4

�
ap
�
n
�

otherwise

(11.13)

apðnÞ approaches 2 when the difference between dmsðnÞ and dmlðnÞ is large and approaches 0 when the
difference is small. Also apðnÞ approaches 2 for an idle channel (indicated by y(n) <3) or partial band
signals (indicated by tdðnÞ ¼ 1). Finally, apðnÞ is set to 1 when a partial band signal transition is
detected (trðnÞ ¼ 1).

alðnÞ, which is used in Equation (11.10), is defined as

TABLE 11.7 Discrete Function W ðIÞ
jIðnÞj 7 6 5 4 3 2 1 0

WðIÞ 70.13 22.19 12.38 7.00 4.0 2.56 1.13 �0.75

TABLE 11.8 Discrete Function F ðIðnÞÞ
jIðnÞj 7 6 5 4 3 2 1 0

FðIðnÞÞ 7 3 1 1 1 0 0 0
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alðnÞ ¼
(

1 ap
�
n� 1

�	
1

ap
�
n� 1

�
ap
�
n� 1

� � 1
(11.14)

The partial band signal tdðnÞ and the partial band signal transition trðnÞ that appear in Equation (11.13)
will be discussed later.

The predictor computes the signal estimate ~xðnÞ from the quantized difference signal dqðnÞ. The
predictor z-transfer function, which is suitable for a variety of input signals, is given by

BðzÞ
AðzÞ ¼ b0 þ b1z

�1 þ b2z
�2 þ b3z

�3 þ b4z
�4 þ b5z

�5

1� a1z�1 � a2z�2
(11.15)

It consists of a fifth-order portion that models the zeros and a second-order portion that models the
poles of the input signals. The input signal estimate is expressed in terms of the processed signal x̂ðnÞ
and the signal xzðnÞ processed by the finite impulse response (FIR) filter as follows:

~xðnÞ ¼ a1ðnÞx̂ðn� 1Þ þ a2ðnÞx̂ðn� 2Þ þ xzðnÞ (11.16)

where

x̂
�
n� i

� ¼ ~x
�
n� i

�þ dq
�
n� i

�
(11.17)

xzðnÞ ¼
X5
i¼ 0

bi
�
n
�
dq
�
n� i

�
(11.18)

Both sets of predictor coefficients are updated using a simplified gradient algorithm:

a1
�
n
� ¼ �

1� 2�8
�
a1
�
n� 1

�þ 3$2�8signn
�
p
�
n
��
sign

�
p
�
n� 1

��
(11.19)

a2
�
n
� ¼ �1� 2�7

�
a2
�
n� 1

�þ 2�7fsignnðpðnÞÞsignðpðn� 2ÞÞ
� f ða1ðn� 1ÞÞsignnðpðnÞÞsignðpðn� 1ÞÞg

(11.20)

where pðnÞ ¼ dqðnÞ þ xzðnÞ and

f ða1ðnÞÞ ¼
(

4a1ðnÞ ja1ðnÞj � 2�1

2 signða1ðnÞÞ ja1ðnÞj > 2�1
(11.21)

Note that the function sign(x) is defined in Equation (11.5), while the function signn(x) equals 1 when
x > 0, equals 0 when x¼ 0; and equals¼ –1 when x < 0 with stability constrains

ja2ðnÞj � 0:75 and ja1ðnÞj � 1� 2�4 � a2
�
n
�

(11.22)

a1ðnÞ ¼ a2ðnÞ ¼ 0 if trðnÞ ¼ 1 (11.23)

Also, the equations for updating the coefficients for the zero-order portion are given by

bi
�
n
� ¼ �

1� 2�8
�
bi
�
n� 1

�þ 2�7signn
�
dq
�
n
��
sign

�
dq
�
n� i

��
for i ¼ 0; 1; 2;/; 5 (11.24)
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with the following constrains:

b0ðnÞ ¼ b1ðnÞ ¼ b2ðnÞ ¼ b3ðnÞ ¼ b4ðnÞ ¼ b5ðnÞ ¼ 0 if trðnÞ ¼ 1 (11.25)

tdðnÞ ¼
(
1 a2ðnÞh � 0:71875

0 otherwise
(11.26)

trðnÞ ¼
(
1 a2ðnÞh � 0:71875 and



dq�n�

 > 24,2yl

0 otherwise
(11.27)

tdðnÞ is the indicator that detects a partial band signal (tone). If a tone is detected (tdðnÞ ¼ 1), Equation
(11.13) is invoked to drive the quantizer into the fast mode of adaptation. trðnÞ is the indicator for
a transition from a partial band signal. If it is detected (trðnÞ ¼ 1), setting the predictor coefficients to be
zero as shown in Equations (11.23) and (11.25) will force the quantizer into the fast mode of adaptation.

Simulation Example
To illustrate performance, we apply the ADPCM encoder to the speech data used in Section 11.1 and
then operate the ADPCM decoder to recover the speech signal. As described, the ADPCM uses 4 bits
to encode each speech sample. The MATLAB implementations for the encoder and decoder are listed
in Programs 11.11 to 11.13 in Section 11.7. Figure 11.13 plots the original speech samples, decoded
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FIGURE 11.13

Original speech, quantized speech, and quantization error using ADPCM.
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speech samples, and the quantization errors. From the figure, we see that the decoded speech data are
very close to the original speech data; the quantization error is very small as compared with the speech
sample, and its amplitude follows the change in amplitude of the speech data. In practice, we cannot
tell the difference between the original speech and the decoded speech by listening to them. However,
ADPCM encodes each speech sample using 4 bits per sample, while the original data are presented
using 16 bits; thus the compression ratio (CR) of 4:1 is achieved.

In practical applications, data compression can reduce the storage media and bit rate for efficient
digital transmission. To measure performance of data compression, we use

• the data CR, which is the ratio of original data file size to the compressed data file size, or ratio of
the original code size in bits to the compressed code size in bits for fixed-length coding, and

• the bit rate, which is in terms of bits per second (bps) and can be calculated by

bit rate ¼ m� fs ðbpsÞ (11.28)

where m¼ number of bits per sample (bits) and fs ¼ sampling rate (samples per second).

Now, let us look at an application example.

EXAMPLE 11.7
Speech is sampled at 8 kHz and each sample is encoded at 12 bits per sample. Using (1) no compression,
(2) standard m-law compression, and (3) standard ADPCM encoding,

a. determine the CR and the bit rate for each of the encoders and decoders;
b. determine the number of channels that the phone company can carry if a telephone system can transport the

digital voice channel over a digital link with a capacity of 1.536 Mbps.

Solution:

a(1). For no compression:

CR ¼ 1 : 1

Bit rate ¼ 12
bits

sample
� 8;000

sample

second
¼ 96 ðkbpsÞ

b(1).

Number of channels ¼ 1:536

96

MBPS

KBPS
¼ 16

a(2). For standard m-law compression, each sample is encoded using 8 bits per sample. Hence, we have

CR ¼ 12

8

bits=sample

bits=sample
¼ 1:5 : 1

Bit rate ¼ 8
bits

sample
� 8;000

sample

second
¼ 64 ðkbpsÞ

b(2).

Number of channels ¼ 1:536

64

MBPS

KBPS
¼ 24

a(3). For standard ADPCM with 4 bits per sample, it follows that
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CR ¼ 12

4

bits=sample

bits=sample
¼ 3 : 1

Bit rate ¼ 4
bits

sample
� 8;000

sample

second
¼ 32 ðkbpsÞ

b(3).

Number of channels ¼ 1:536

32

MBPS

KBPS
¼ 48:

11.4 DISCRETE COSINE TRANSFORM, MODIFIED DISCRETE COSINE
TRANSFORM, AND TRANSFORM CODING IN MPEG AUDIO
This section introduces discrete cosine transform (DCT) and explains how to apply it in transform
coding. This sectionwill also show how to remove the block effects in transform coding using amodified
DCT (MDCT). Finally, we will examine how MDCT coding is used in the MPEG (Motion Picture
Experts Group) audio format, which is used as a part of MPEG audio, such as MP3 (MPEG-1 layer 3).

11.4.1 Discrete Cosine Transform

Given N data samples, we define the one-dimensional (1D) DCT pair as follows:
Forward transform:

XDCTðkÞ ¼
ffiffiffiffi
2

N

r
CðkÞ

XN�1

n¼ 0

xðnÞcos
�ð2nþ 1Þkp

2N



; k ¼ 0; 1;/;N � 1 (11.29)

Inverse transform:

xðnÞ ¼
ffiffiffiffi
2

N

r XN�1

k¼ 0

CðkÞXDCT ðkÞcos
�ð2nþ 1Þkp

2N



; n ¼ 0; 1;/;N � 1 (11.30)

CðkÞ ¼

8><
>:

ffiffiffi
2

p

2
k ¼ 0

1 otherwise

(11.31)

where xðnÞ is the input data sample and XDCT ðkÞ is the DCT coefficient. The DCT transforms the time
domain signal to frequency domain coefficients. However, unlike the discrete Fourier transform
(DFT), there are no complex number operations for both the forward and inverse transforms. Both the
forward and inverse transforms use the same scale factor:ffiffiffiffi

2

N

r
CðkÞ

In terms of transform coding, the DCT decomposes a block of data into a direct-current (DC) coef-
ficient that corresponds to the average of the data samples and alternating-current (AC) coefficients
that correspond to the frequency component (fluctuation). The terms “DC” and “AC” come from basic
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electrical engineering. In transform coding, we can quantize the DCT coefficients and encode them
into binary information. The inverse DCT can transform the DCT coefficients back to the input data.
Let us proceed to Examples 11.8 and 11.9.

EXAMPLE 11.8
Assume that the following input data can each be encoded by 5 bits, including a sign bit:

xð0Þ ¼ 10; xð1Þ ¼ 8; xð2Þ ¼ 10 and xð3Þ ¼ 12

a. Determine the DCT coefficients.
b. Use the MATLAB function dct() to verify all the DCT coefficients.

Solution:

a. Using Equation (11.29) leads to

XDCT ðkÞ ¼
ffiffiffi
1

2

r
CðkÞ

�
xð0Þ cos

�
pk

8

�
þ xð1Þ cos

�
3pk

8

�
þ xð2Þ cos

�
5pk

8

�
þ xð3Þ cos

�
7pk

8

�


When k ¼ 0, we see that the DC component is calculated as

XDCT ð0Þ ¼
ffiffiffi
1

2

r
Cð0Þ

�
xð0Þ cos

�
p� 0

8

�
þ xð1Þ cos

�
3p� 0

8

�
þ xð2Þ cos

�
5p� 0

8

�
þ xð3Þ cos

�
7p� 0

8

�


¼
ffiffiffi
1

2

r
�

ffiffiffi
2

p

2
½xð0Þ þ xð1Þ þ xð2Þ þ xð3Þ� ¼ 1

2
ð10þ 8þ 10þ 12Þ ¼ 20

We clearly see that the first DCT coefficient is a scaled average value.
For k ¼ 1,

XDCT ð1Þ ¼
ffiffiffi
1

2

r
Cð1Þ

�
xð0Þ cos

�
p� 1

8

�
þ xð1Þ cos

�
3p� 1

8

�
þ xð2Þ cos

�
5p� 1

8

�
þ xð3Þ cos

�
7p� 1

8

�


¼
ffiffiffi
1

2

r
� 1

�
10� cos

�p
8

�
þ 8� cos

�
3p

8

�
þ 10� cos

�
5p

8

�
þ 12� cos

�
7p

8

�

¼ �1:8478

Similarly, we have

XDCT ð2Þ ¼ 2 and XDCT ð3Þ ¼ 0:7654

b. Using the MATLAB 1D-DCT function dct(), we can verify the DCT coeffcients:
>> dct([10 8 10 12])
ans¼ 20.0000 �1.8478 2.0000 0.7654

EXAMPLE 11.9
Assume the following DCT coefficients:

XDCT ð0Þ ¼ 20; XDCT ð1Þ ¼ �1:8478; XDCT ð0Þ ¼ 2; and XDCT ð0Þ ¼ 0:7654

a. Determine xð0Þ.
b. Use the MATLAB function idct() to verify all the recovered data samples.

Solution:

a. Applying Equations (11.30) and (11.31), we have
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xð0Þ ¼
ffiffiffi
1

2

r �
Cð0ÞXDCT ð0Þ cos

�p
8

�
þ Cð1ÞXDCT ð1Þ cos

�
3p

8

�

þ Cð2ÞXDCT ð2Þ cos
�
5p

8

�
þ Cð3ÞXDCT ð3Þ cos

�
7p

8

�


¼
ffiffiffi
1

2

r " ffiffiffi
2

p

2
� 20� cos

�p
8

�
þ 1� ð�1:8478Þ � cos

�
3p

8

�

þ 1� 2� cos

�
5p

8

�
þ 1� 0:7654� cos

�
7p

8

�

¼ 10

b. With the MATLAB 1D inverse DCT function idct(), we obtain
>> idct([20 �1.8478 2 0.7654])
ans¼ 10.0000 8.0000 10.0000 12.0000

We verify that the input data samples are the same as those in Example 11.8.

In Example 11.9, we obtained an exact recovery of the input data from the DCT coefficients,
since infinite precision of each DCT coefficient is preserved. However, in transform coding,
each DCT coefficient is quantized using the number of bits per sample assigned by a bit alloca-
tion scheme. Usually the DC coefficient requires a larger number of bits to encode, since it carries
more energy of the signal, while each AC coefficient requires a smaller number of bits to enco-
de. Hence, the quantized DCT coefficients approximate the DCT coefficients in infinite precision,
and the recovered input data with the quantized DCT coefficients will certainly have quantization
errors.

EXAMPLE 11.10
Assuming the DCT coefficients

XDCT ð0Þ ¼ 20; XDCT ð1Þ ¼ �1:8478; XDCT ð2Þ ¼ 2; and XDCT ð3Þ ¼ 0:7654

in infinite precision, we recovered the exact data 10, 8, 10, and 12; this was verified in Example 11.9. If a bit
allocation scheme quantizes the DCT coefficients using a scale factor of 4 in the form

XDCT ð0Þ ¼ 4� 5 ¼ 20; XDCT ð1Þ ¼ 4� ð � 0Þ ¼ 0; XDCT ð2Þ ¼ 4� 1 ¼ 4; and XDCT ð3Þ ¼ 4� 0 ¼ 0

we can code the scale factor of 4 with 3 bits (magnitude bits only), the scaled DC coefficient of 5 with 4 bits
(including a sign bit), and the scaled AC coefficients of 0, 1, and 0 using 2 bits each. 13 bits in total are required.

Use the MATLAB function idct() to recover the input data samples.

Solution:
Using the MATLAB function idct() and the quantized DCT coefficients, we obtain

>> idct([20 0 4 0])
ans¼ 12 8 8 12

As we see, the original sample requires 5 bits (4magnitude bits and 1 sign bit) to encode each of 10, 8, 10, and 12
for a total of 20 bits. Hence, 7 bits are saved for coding this data block using the DCT. We expect many more bits to
be saved in practice, in which a longer frame of the correlated data samples is used. However, quantization errors
are introduced.
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For comprehensive coverage of the topics on DCT, see Li and Drew (2004), Nelson (1992),
Saywood (2000), and Stearns (2003).

11.4.2 Modified Discrete Cosine Transform

In the previous section, we observed how a 1D-DCT is adopted for coding a block of data. When we
apply the 1D-DCT to audio coding, we first divide the audio samples into blocks and then transform
each block of data with DCT. The DCT coefficients for each block are quantized according to the bit
allocation scheme. However, when we decode DCT blocks, we encounter edge artifacts at boundaries
of the recovered DCT blocks, since DCT coding is block based. This effect of edge artifacts produces
periodic noise and is annoying in the decoded audio. To solve for such a problem, the windowed
MDCT has been developed (described in Pan, 1995; Princen and Bradley, 1986). The principles are
illustrated in Figure 11.14. As we shall see, the windowed MDCT is used in MPEG-1 MP3 audio
coding.

We describe and discuss only the main steps for coding data blocks using the windowed MDCT
(W-MDCT) based on Figure 11.14.
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Modified discrete cosine transform (MDCT).
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Encoding stage:

1. Divide the data samples into blocks that each have N (must be an even number) samples,
and further divide each block into two subblocks, each with N=2 samples for data overlap purposes.

2. Apply the window function for the overlapped blocks. As shown in Figure 11.14, if one block
contains the subblocks A and B, the next one would consist of subblocks B and C. The
subblock B is the overlapped block. This procedure continues. A window function hðnÞ is
applied to each block with N samples to reduce possible edge effects. Next, the W-MDCT is
applied. The W-MDCT is given by

XMDCT ðkÞ ¼ 2
XN�1

n¼ 0

xðnÞhðnÞ cos
�
2p

N
ðnþ 0:5þ N=4Þðk þ 0:5Þ



for k ¼ 0; 1;/;N=2� 1

(11.32)

Note that we need to compute and encode only half of the MDCT coefficients (since the other half
can be reconstructed based on the first half of the MDCT coefficients).

3. Quantize and encode the MDCT coefficients.

Decoding stage:

1. Receive the N=2 MDCT coefficients, and use Equation (11.33) to recover the second half of the
coefficients:

XMDCT ðkÞ ¼ ð � 1ÞN2þ1XMDCT ðN � 1� kÞ; for k ¼ N=2;N=2þ 1;/;N � 1 (11.33)

2. Apply the windowed inverse MDCT (W-IMDCT) to each N MDCT coefficient block using
Equation (11.34) and then apply a decoding window function f ðnÞ to reduce the artifacts at the
block edges:

xðnÞ ¼ 1

N
f ðnÞ

XN�1

k¼ 0

XMDCT ðkÞ cos
�
2p

N
ðnþ 0:5þ N=4Þðk þ 0:5Þ



for n ¼ 0; 1;/;N � 1

(11.34)

Note that the recovered sequence contains the overlap portion. As shown in Figure 11.14, if
a decoded block has the decoded subblocks A and B, the next one would have subblocks B and C,
where the subblock B is an overlapped block. The procedure continues.

3. Reconstruct the subblock B using the overlap and add operation, as shown in Figure 11.14, where
two subblocks labeled B are overlapped and added to generate the recovered subblock B. Note that
the first subblock B comes from the recovered block with N samples containing A and B, while the
second subblock B belongs to the next recovered block with N samples consisting of B and C.

In order to obtain the perfect reconstruction, that is, the full cancellation of all aliasing introduced by
the MDCT, the following two conditions must be met for selecting the window functions, in which one
is used for encoding while the other is used for decoding (Princen and Bradley, 1986):

f

�
nþ N

2

�
h

�
nþ N

2

�
þ f ðnÞhðnÞ ¼ 1 (11.35)
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f

�
nþ N

2

�
hðN � n� 1Þ � f ðnÞh

�
N

2
� n� 1

�
¼ 0 (11.36)

Here, we choose the following simple function for the W-MDCT:

f ðnÞ ¼ hðnÞ ¼ sin
�p
N
ðnþ 0:5Þ

�
(11.37)

Equation (11.37) must satisfy the conditions described in Equations (11.35) and (11.36). This will be
left for an exercise in the Problems section at the end of this chapter. The MATLAB functions
wmdcth() and wimdctf() relate to this topic and are listed in Programs 11.14-11.5 in section (11.7).
Now, let us examine the W-MDCT in Example 11.11.

EXAMPLE 11.11
Given the data 1, 2, �3, 4, 5, �6, 4, 5 .,

a. determine the W-MDCT coefficients for the first three blocks using a block size of 4;
b. determine the first two overlapped subblocks, and compare the results with the original data sequence using

the W-MDCT coefficients in (a).

Solution:

a. We divided the first two data blocks using the overlapping of 2 samples:
First data block: 1 2 �3 4
Second data block �3 4 5 �6
Third data block: 5 �6 4 5
We apply the W-MDCT to get
>> wmdct([1 2 �3 4])
ans¼ 1.1716 3.6569
>> wmdct([�3 4 5 �6])
ans¼�8.0000 7.1716
>> wmdct([5 �6 4 5])
ans ¼�4.6569 �18.0711

b. The results from W-IWDCT are as follows:
>> x1¼wimdct([1.1716 3.6569])
x1 ¼�0.5607 1.3536 �1.1465 �0.4749
>> x2¼wimdct([-8.0000 7.1716])
x2¼�1.8536 4.4749 2.1464 0.8891
>> x3¼wimdct([-4.6569 -18.0711])
x3 ¼2.8536 �6.8891 5.1820 2.1465
Applying the overlap and add, we have
>> [x1 0 0 0 0]þ [0 0 x2 0 0 ]þ [ 0 0 0 0 x3]
ans¼ -0.5607 1.3536 -3.0000 4.0000 5.0000 �6.0000 5.1820 2.1465

The first two recovered subblocks contain the values �3, 4, 5 �6, which are consistent with the input data.

Figure 11.15 shows coding of speech data we.dat using the DCT transform and W-MDCT trans-
form. To be able to see the block edge artifacts, the following parameters are used for both DCT and
W-MDCT transform coding:
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Speech data: 16-bits per sample, 8,000 samples per second
Block size: 16 samples
Scale factor: 2-bit nonlinear quantizer
Coefficients: 3-bit linear quantizer

Note that we assume a lossless scheme will further compress the quantized scale factors and coeffi-
cients. This stage does not affect the simulation results.

We use a 2-bit nonlinear quantizer with four levels to select the scale factor so that the block
artifacts can be clearly displayed in Figure 11.15. We also apply a 3-bit linear quantizer to the scaled
coefficients for both DCT and W-MDCT coding. As shown in Figure 11.15, the W-MDCT demon-
strates significant improvement in smoothing out the block edge artifacts. The MATLAB simulation
code is given in Programs 11.14 to 11.16 in Section 11.7, where Program 11.6 is the main program.

11.4.3 Transform Coding in MPEG Audio

With the DCTandMDCT concepts developed, we now explore theMPEG audio data format, where the
DCT plays a key role. MPEGwas established in 1988 to develop a standard for delivery of digital video
and audio. Since MPEG audio compression contains so many topics, we focus here on examining its
data format briefly, using the basic concepts developed in this book. Readers can further explore this
subject by reading Pan’s (1995) tutorial on MPEG audio compression, as well as Li and Drew (2004).
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Waveform coding using DCT and W-MDCT.
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Figure 11.16 shows the MPEG audio frame. First, the input PCM samplesdwith possible sampling
rates of 32 kHz, 44.1 kHz, and 48 kHzdare divided into 32 frequency subbands. All the subbands have
equal bandwidths. The sum of their bandwidths covers up to the folding frequency, that is, fs=2, which
is the Nyquist limit in the DSP system. The subband filters are designed to minimize aliasing in the
frequency domain. Each subband filter outputs one sample for every 32 input PCM samples contin-
uously, and forms a data segment for every 12 output samples. The purpose of the filter banks is to
separate the data into different frequency bands so that the psycho-acoustic model of the human
auditory system (Yost, 1994) can be applied to activate the bit allocation scheme for a particular
subband. The data frames are formed before quantization.

There are three types of data frames, as shown in Figure 11.16. Layer 1 contains 32 data segments,
each coming from one subband with 12 samples, so the total frame has 384 data samples. As we see,
layer 2 and layer 3 have the same size data frame, consisting of 96 data segments, where each filter
outputs 3 data segments of 12 samples. Hence, layer 2 and layer 3 each have 1,152 data samples.

Next, let us examine briefly the content of each data frame, as show in Figure 11.17. Layer 1
contains 384 audio samples from 32 subbands, each having 12 samples. It begins with a header fol-
lowed by a cyclic redundancy check (CRC) code. The numbers within parentheses indicate the
possible number of bits to encode each field. The bit allocation informs the decoder of the number of
bits used for each encoded sample in the specific band. Bit allocation can also be set to zero bits for
a particular subband if analysis of the psycho-acoustic model finds that the data in the band can be
discarded without affecting the audio quality. In this way, the encoder can achieve more data
compression. Each scale factor is encoded with 6 bits. The decoder will multiply the scale factor by the
decoded quantizer output to get the quantized subband value. Use of the scale factor allows for
utilization of the full range of the quantizer. The field “ancillary data” is reserved for “extra”
information.

The layer 2 encoder takes 1,152 samples per frame, with each subband channel having 3 data
segments of 12 samples. These 3 data segments may have a bit allocation and up to to 3 scale factors.
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MPEG audio frame.
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Using one scale factor for 3 data segments would be called for when values of the scale factors per
subband are sufficiently close and the encoder applies temporal noise masking (a type of noise
masking by the human auditory system) to hide any distortion. In Figure 11.17, the field “SCFSI”
(scale-factor selection information) contains the information to inform the decoder. A different scale
factor is used for each subband channel when avoidance of audible distortion is required. The bit
allocation can also provide a possible single compact code word to represent three consecutive
quantized values.

The layer 3 frame contains side information and main data that come from Huffman encoding
(lossless coding with an exact recovery) of theW-MDCT coefficients to gain improvement over layer 1
and layer 2.

Figure 11.18 shows the MPEG-1 layer 1 and 2 encoder, and the layer 3 encoder. For MPEG-1 layer
1 and layer 2, the encoder examines the audio input samples using a 1,024-point fast Fourier transform
(FFT). The psycho-acoustic model is analyzed based on the FFT coefficients. This includes possible
frequency masking (hiding noise in frequency domain) and noise temporal masking (hiding noise in
time domain). The result of the analysis of the psycho-acoustic model instructs the bit allocation
scheme.

The major difference in layer 3, called MP3 (the most popular format in the multimedia industry),
is that it adopts the MDCT. First, the encoder can gain further data compression by transforming the
data segments from each subband channel using DCT and then quantizing the DCT coefficients,
which, again, are losslessly compressed using Huffman encoding. As shown in Examples 11.8 to
11.11, since the DCT uses block-based processing, it produces block edge effects, where the beginning
samples and ending samples show discontinuity and cause audible periodic noise. This periodic edge
noise can be alleviated, as discussed in the previous section, by using the W-MDCT, in which there is
50% overlap between successive transform windows.

There are two sizes of windows. One has 36 samples and other 12 samples used in MPEG-1 layer
3 (MP3) audio. The larger block length offers better frequency resolution for low-frequency tonelike
signals, hence it is used for the lowest two subbands. For the rest of the subbands, the shorter block is
used, since it allows better time resolution for noiselike transient signals. Other improvements of MP3
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MPEG audio frame formats.
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over layers 1 and 2 include use of the scale-factor band, where the W-MDCT coefficients are
regrouped from the original 32 uniformly divided subbands into 25 actual critical bands based on
the human auditory system. Then the corresponding scale factors are assigned, and a nonlinear
quantizer is used.

Finally, Huffman coding is applied to the quantizer outputs to obtain more compression. Partic-
ularly in CD-quality audio, MP3 (MPEG-1 layer 3) can achieve CRs varying from 12:1 to 8:1, cor-
responding to bit rates from 128 kbps to 192 kbps. Besides the use of DCT in MP3, MPEG-2 audio
coding methods such as AC-2, AC-3, ATRAC, and PAC/MPAC also use W-MDCT coding. Readers
can further explore these subjects in Brandenburg (1997) and Li and Drew (2004).

11.5 LABORATORY EXAMPLES OF SIGNAL QUANTIZATION USING THE
TMS320C6713 DSK
Linear quantization can be implemented as shown in C Program 11.1. The program only demonstrates
left channel coding; right channel coding can be easily extended from the program. The program
consists of both an encoder and decoder. First, it converts the 16-bit 2’s complement data to the sign-
magnitude format with truncated magnitude bits as required. Then the decoder converts the
compressed PCM code back to the 16-bit data. The encoding and decoding are explained in
Example 11.12.
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EXAMPLE 11.12
Givena16-bitdatumlc¼�2050(decimal), convert it toa5-bit linearPCMcodeusing the information inProgram11.1.

Solution:

a. Encoding:
tmp¼ 2050 (decimal)¼ 0x0802 (hex)¼ 0000 1000 0000 0010 (binary)
After shifting 11 bits, tmp¼ 0x0001 (hex)
PCMcode¼ tmp&mask[5-1]¼0x0001&0x000f¼0x0001 (hex) // Get magnitude bits
if lc >0 {
PCMcode¼ PCMcode j sign[5-1] // Add positive sign bit
} // This line is not executed since lc < 0
PCMcode¼ 00001 (binary)

b. Decoding:
dec¼ PCMcode & mask[4]¼ 0x0001&0x000f¼0x0001 (hex)
tmp¼ PCMcode&sign[4]¼ 0x0001&0x0010¼0x0000 (hex) (the number is negative)
dec¼ dec<<11¼0x0800
dec ¼dec j rec[4]¼0x0800j 0x0400¼0x0C00 (hex)¼3072 (decimal)
lc¼�3072 (recovered decimal)

As expected, the recovered PCM code is different from the original code, since a PCM is the lossy coding scheme.
The same procedure can be followed for coding a positive decimal number.

C Program 11.1. Encoding and decoding using the TMS320C6713 DSK.

int PCMcode;
/* Sign-magnitude format: s magnitude bits, see Section 11.1, in Chapter 11 */
/* converta16-bitPCMcodea5-bitPCMcode,andrecoverthe5-bitPCMcodetothe16-bitPCMcode*/
// See the following example:
/* Converta 16-bitsign-magnitude code 5-bitPCMcode 16-bitrecoveredsign-magnitudecode */
/* sADCDEFGHIJKLMNO sABCDE sABCD10000000000 */
/* Note that audio input/output data are in 2’s complement form */
/* For encoder, convert the 2’s complement input to the sign-magnitude form before
quantization */
/* For decoder, convert the sign-magnitude form to the 2’s complement output before DAC */
int nofbits¼5; // specify the number of quantization bits
int sign[16]¼{0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,

0x100,0x200,0x400,0x800,0x1000,0x2000,0x4000,0x8000}; // add sign bit (MSB)
int mask[16]¼{0x0,0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,

0xff,0x1ff,0x3ff,0x7ff,0xfff,0x1fff,0x3fff,0x7fff}; // mask for obtaining
magnitude bits
int rec[16]¼{0x4000,0x2000,0x1000,0x0800,

0x0400,0x0200,0x0100,0x0080,
0x0040,0x0020,0x0010,0x0008,
0x0004,0x0002,0x0001,0x0000};// the midpoint of the quantization interval

interrupt void c_int11()
{

int lc; /*left channel input */
int rc; /*right channel input */
int lcnew; /*left channel output */
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int rcnew; /*right channel output */
int temp, dec;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();

lc¼(int) (AIC23_data.channel[LEFT]);
rc¼ (int) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
/* Encoder :*/
tmp ¼lc; // for the Left Line In channel
if (tmp <0 )
{
tmp¼-tmp; // Get magnitude bits to work with

}
tmp ¼(tmp>>(16-nofbits));
PCMcode¼tmp&mask[nofbits-1]; // Get magnitude bits

if (lc>¼0)
{

PCMcode¼ PCMcode j sign[nofbits-1]; // Add sign bit
}
/* PCM code (stored in the lower portion) */
/* Decoder: */
dec ¼ PCMcode&mask[nofbits-1]; // Obtain magnitude bits
tmp¼ PCMcode&sign[nofbits-1]; // Obtain the sign bit
dec ¼ (dec<<(16-nofbits)); // Scale to 15-bit magnitude
dec ¼ dec j rec[nofbits-1]; // Recover the midpoint of the quantization interval

lc ¼dec;
if (tmp ¼¼ 0x00)
{
lc ¼-dec; // Back to 2’s complement form (change the sign)

}
// End of the DSP algorithm

lcnew¼lc; /* Send to DAC */
rcnew¼lc; /* Keep the original data */
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

C Program 11.2 demonstrates digital m-law encoding and decoding. It converts a 12-bit linear PCM
code to an 8-bit compressed PCM code using the principles discussed in Section 11.2. Note that the
program only performs left-channel coding.
C Program 11.2. Digital m-law encoding and decoding.

int ulawcode;
/* Digital mu-law definition*/
// Sign-magnitude format: s segment quantization
// s ¼ 1 for the positive value, s ¼ 0 for the negative value
// Segment defines compression
// quantization with 16 levels
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// See Section 11.2, Chapter 11
/* Segment 12-bit PCM 4-bit quantization interval */
/* 0 s0000000ABCD s000ABCD */
/* 1 s0000001ABCD s001ABCD */
/* 2 s000001ABCDX s010ABCD */
/* 3 s00001ABCDXX s011ABCD */
/* 4 s0001ABCDXXX s100ABCD */
/* 5 s001ABCDXXXX s101ABCD */
/* 6 s01ABCDXXXXX s110ABCD */
/* 7 s1ABCDXXXXXX s111ABCD */
//
/* Segment Recovered 12-bit PCM */
/* 0 s0000000ABCD */
/* 1 s0000001ABCD */
/* 2 s000001ABCD1 */
/* 3 s00001ABCD10 */
/* 4 s0001ABCD100 */
/* 5 s001ABCD1000 */
/* 6 s01ABCDq0000 */
/* 7 s1ABCD100000 */
/* Note that audio input/output data are in 2's complement form */
/* For encoder, convert the 2's complement form to the sign-magnitude form before
quantization */
/* For decoder, convert the sign-magnitude form to the 2's complement output before DAC */
interrupt void c_int11()
{

int lc; /*left channel input */
int rc; /*right channel input */
int lcnew; /*left channel output */
int rcnew; /*right channel output */
int tmp,ulawcode, dec;

//Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(int) (AIC23_data.channel[LEFT]);
rc¼ (int) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
/* Encoder :*/
tmp ¼lc;
if (tmp <0 )
{ tmp¼-tmp; // Get magnitude bits to work with
}
tmp ¼(tmp>>4); // Linear scale down to 12 bits to use the u-255 law table
if( (tmp&0x07f0)¼¼0x0) // Segment 0
{ ulawcode¼ (tmp&0x000f); }
if( (tmp&0x07f0)¼¼0x0010) // Segment 1
{ ulawcode¼ (tmp&0x00f);

ulawcode¼ ulawcode j 0x10; }
if( (tmp&0x07E0)¼¼0x0020) // Segment 2
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{ ulawcode¼ (tmp&0x001f)>>1;
ulawcode ¼ ulawcode j0x20; }

if( (tmp&0x07c0)¼¼0x0040) // Segment 3
{ ulawcode¼ (tmp&0x003f)>>2;

ulawcode¼ ulawcode j 0x30; }
if( (tmp&0x0780)¼¼0x0080) // Segment 4
{ ulawcode¼ (tmp&0x007f)>>3;

ulawcode ¼ulawcode j 0x40;}
if( (tmp&0x0700)¼¼0x0100) // Segment 5
{ ulawcode¼ (tmp&0x00ff)>>4;

ulawcode ¼ ulawcode j 0x50;}
if( (tmp&0x0600)¼¼0x0200) // Segment 6
{ ulawcode¼ (tmp&0x01ff)>>5;

ulawcode ¼ ulawcode j 0x60; }
if( (tmp&0x0400)¼¼0x0400) // Segment 7
{ ulawcode¼ (tmp&0x03ff)>>6;

ulawcode¼ulawcode j 0x70; }
if (lc>¼0)
{

ulawcode¼ ulawcodej0x80;
}
/* u-law code (8 bit compressed PCM code) for transmission and storage */
/* Decoder: */

tmp ¼ ulawcode&0x7f;
tmp ¼ (tmp>>4);

if ( tmp ¼¼ 0x0) // Segment 0
{ dec ¼ ulawcode&0xf; }
if ( tmp ¼¼ 0x1) // Segment 1
{ dec ¼ ulawcode&0xf j 0x10; }
if ( tmp ¼¼ 0x2) // Segment 2
{ dec ¼ ((ulawcode&0xf)<<1) j 0x20;

dec¼ dec j0x01; }
if ( tmp ¼¼ 0x3) // Segment 3
{ dec ¼ ((ulawcode&0xf)<<2) j 0x40;

dec ¼ decj0x02; }
if ( tmp ¼¼ 0x4) // Segment 4
{ dec ¼ ((ulawcode&0xf)<<3) j 0x80;

dec ¼ decj0x04; }
if ( tmp ¼¼ 0x5) // Segment 5
{ dec ¼ ((ulawcode&0xf)<<4) j 0x0100;

dec ¼ decj0x08; }
if ( tmp ¼¼ 0x6) // Segment 6
{ dec ¼ ((ulawcode&0xf)<<5) j 0x0200;

dec ¼decj0x10; }
if ( tmp ¼¼ 0x7) // Segment 7
{ dec ¼ ((ulawcode&0xf)<<6) j 0x0400;

dec ¼ dec j0x20; }
tmp ¼ulawcode & 0x80;
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lc ¼dec;
if (tmp ¼¼ 0x00)
{ lc¼-dec; // Back to 2’s complement form
}
lc¼ (lc<<4); // Linear scale up to 16 bits

// End of the DSP algorithm
lcnew¼lc; /* Send to DAC */
rcnew¼lc; /* Keep the original data */
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

11.6 SUMMARY
1. The linear midtread quantizer used in PCM coding has an odd number of quantization levels, that

is, 2n � 1. It accommodates the same decoded magnitude range for quantizing the positive and
negative voltages.

2. Analog and digital m-law compression improve coding efficiency. 8-bit m-law compression
of speech is equivalent to 12-bit linear PCM coding, with no difference in sound quality.
These methods are widely used in the telecommunications industry and in multimedia system
applications.

3. DPCM encodes the difference between the input sample and predicted sample using a predictor to
achieve coding efficiency.

4. DM coding is essentially a 1-bit DPCM.
5. ADPCM is similar to DPCM except that the predictor transfer function has six zeros and two poles

and is an adaptive filter. ADPCM is superior to 8-bit m-law compression, since it provides the same
sound quality with only 4 bits per code.

6. Data compression performance is measured in terms of the data compression ratio and the
bit rate.

7. The DCT decomposes a block of data to the DC coefficient (average) and AC coefficients
(fluctuation) so that different numbers of bits are assigned to encode DC coefficients and AC
coefficients to achieve data compression.

8. W-MDCT alleviates the block effects introduced by the DCT.
9. MPEG-1 audio formats such as MP3 (MPEG-1, layer 3) include W-MDCT, filter banks, a psycho-

acoustic model, bit allocation, a nonlinear quantizer, and Huffman lossless coding.

11.7 MATLAB PROGRAMS
Program 11.1 MATLAB program for the linear midtread quantizer.

clear all;close all
disp(’load speech: We’);
load we.dat; % Provided by your instructor
sig ¼ we;
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lg¼length(sig); % Length of the speech data
t¼[0:1:lg-1]; % Time index
sig¼5*sig/max(abs(sig)); % Normalized signal to the range between -5 to 5
Emax ¼ max(abs(sig));
Erms ¼ sqrt( sum(sig .* sig) / length(sig))
k¼Erms/Emax
disp(’20*log10(k)¼>’);
k ¼ 20*log10(k)
bits ¼ input(’input number of bits ¼>’);
lg ¼ length(sig);
% Encoding
for x¼1:lg
[indx(x) qy] ¼ mtrdenc(bits, 5, sig(x));

end
disp(’Finished and transmitted’);
% Decoding
for x¼1:lg
qsig(x) ¼ mtrddec(bits, 5, indx(x));

end
disp(’decoding finished’);
qerr ¼ sig-qsig; % Calculate quantization errors

subplot(3,1,1);plot(t, sig);grid
ylabel(’Speech’);axis([0 length(we) -5 5]);
subplot(3,1,2);plot(t, qsig);grid
ylabel(’Quantized speech’);axis([0 length(we) -5 5]);
subplot(3,1,3);plot(qerr);grid
axis([0 length(we) -0.5 0.5]);
ylabel(’Qunatized error’);xlabel(’Sample number’);
disp(’signal to noise ratio due to quantization noise’)
snr(sig,qsig); % Calculate signal to noise ratio due to quantization

Program 11.2. MATLAB program for m-law encoding and decoding.

close all; clear all
disp(’load speech file’);
load we.dat; % Provided by your instructor
lg¼length(we); % Length of the speech data
we¼5*we/max(abs(we)); % Normalize the speech data
we_nor¼we/max(abs(we)); % Normalization
t¼[0:1:lg-1]; % Time index
disp(’mulaw companding’)
mu¼input(’input mu ¼>’);
for x¼1:lg
ymu(x) ¼mulaw(we_nor(x),1,mu);

end
disp(’finished mu-law companding’);
disp(’start to quantization’)
bits ¼ input(’input bits¼>’);
% Midtread quantization and encoding
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for x¼1:lg
[indx(x) qy] ¼ mtrdenc(bits, 1, ymu(x));

end
disp(’finished and transmitted’);
%
% Midtread decoding
for x¼1:lg
qymu(x) ¼ mtrddec(bits, 1, indx(x));

end
disp(’expander’);
for x¼1:lg
dymu(x)¼ muexpand(qymu(x),1,mu)*5;

end
disp(’finished’)
qerr ¼ dymu-we; % Quantization error
subplot(3,1,1);plot(we);grid
ylabel(’Speech’);axis([0 length(we) -5 5]);
subplot(3,1,2);plot(dymu);grid
ylabel(’recovered speech’);axis([0 length(we) -5 5]);
subplot(3,1,3);plot(qerr);grid
ylabel(’Quantized error’);xlabel(’Sample number’);
axis([0 length(we) -1 1]);
snr(we,dymu); % Calculate signal to noise ratio due to quantization

Program 11.3. MATLAB function for m-law companding.

Function qvalue ¼ mulaw(vin, vmax, mu)
% This function performs mu-law companding
% Usage:
% function qvalue ¼ mulaw(vin, vmax, mu)
% vin ¼ input value
% vmax ¼ input value
% mu ¼ parameter for controlling the degree of compression which must be the same
% qvalue ¼ output value from the mu-law compander
% as the mu-law expander
%
vin ¼ vin/vmax; % Normalization

% mu-law companding formula
qvalue ¼ vmax*sign(vin)*log(1þmu*abs(vin))/log(1þmu);

Program 11.4. MATLAB program for m-law expanding.

function rvalue ¼ muexpand(y,vmax, mu)
% This function performs mu-law exoanding
% Usage:
% function rvalue ¼ muexpand(y,vmax, mu)
% y ¼ input signal
% vmax ¼ maximum amplitude
% mu ¼ parameter for controlling the degree of compression, which must be the same
% as the mu-law compander
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% rvalue ¼ output value from the mu-law expander
%
y¼y/vmax; % Normalization

% mu-law expanding
rvalue¼sign(y)*(vmax/mu)*((1þmu)^abs(y) -1);

Program 11.5. MATLAB function for midread quantizer encoding.

function [indx, pq ] ¼ mtrdenc(NoBits,Xmax,value)
% function pq ¼ mtrdenc(NoBits, Xmax, value)
% This routine is created for simulation of midtread uniform quantizer.
%
% NoBits: number of bits used in quantization.
% Xmax: overload value.
% value: input to be quantized.
% pq: output of quantized value
% indx: integer index
%
% Note: the midtread method is used in this quantizer.
%

if NoBits ¼¼ 0
pq ¼ 0;
indx¼0;

else
delta ¼ 2*abs(Xmax)/(2^NoBits-1);
Xrmax¼delta*(2^NoBits/2-1);
if abs(value) >¼ Xrmax
tmp ¼ Xrmax;

else
tmp ¼ abs(value);

end
indx¼round(tmp/delta);
pq ¼indx*delta;
if value < 0
pq ¼ -pq;
indx¼-indx;

end
end

Program 11.6. MATLAB function for midtread quantizer decoding.

function pq ¼ mtrddec(NoBits,Xmax,indx)
% function pq ¼ mtrddec(NoBits, Xmax, value)
% This routine is the dequantizer.
%
% NoBits: number of bits used in quantization.
% Xmax: overload value.
% pq: output of quantized value
% indx: integer index
%
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% Note: the midtread method is used in this quantizer.
%
delta ¼ 2*abs(Xmax)/(2^NoBits-1);
pq ¼indx*delta;

Program 11.7. MATLAB function for calculation of signal to quantization noise ratio (SNR).

function snr ¼ calcsnr(speech, qspeech)
% function snr ¼ calcsnr(speech, qspeech)
% This routine was created for calculation of SNR.
%
% speech: original speech waveform.
% qspeech: quantized speech.
% snr: output SNR in dB.
%
% Note: the midrise method is used in this quantizer.
%
qerr ¼ speech-qspeech;
snr ¼ 10*log10(sum(speech.*speech)/sum(qerr.*qerr))

Program 11.8. Main program for digital m-law encoding and decoding.

load we12b.dat
for i¼1:1:length(we12b)

code8b(i)¼dmuenc(12, we12b(i)); % Encoding
qwe12b(i)¼dmudec(code8b(i)); % Decoding

end
subplot(4,1,1),plot(we12b);grid
ylabel(’a’);axis([0 length(we12b) -1024 1024]);
subplot(4,1,2),plot(code8b);grid
ylabel(’b’);axis([0 length(we12b) -128 128]);
subplot(4,1,3),plot(qwe12b);grid
ylabel(’c’);axis([0 length(we12b) -1024 1024]);
subplot(4,1,4),plot(qwe12b-we12b);grid
ylabel(’d’);xlabel(’Sample number’);axis([0 length(we12b) -40 40]);

Program 11.9. The digital m-law compressor.

function [cmp_code ] ¼ dmuenc(NoBits, value)
% This routine is created for simulation of 12-bit mu law compression.
% function [cmp_code ] ¼ dmuenc(NoBits, value)
% NoBits ¼ number of bits for the data
% value ¼ input value
% cmp_code ¼ output code
%
scale ¼ NoBits-12;
value¼value*2^(-scale); % Scale to 12 bit
if (abs(value) >¼0) & (abs(value)<16)

cmp_code¼value;
end
if (abs(value) >¼16) & (abs(value)<32)
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cmp_code¼sgn(value)*(16þfix(abs(value)-16));
end
if (abs(value) >¼32) & (abs(value)<64)
cmp_code¼sgn(value)*(32þfix((abs(value) -32)/2));

end
if (abs(value) >¼64) & (abs(value)<128)

cmp_code¼sgn(value)*(48þfix((abs(value) -64)/4));
end
if (abs(value) >¼128) & (abs(value)<256)
cmp_code¼sgn(value)*(64þfix((abs(value) -128)/8));

end
if (abs(value) >¼256) & (abs(value)<512)
cmp_code¼sgn(value)*(80þfix((abs(value) -256)/16));

end
if (abs(value) >¼512) & (abs(value)<1024)
cmp_code¼sgn(value)*(96þfix((abs(value) -512)/32));

end
if (abs(value) >¼1024) & (abs(value)<2048)

cmp_code¼sgn(value)*(112þfix((abs(value) -1024)/64));
end

Program 11.10. The digital m-law expander.

function [value ] ¼ dmudec(cmp_code)
% This routine is created for simulation of 12-bit mu law decoding.
% Usage:
% unction [value ] ¼ dmudec(cmp_code)
% cmp_code ¼ input mu-law encoded code
% value ¼ recovered output value
%
if (abs(cmp_code) >¼0) & (abs(cmp_code)<16)

value¼cmp_code;
end
if (abs(cmp_code) >¼16) & (abs(cmp_code)<32)
value¼sgn(cmp_code)*(16þ(abs(cmp_code)-16));

end
if (abs(cmp_code) >¼32) & (abs(cmp_code)<48)
value¼sgn(cmp_code)*(32þ(abs(cmp_code)-32)*2þ1);

end
if (abs(cmp_code) >¼48) & (abs(cmp_code)<64)

value¼sgn(cmp_code)*(64þ(abs(cmp_code)-48)*4þ2);
end
if (abs(cmp_code) >¼64) & (abs(cmp_code)<80)
value¼sgn(cmp_code)*(128þ(abs(cmp_code)-64)*8þ4);

end
if (abs(cmp_code) >¼80) & (abs(cmp_code)<96)
value¼sgn(cmp_code)*(256þ(abs(cmp_code)-80)*16þ8);

end
if (abs(cmp_code) >¼96) & (abs(cmp_code)<112)
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value¼sgn(cmp_code)*(512þ(abs(cmp_code)-96)*32þ16);
end
if (abs(cmp_code) >¼112) & (abs(cmp_code)<128)

value¼sgn(cmp_code)*(1024þ(abs(cmp_code)-112)*64þ32);
end

Program 11.11. Main program for ADPCM coding.

% This program is written for offline simulation.
% file: adpcm.m
clear all; close all
load we.dat % Provided by the instructor
speech¼we;
desig¼ speech;
lg¼length(desig); % Length of speech data
enc ¼ adpcmenc(desig); % ADPCM encoding
%ADPCM finished
dec ¼ adpcmdec(enc); % ADPCM decoding
snrvalue ¼ snr(desig,dec) % Calculate signal to noise ratio due to quantization
subplot(3,1,1);plot(desig);grid;
ylabel(’Speech’);axis([0 length(we) -8000 8000]);
subplot(3,1,2);plot(dec);grid;
ylabel(’Quantized speech’);axis([0 length(we) -8000 8000]);
subplot(3,1,3);plot(desig-dec);grid
ylabel(’Quantized error’);xlabel(’Sample number’);
axis([0 length(we) -1200 1200]);

Program 11.12. MATLAB function for ADPCM encoding.

function iiout ¼ adpcmenc(input)
% This function performs ADPCM encoding.
% function iiout ¼ adpcmenc(input)
% Usage:
% input ¼ input value
% iiout ¼ output index
%
% Quantization tables
fitable ¼ [0 0 0 1 1 1 1 3 7];
witable ¼ [-0.75 1.13 2.56 4.00 7.00 12.38 22.19 70.13 ];
qtable ¼ [ -0.98 0.62 1.38 1.91 2.34 2.72 3.12 ];
invqtable ¼ [0.031 1.05 1.66 2.13 2.52 2.91 3.32 ];

lgth ¼ length(input);
sr ¼ zeros(1,2); pk ¼ zeros(1,2);
a ¼ zeros(1,2); b ¼ zeros(1,6);
dq ¼ zeros(1,6); ii¼ zeros(1,lgth);
y¼0; ap ¼ 0; al ¼ 0; yu¼0; yl ¼ 0; dms ¼ 0; dml ¼ 0; tr ¼ 0; td ¼ 0;
for k ¼ 1:lgth
sl ¼ input(k);

%
% predict zeros
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%
sez ¼ b(1)*dq(1);
for i¼2:6
sez ¼ sez þ b(i)*dq(i);

end
se ¼ a(1)*sr(1)þa(2)*sr(2)þ sez;
d ¼ sl - se;

%
% Perform quantization
%
dqq ¼ log10(abs(d))/log10(2.0)-y;
ik¼ 0;
for i¼1:7
if dqq > qtable(i)
ik ¼ i;

end
end

if d < 0
ik ¼ -ik;

end
ii(k) ¼ ik;
yu ¼ (31.0/32.0)*y þ witable(abs(ik)þ1)/32.0;
if yu > 10.0
yu ¼ 10.0;

end
if yu < 1.06
yu ¼ 1.06;

end
yl ¼ (63.0/64.0)*ylþyu/64.0;

%
%Inverse quantization
%
if ik ¼¼ 0
dqq ¼ 2^(-y);
else
dqq ¼ 2^(invqtable(abs(ik))þy);
end
if ik < 0
dqq ¼ -dqq;
end
srr ¼ se þ dqq;
dqsez ¼ srrþsez-se;

%
% Update state
%
pk1 ¼ dqsez;
%
% Obtain adaptive predictor coefficients
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%
if tr ¼¼ 1

a ¼ zeros(1,2); b ¼ zeros(1,6);
tr ¼ 0;
td ¼ 0; % Set for the time being

else
% Update predictor poles
% Update a2 first

a2p ¼ (127.0/128.0)*a(2);
if abs(a(1)) <¼ 0.5
fa1 ¼ 4.0*a(1);

else
fa1 ¼ 2.0*sgn(a(1));

end
a2p¼a2pþ(sign(pk1)*sgn(pk(1))-fa1*sign(pk1)*sgn(pk(2)))/128.0;
if abs(a2p) > 0.75
a2p ¼ 0.75*sgn(a2p);

end
a(2) ¼ a2p;

%
% Update a1

a1p ¼ (255.0/256.0)*a(1);
a1p ¼ a1p þ 3.0*sign(pk1)*sgn(pk(2))/256.0;

if abs(a1p) > 15.0/16.0-a2p
a1p ¼ 15.0/16.0 -a2p;

end
a(1) ¼ a1p;

%
% Update b coefficients
%
for i¼ 1:6
b(i) ¼ (255.0/256.0)*b(i)þsign(dqq)*sgn(dq(i))/128.0; % see Program 11.17 for sgn().
end
if a2p < -0.7185
td ¼ 1;
else
td ¼ 0;
end
if a2p < -0.7185 & abs(dq(6)) > 24.0*2^(yl)
tr ¼ 1;
else
tr ¼ 0;
end
for i¼6:-1:2
dq(i) ¼ dq(i-1);
end
dq(1) ¼ dqq; pk(2) ¼ pk(1); pk(1) ¼ pk1; sr(2) ¼ sr(1); sr(1) ¼ srr;

%
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% Adaptive speed control
%
dms ¼ (31.0/32.0)*dms; dms ¼ dms þ fitable(abs(ik)þ1)/32.0;
dml ¼ (127.0/128.0)*dml; dml ¼ dml þ fitable(abs(ik)þ1)/128.0;
if ap > 1.0
al ¼ 1.0;
else
al ¼ ap;
end
ap ¼ (15.0/16.0)*ap;
if abs(dms-dml) >¼ dml/8.0
ap ¼ ap þ 1/8.0;

end
if y < 3
ap ¼ ap þ1/8.0;

end
if td ¼¼ 1
ap ¼ ap þ 1/8.0;

end
if tr ¼¼ 1
ap ¼ 1.0;

end
y ¼ al*yu þ (1.0-al)*yl;
end

end
iiout ¼ ii;v

Program 11.13. MATLAB function for ADPCM decoding.

function iiout ¼ adpcmdec(ii)
% This function performs ADPCM decoding.
% function iiout ¼ adpcmdec(ii)
% Usage:
% ii ¼ input ADPCM index
% iiout ¼ decoded output value
%
% Quantization tables:
fitable ¼ [0 0 0 1 1 1 1 3 7];
witable ¼ [-0.75 1.13 2.56 4.00 7.00 12.38 22.19 70.13 ];
qtable ¼ [ -0.98 0.62 1.38 1.91 2.34 2.72 3.12 ];
invqtable ¼ [0.031 1.05 1.66 2.13 2.52 2.91 3.32 ];

lgth ¼ length(ii);
sr ¼ zeros(1,2); pk ¼ zeros(1,2);
a ¼ zeros(1,2); b ¼ zeros(1,6);
dq ¼ zeros(1,6); out¼ zeros(1,lgth);
y¼0; ap ¼ 0; al ¼ 0; yu¼0; yl ¼ 0; dms ¼ 0; dml ¼ 0; tr ¼ 0; td ¼ 0;
for k ¼ 1:lgth
%
sez ¼ b(1)*dq(1);
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for i¼2:6
sez ¼ sez þ b(i)*dq(i);

end
se ¼ a(1)*sr(1)þa(2)*sr(2)þ sez;
%
% Inverse quantization
%
ik ¼ ii(k);
yu ¼ (31.0/32.0)*y þ witable(abs(ik)þ1)/32.0;
if yu > 10.0
yu ¼ 10.0;
end
if yu < 1.06
yu ¼ 1.06;
end
yl ¼ (63.0/64.0)*ylþyu/64.0;
if ik ¼¼ 0
dqq ¼ 2^(-y);

else
dqq ¼ 2^(invqtable(abs(ik))þy);

end
if ik < 0
dqq ¼ -dqq;

end
srr ¼ se þ dqq;
dqsez ¼ srrþsez-se;
out(k) ¼srr;

%
% Update state
%
pk1 ¼ dqsez;
%
% Obtain adaptive predictor coefficients
%

if tr ¼¼ 1
a ¼ zeros(1,2);
b ¼ zeros(1,6);
tr ¼ 0;
td ¼ 0; % Set for the time being

else
% Update predictor poles
% Update a2 first

a2p ¼ (127.0/128.0)*a(2);
if abs(a(1)) <¼ 0.5

fa1 ¼ 4.0*a(1);
else

fa1 ¼ 2.0*sgn(a(1));
end
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a2p¼a2pþ(sign(pk1)*sgn(pk(1))-fa1*sign(pk1)*sgn(pk(2)))/128.0;
if abs(a2p) > 0.75
a2p ¼ 0.75*sgn(a2p);

end
a(2) ¼ a2p;

%
% Update a1

a1p ¼ (255.0/256.0)*a(1);
a1p ¼ a1p þ 3.0*sign(pk1)*sgn(pk(2))/256.0;

if abs(a1p) > 15.0/16.0-a2p
a1p ¼ 15.0/16.0-a2p;

end
a(1) ¼ a1p;

%
% Update b coefficients
%
for i¼ 1: 6
b(i) ¼ (255.0/256.0)*b(i)þsign(dqq)*sgn(dq(i))/128.0;

end
if a2p < -0.7185
td ¼ 1;

else
td ¼ 0;

end
if a2p < -0.7185 & abs(dq(6)) > 24.0*2^(yl)
tr ¼ 1;

else
tr ¼ 0;

end
for i¼6:-1:2
dq(i) ¼ dq(i-1);

end
dq(1) ¼ dqq; pk(2) ¼ pk(1); pk(1) ¼ pk1; sr(2) ¼ sr(1); sr(1) ¼ srr;

%
% Adaptive speed control
%
dms ¼ (31.0/32.0)*dms;
dms ¼ dms þ fitable(abs(ik)þ1)/32.0;
dml ¼ (127.0/128.0)*dml;
dml ¼ dml þ fitable(abs(ik)þ1)/128.0;
if ap > 1.0
al ¼ 1.0;
else
al ¼ ap;

end
ap ¼ (15.0/16.0)*ap;
if abs(dms-dml) >¼ dml/8.0
ap ¼ ap þ 1/8.0;
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end
if y < 3
ap ¼ ap þ1/8.0;

end
if td ¼¼ 1
ap ¼ ap þ 1/8.0;

end
if tr ¼¼ 1
ap ¼ 1.0;

end
y ¼ al*yu þ (1.0-al)*yl;
end

end
iiout ¼ out;

Program 11.14. W-MDCT function.

function [ tdac_coef ] ¼ wmdct(ipsig)
%
% This function transforms the signal vector using the W-MDCT.
% Usage:
% ipsig: input signal block of N samples (N¼even number)
% tdac_coe: W-MDCT coefficents (N/2 coefficients)
%
N ¼ length(ipsig);
NN ¼N;
for i¼1:NN
h(i) ¼ sin((pi/NN)*(i-1þ0.5));

end
for k¼1:N/2
tdac_coef(k) ¼ 0.0;
for n¼1:N
tdac_coef(k) ¼ tdac_coef(k) þ .

h(n)*ipsig(n)*cos((2*pi/N)*(k-1þ0.5)*(n-1þ0.5þN/4));
end

end
tdac_coef¼2*tdac_coef;

Program 11.15. Inverse W-IMDCT function.

function [ opsig ] ¼ wimdct(tdac_coef)
%
% This function transforms the W-MDCT coefficients back to the signal.
% Usage:
% tdac_coeff: N/2 W-MDCT coeffcients
% opsig: output signal black with N samples
%
N ¼ length(tdac_coef);
tmp_coef ¼ ((-1)^(Nþ1))*tdac_coef(N:-1:1);
tdac_coef ¼ [ tdac_coef tmp_coef];
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N ¼ length(tdac_coef);
NN ¼N;
for i¼1:NN
f(i) ¼ sin((pi/NN)*(i-1þ0.5));
end
for n¼1:N
opsig(n) ¼ 0.0;
for k¼1:N
opsig(n) ¼ opsig(n) þ .

tdac_coef(k)*cos((2*pi/N)*(k-1þ0.5)*(n-1þ0.5þN/4));
end

opsig(n) ¼ opsig(n)*f(n)/N;
end

Program 11.16. Waveform coding using DCT and W-MDCT.

% Waveform coding using DCT and MDCT for a block size of 16 samples.
% Main program
close all; clear all
load we.dat % Provided by the instructor
% Create a simple 3-bit scale fcator
scalef4bits¼[1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768];
scalef3bits¼[256 512 1024 2048 4096 8192 16384 32768];
scalef2bits¼[4096 8192 16384 32768];
scalef1bit¼[16384 32768];
scalef¼scalef1bit;
nbits ¼3;
% Ensure the block size to be 16 samples.
x¼[we zeros(1,16-mod(length(we),16))];
Nblock¼length(x)/16;
DCT_code¼[]; scale_code¼[];
% DCT transform coding
% Encoder
for i¼1:Nblock
xblock_DCT¼dct(x((i-1)*16þ1:i*16));
diff¼abs(scalef-(max(abs(xblock_DCT))));
iscale(i)¼min(find(diff<¼min(diff))); % find a scale factor
xblock_DCT¼xblock_DCT/scalef(iscale(i)); % scale the input vector
for j¼1:16
[DCT_coeff(j) pp]¼biquant(nbits,-1,1,xblock_DCT(j));
end
DCT_code¼[DCT_code DCT_coeff ];

end
% Decoder
Nblock¼length(DCT_code)/16;
xx¼[];
for i¼1:Nblock

DCT_coefR¼DCT_code((i-1)*16þ1:i*16);
for j¼1:16
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xrblock_DCT(j)¼biqtdec(nbits,-1,1,DCT_coefR(j));
end

xrblock¼idct(xrblock_DCT.*scalef(iscale(i)));
xx¼[xx xrblock];

end
% Transform coding using MDCT
xm¼[zeros(1,8) we zeros(1,8-mod(length(we),8)), zeros(1,8)];
Nsubblock¼length(x)/8;
MDCT_code¼[];
% Encoder
for i¼1:Nsubblock
xsubblock_DCT¼wmdct(xm((i-1)*8þ1:(iþ1)*8));
diff¼abs(scalef-max(abs(xsubblock_DCT)));
iscale(i)¼min(find(diff<¼min(diff))); % find a scale factor
xsubblock_DCT¼xsubblock_DCT/scalef(iscale(i)); % scale the input vector
for j¼1:8
[MDCT_coeff(j) pp]¼biquant(nbits,-1,1,xsubblock_DCT(j));
end
MDCT_code¼[MDCT_code MDCT_coeff];

end
% Decoder
% Recover the first subblock
Nsubblock¼length(MDCT_code)/8;
xxm¼[];
MDCT_coeffR¼MDCT_code(1:8);
for j¼1:8

xmrblock_DCT(j)¼biqtdec(nbits,-1,1,MDCT_coeffR(j));
end
xmrblock¼wimdct(xmrblock_DCT*scalef(iscale(1)));
xxr_pre¼xmrblock(9:16) % recovered first block for overlap and add
for i¼2:Nsubblock
MDCT_coeffR¼MDCT_code((i-1)*8þ1:i*8);
for j¼1:8

xmrblock_DCT(j)¼biqtdec(nbits,-1,1,MDCT_coeffR(j));
end

xmrblock¼wimdct(xmrblock_DCT*scalef(iscale(i)));
xxr_cur¼xxr_preþxmrblock(1:8); % overlap and add
xxm¼[xxm xxr_cur];
xxr_pre¼xmrblock(9:16); % set for the next overlap

end

subplot(3,1,1);plot(x,’k’);grid; axis([0 length(x) -10000 10000])
ylabel(’Original signal’);
subplot(3,1,2);plot(xx,’k’);grid;axis([0 length(xx) -10000 10000]);
ylabel(’DCT coding’)
subplot(3,1,3);plot(xxm,’k’);grid;axis([0 length(xxm) -10000 10000]);
ylabel(’W-MDCT coding’);
xlabel(’Sample number’);
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Program 11.17. Sign function.

function sgn ¼ sgn(sgninp)
%
% Sign function
% if signp >¼0 then sign¼1
% else sign ¼-1
%
if sgninp >¼ 0
opt ¼ 1;

else
opt ¼ -1;

end
sgn ¼ opt;

11.8 PROBLEMS

11.1. For the 3-bit midtread quantizer described in Figure 11.1, and an analog signal range
from �2.5 to 2.5 volts, determine

a. the quantization step size;

b. the binary codes, recovered voltages, and quantization errors when each input is 1.6 volts
and �0.2 volt.

11.2. For the 3-bit midtread quantizer described in Figure 11.1, and an analog signal range
from �4 to 4 volts, determine

a. the quantization step size;

b. the binary codes, recovered voltages, and quantization errors when each input
is �2.6 volts and 0.1 volt.

11.3. For the 3-bit midtread quantizer described in Figure 11.1, and an analog signal range
from �5 to 5 volts, determine

a. the quantization step size;

b. the binary codes, recovered voltages, and quantization errors when each input is �2.6
volts and 3.5 volts.

11.4. For the 3-bit midtread quantizer described in Figure 11.1, and an analog signal range
from �10 to 10 volts, determine

a. the quantization step size;

b. the binary codes, recovered voltages, and quantization errors when each input is �5
volts, 0 volts, and 7.2 volts.

11.5. For the m-law compression and expanding process shown in Figure 11.3 with m ¼ 255,
a 3-bit midtread quantizer described in Figure 11.1, and an analog signal range from �2.5
to 2.5 volts, determine the binary codes, recovered voltages, and quantization errors when
each input is 1.6 volts and �0.2 volt.
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11.6. For the m-law compression and expanding process shown in Figure 11.3 with m ¼ 255,
a 3-bit midtread quantizer described in Figure 11.1, and an analog signal range from �4 to
4 volts, determine the binary codes, recovered voltages, and quantization errors when each
input is �2.6 volts and 0.1 volt.

11.7. For the m-law compression and expanding process shown in Figure 11.3 with m ¼ 255,
a 3-bit midtread quantizer described in Figure 11.1, and an analog signal range from �5 to
5 volts, determine the binary codes, recovered voltages, and quantization errors when each
input is �2.6 volts and 3.5 volts.

11.8. For the m-law compression and expanding process shown in Figure 11.3 with m ¼ 255, a
3-bit midtread quantizer described in Figure 11.1, and an analog signal range from �10 to
10 volts, determine the binary codes, recovered voltages, and quantization errors when each
input is �5, 0, and 7.2 volts.

11.9. In a digital companding system, encode each of the following 12-bit linear PCM codes into
8-bit compressed PCM code:

a. 0 0 0 0 0 0 0 1 0 1 0 1

b. 1 0 1 0 1 1 1 0 1 0 1 0

11.10. In a digital companding system, decode each of the following 8-bit compressed PCM codes
into 12-bit linear PCM code:

a. 0 0 0 0 0 1 1 1

b. 1 1 1 0 1 0 0 1

11.11. In a digital companding system, encode each of the following 12-linear PCM codes into the
8-bit compressed PCM code:

a. 0 0 1 0 1 0 1 0 1 0 1 0

b. 1 0 0 0 0 0 0 0 1 1 0 1

11.12. In a digital companding system, decode each of the following 8-bit compressed PCM codes
into the 12-bit linear PCM code:

a. 0 0 1 0 1 1 0 1

b. 1 0 0 0 0 1 0 1

11.13. Consider a 3-bit DPCM encoding system with the following specifications (Figure 11.19):

Encoder scheme : ~xðnÞ ¼ x̂ðn� 1Þ ðpredictorÞ
dðnÞ ¼ xðnÞ � ~xðnÞ
dq
�
n
� ¼ Q½dðnÞ� ¼ quantizer in Table 11:9

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

5-bit input data: xð0Þ ¼ �6, xð1Þ ¼ �8, and xð2Þ ¼ �13

Perform DPCM encoding to produce the binary code for each input data.
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11.14. Consider a 3-bit DPCM decoding system with the following specifications (Figure 11.20):

Decoding scheme : ~xðnÞ ¼ x̂ðn� 1Þ ðpredictorÞ
dq
�
n
� ¼ quantizer in Table 11:9

x̂
�
n
� ¼ ~x

�
n
�þ dq

�
n
�

Three received binary codes: 110, 100, 101

Perform DCPM decoding to recover each digital value using its binary code.

Table 11.9

FIGURE 11.19

DPCM encoding in Problem 11.13.

Table 11.9 Quantization Table for the 3-bit Quantizer in Problem 11.13

Binary Code Quantization Value dqðnÞ Subrange in dðnÞ
0 1 1
0 1 0
0 0 1
0 0 0
1 0 0
1 0 1
1 1 0
1 1 1

�11
�5
�2
0
0
2
5
11

�15 � dðnÞ < �7
�7 � dðnÞ < �3
�3 � dðnÞ < �1
�1 � dðnÞ < 0
0 � dðnÞ � 1
1 < dðnÞ � 3
3 < dðnÞ � 7
7 < dðnÞ � 15

Table 11.9

FIGURE 11.20

DPCM decoding in Problem 11.14.
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11.15. For a 3-bit DPCM encoding system shown in Problem 11.13 and the given 5-bit input data
xð0Þ ¼ 6, xð1Þ ¼ 8, and xð2Þ ¼ 13, perform DPCM encoding to produce the binary code
for each of input data.

11.16. For the 3-bit DPCM decoding system shown in Problem 11.14 and the received data 010,
000, 001, perform DCPM decoding to recover each digital value using its binary code.

11.17. Assuming that a speech waveform is sampled at 8 kHz and each sample is encoded by
16 bits, determine the compression ratio for each of the following encoding methods:

a. no compression

b. standard m-law compression (8 bits per sample)

c. standard ADPCM encoding (4 bits per sample)

11.18. Assuming that a speech waveform is sampled at 8 kHz and each sample is encoded by
16 bits, determine the bit rate for each of the following encoding methods:

a. no compression

b. standard m-law companding (8 bits per sample)

c. standard ADPCM encoding (4 bits per sample)

11.19. Assuming that an audio waveform is sampled at 44.1 kHz and each sample is encoded by
16 bits, determine the compression ratio for each of the following encoding methods:

a. no compression

b. standard m-law compression (8 bits per sample)

c. standard ADPCM encoding (4 bits per sample)

11.20. Assuming that an audio waveform is sampled at 44.1 kHz and each sample is encoded by
12 bits, determine the bit rate for each of the encoding methods.

a. no compression

b. standard m-law companding (8 bits per sample)

c. standard ADPCM encoding (4 bits per sample)

11.21. Speech is sampled at 8 kHz and each sample is encoded by 16 bits. A telephone system can
transport the digital voice channel over a digital link with a capacity of 1.536 MBPS.
Determine the number of channels that the phone company can carry for each of the
following encoding methods:

a. no compression

b. standard 8-bit m-law companding (8 bits per sample)

c. standard ADPCM encoding (4 bits per sample)

11.22. Given the input data

xð0Þ ¼ 25; xð1Þ ¼ 30; xð2Þ ¼ 28; and xð3Þ ¼ 25

determine the DCT coefficients.
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11.23. Given the input data

xð0Þ ¼ 25 and xð1Þ ¼ 30

determine the DCT coefficients.

11.24. Given the input data

xð0Þ ¼ 25; xð1Þ ¼ 30; xð2Þ ¼ 28; xð3Þ ¼ 25;

xð4Þ ¼ 10; xð5Þ ¼ 0; xð6Þ ¼ 0; and xð7Þ ¼ 0

determine the DCT coefficients XDCTð0Þ, XDCTð2Þ, XDCTð4Þ, and XDCTð6Þ.
11.25. Given the input data

xð0Þ ¼ 25; xð1Þ ¼ 30; xð2Þ ¼ 28; xð3Þ ¼ 25;

xð4Þ ¼ 10; xð5Þ ¼ 0; xð6Þ ¼ 0; and xð7Þ ¼ 0

determine the DCT coefficients XDCT ð1Þ, XDCT ð3Þ, XDCTð5Þ, and XDCT ð7Þ.
11.26. Assume the following DCT coefficients with infinite precision:

XDCT ð0Þ ¼ 14; XDCTð1Þ ¼ 6; XDCTð2Þ ¼ �6; and XDCTð3Þ ¼ 8

a. Determine the input data using the MATLAB function idct().

b. Recover the input data samples using the MATLAB function idct() if a bit allocation
scheme quantizes the DCT coefficients as follows: 2 magnitude bits plus 1 sign bit (3
bits) for the DC coefficient, 1 magnitude bit plus 1 sign bit (2 bits) for each AC coef-
ficient and a scale factor of 8, that is,

XDCTð0Þ ¼ 8� 2 ¼ 16; XDCTð1Þ ¼ 8� 1 ¼ 8; XDCTð2Þ ¼ 8� ð � 1Þ
¼ �8; and XDCT ð3Þ ¼ 8� 1 ¼ 8

c. Compute the quantized error in part (b) of this problem.

11.27. Assume the following DCT coefficients with infinite precision:

XDCT ð0Þ ¼ 11; XDCTð1Þ ¼ 5; XDCTð2Þ ¼ 7; and XDCTð3Þ ¼ �3

a. Determine the input data using the MATLAB function idct().

b. Recover the input data samples using the MATLAB function idct() if a bit allocation
scheme quantizes the DCT coefficients as follows: 2 magnitude bits plus 1 sign bit
(3 bits) for the DC coefficient, 1 magnitude bit plus 1 sign bit (2 bits) for each AC
coefficient and a scale factor of 8, that is,

XDCTð0Þ ¼ 8� 1 ¼ 8; XDCTð1Þ ¼ 8� 1 ¼ 8; XDCTð2Þ ¼ 8� 1 ¼ �8; and

XDCTð3Þ ¼ 8� 0 ¼ 0

c. Compute the quantized error in part (b) of this problem.
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11.28. a. Verify that the window function

f ðnÞ ¼ hðnÞ ¼ sin
�p
N
ðnþ 0:5Þ

�

used in MDCT is satisfied with Equations (11.35) and (11.36).

b. Verify the relation for W-MDCT coefficients

XMDCTðkÞ ¼ ð � 1ÞN2þ1XMDCT ðN � 1� kÞ for k ¼ N=2;N=2þ 1;/;N � 1

11.29. Given data 1, 2, 3, 4, 5, 4, 3, 2, .,

a. determine the W-MDCT coefficients for the first three blocks using a block size of 4;

b. determine the first two overlapped subblocks and compare the results with the original
data sequence using the W-MDCT coefficients in part (a).

11.30. Given data 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5,.,

a. determine the W-MDCT coefficients for the first three blocks using a block size of 6;

b. determine the first two overlapped subblocks and compare the results with the original
data sequence using the W-MDCT coefficients in part (a).

11.8.1 Computer Problems with MATLAB
Use the MATLAB programs in Section 11.7 for Problems 11.31 to 11.33.

11.31. Consider the data file “speech.dat” with 16 bits per sample and a sampling rate of 8 kHz.

a. Use PCM coding (midtread quantizer) to perform compression and decompression and
apply the MATLAB function sound() to evaluate the sound quality in terms of
“excellent”, “good”, “intelligent”, and “unacceptable” for the following bit rates:

1. 4 bits/sample (32 kbits per second)

2. 6 bits/sample (48 kbits per second)

3. 8 bits/sample (64 kbits per second)

b. Use m-law PCM coding to perform compression and decompression and apply the
MATLAB function sound() to evaluate the sound quality for the following bit rates:

1. 4 bits/sample (32 kbits per second)

2. 6 bits/sample (48 kbits per second)

3. 8 bits/sample (64 kbits per second)

11.32. Given the data file “speech.dat” with 16 bits per sample, a sampling rate of 8 kHz, and
ADCPM coding, perform compression and decompression and apply the MATLAB
function sound() to evaluate the sound quality.

11.33. Given the data file “speech.dat” with 16 bits per sample, a sampling rate of 8 kHz, and DCT
and M-DCT coding as described in the programs in Section 11.7, perform compression and
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decompression using the following specified parameters in Program 11.16 to compare the
sound quality:

a. nbits¼3, scalef¼scalef2bits

b. nbits¼3, scalef¼scalef3bits

c. nbits¼4, scalef¼scalef2bits

d. nbits¼4, scalef¼scalef3bits
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OBJECTIVES:

This chapter investigates basics of multirate digital signal processing, illustrates how to change a sampling
rate for speech and audio signals, and describes the polyphase implementation for the decimation filter
and interpolation filter. Next, the chapter introduces the advanced analog-to-digital conversion system with
the oversampling technique and sigma-delta modulation. Finally, the chapter explores the principles of
undersampling of bandpass signals.

12.1 MULTIRATE DIGITAL SIGNAL PROCESSING BASICS
In many areas of digital signal processing (DSP) applicationsdsuch as communications, speech, and
audio processingdrising or lowering of a sampling rate is required. The principles relating to
changing the sampling rate belong essentially within the topic of multirate signal processing (Ifeachor
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and Jervis, 2002; Proakis and Manolakis,1996; Porat, 1997; Sorensen and Chen,1997). As an intro-
duction, we will focus on the sampling rate conversion; that is, sampling rate reduction or increase.

12.1.1 Sampling Rate Reduction by an Integer Factor

The process of reducing the sampling rate by an integer factor is referred to as downsampling of a data
sequence. We also refer downsampling as “decimation” (not taking one of ten). The term “decimation”
has been accepted and used in many textbooks and fields. To downsample a data sequence xðnÞ by an
integer factor of M, we use the following notation:

yðmÞ ¼ xðmMÞ (12.1)

where yðmÞ is the downsampled sequence, obtained by taking a sample from the data sequence xðnÞ
for every M samples (discarding M-1 samples for every M samples). As an example, if the original
sequence with a sampling period T ¼ 0:1 second (sampling rate ¼ 10 samples per second) is
given by

xðnÞ : 8 7 4 8 9 6 4 2 � 2 � 5 � 7 � 7 � 6 � 4 .

and we downsample the data sequence by a factor of 3, we obtain the downsampled sequence as

yðmÞ : 8 8 4 � 5 � 6 .

with the resultant sampling period T ¼ 3� 0:1 ¼ 0:3 second (the sampling rate now is 3.33 samples
per second). Although the example is straightforward, there is a requirement to avoid aliasing noise.
We will illustrate this next.

From the Nyquist sampling theorem, it is known that aliasing can occur in the downsampled signal
due to the reduced sampling rate. After downsampling by a factor of M, the new sampling period
becomes MT , and therefore the new sampling frequency is

fsM ¼ 1

MT
¼ fs

M
(12.2)

where fs is the original sampling rate.
Hence, the folding frequency after downsampling becomes

fsM=2 ¼ fs
2M

(12.3)

This tells us that after downsampling by a factor of M, the new folding frequency will be decreased
M times. If the signal to be downsampled has frequency components larger than the new folding
frequency, f > fs=ð2MÞ, aliasing noise will be introduced into the downsampled data.

To overcome this problem, it is required that the original signal xðnÞ be processed by a lowpass
filter HðzÞ before downsampling, which should have a stop frequency edge at fs=ð2MÞ (Hz). The
corresponding normalized stop frequency edge is then converted to

Ustop ¼ 2p
fs
2M

T ¼ p

M
radians (12.4)
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In this way, before downsampling, we can guarantee the maximum frequency of the filtered signal
satisfies

fmax <
fs
2M

(12.5)

such that no aliasing noise is introduced after downsampling. A general block diagram of decimation is
given in Figure 12.1, where the filtered output in terms of the z-transform can be written as

WðzÞ ¼ HðzÞXðzÞ (12.6)

where XðzÞ is the z-transform of the sequence to be decimated, xðnÞ, and HðzÞ is the lowpass filter
transfer function. After anti-aliasing filtering, the downsampled signal yðmÞ takes its value from the
filter output as

yðmÞ ¼ wðmMÞ (12.7)

The process of reducing the sampling rate by a factor of 3 is shown in Figure 12.1. The corresponding
spectral plots for xðnÞ, wðnÞ, and yðmÞ in general are shown in Figure 12.2.

Anti-aliasing
filter H(z)

x n( ) w n( )
M

y m( )

n

n

m

x n( )

0

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

1 2 3 4

w n( )

y m( )

5

f s f s
f

M
s

FIGURE 12.1

Block diagram of the downsampling process with M ¼ 3.
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To verify this principle, let us consider a signal xðnÞ generated by the following:

x
�
n
� ¼ 5 sin

�
2p� 1;000n

8;000

�
þ cos

�
2p� 2;500

8;000

�
¼ 5 sin

�np
4

�
þ cos

�
5np

8

�
(12.8)

With a sampling rate of fs ¼ 8;000 Hz, the spectrum of xðnÞ is plotted in the first graph in
Figure 12.3A, where we observe that the signal has components at frequencies of 1,000 Hz and
2,500 Hz. Now we downsample xðnÞ by a factor of 2, that is,M ¼ 2. According to Equation (12.3), we
know that the new folding frequency is 4,000/2 ¼ 2,000 Hz. Hence, without using the anti-aliasing
lowpass filter, the spectrum would contain an aliasing frequency of 4 kHz – 2.5 kHz ¼ 1.5 kHz
introduced by 2.5 kHz, plotted in the second graph in Figure 12.3A.

Now we apply a finite impulse response (FIR) lowpass filter designed with a filter length of N ¼
27 and a cutoff frequency of 1.5 kHz to remove the 2.5 kHz signal before downsampling to avoid

X f( )

f s / 20f s / 2 f sf s
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f Hz( )

f s / 2 f s0f s f s / 2

1

W f( )

f s / 20f s / 2 f sf s

f Hz( )

H f( )

f sM

2

f sM

2

0 f sM

2
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2 f sMf sM2 f sM

f sM

2

Y f( )

f sM

2

f sM

2

f sM

Anti-aliasing
filter H(z)

x n( ) w n( )
M

y m( )

f s f s f
f

MsM
s

f f MsM s /

FIGURE 12.2

Spectrum after downsampling.
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aliasing. How to obtain such specifications will be discussed in the later example. The normalized
cutoff frequency used for design is given by

Uc ¼ 2p� 1;500� ð1=8;000Þ ¼ 0:375p

Thus, the aliasing noise is avoided. The spectral plots are given in Figure 12.3B, where the first
plot shows the spectrum of wðnÞ after anti-aliasing filtering, while the second plot describes the
spectrum of yðmÞ after downsampling. Clearly, we prevent aliasing noise in the downsampled
data by sacrificing the original 2.5-kHz signal. Program 12.1 gives the details of the MATLAB
implementation.
Program 12.1. MATLAB program for decimation.

close all; clear all;
% Downsampling filter (see Chapter 7 for FIR filter design)
B ¼[0.00074961181416 0.00247663033476 0.00146938649416 -0.00440446121505 .

-0.00910635730662 0.00000000000000 0.02035676831506 0.02233710562885.
-0.01712963672810 -0.06376620649567 -0.03590670035210 0.10660980550088.
0.29014909103794 0.37500000000000 0.29014909103794 0.10660980550088.
-0.03590670035210 -0.06376620649567 -0.01712963672810 0.02233710562885.
0.02035676831506 0.00000000000000 -0.00910635730662 -0.00440446121505.
0.00146938649416 0.00247663033476 0.00074961181416];
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FIGURE 12.3A

Spectrum before downsampling and spectrum after downsampling without using the anti-aliasing filter.
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% Generate 2048 samples
fs¼8000; % Sampling rate
N¼2048; % Number of samples
M¼2; % Downsample factor
n¼0:1:N-1;
x¼5*sin(n*pi/4)þcos(5*n*pi/8);
% Compute single-sided amplitude spectrum
% AC component will be doubled, and DC component will be kept at the same value
X¼2*abs(fft(x,N))/N;X(1)¼X(1)/2;
% Map the frequency index up to the folding frequency in Hz
f¼[0:1:N/2-1]*fs/N;
% Downsampling
y¼x(1:M:N);
NM¼length(y); % Length of the downsampled data
% Compute the single-sided amplitude spectrum for the downsampled signal
Y¼2*abs(fft(y,NM))/length(y);Y(1)¼Y(1)/2;
% Map the frequency index to the frequency in Hz
fsM¼[0:1:NM/2-1]*(fs/M)/NM;
subplot(2,1,1);plot(f,X(1:1:N/2));grid; xlabel(’Frequency (Hz)’);
subplot(2,1,2);plot(fsM,Y(1:1:NM/2));grid; xlabel(’Frequency (Hz)’);
figure
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FIGURE 12.3B

Spectrum before downsampling and spectrum after downsampling using the anti-aliasing filter.
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w¼filter(B,1,x); % Anti-aliasing filtering
% Compute the single-sided amplitude spectrum for the filtered signal
W¼2*abs(fft(w,N))/N;W(1)¼W(1)/2;
% Downsampling
y¼w(1:M:N);
NM¼length(y);
% Compute the single-sided amplitude spectrum for the downsampled signal
Y¼2*abs(fft(y,NM))/NM;Y(1)¼Y(1)/2;
% Plot spectra
subplot(2,1,1);plot(f,W(1:1:N/2));grid; xlabel(’Frequency (Hz)’);
subplot(2,1,2);plot(fsM,Y(1:1:NM/2));grid; xlabel(’Frequency (Hz)’);

Now we focus on how to design an anti-aliasing FIR filter, or decimation filter. We will discuss this
topic via the following example.

EXAMPLE 12.1
Consider a DSP downsampling system with the following specifications:

Sampling rate ¼ 6,000 Hz
Input audio frequency range ¼ 0e800 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 50 dB
Downsample factor M ¼ 3
Determine the FIR filter length, cutoff frequency, and window type if the window method is used.

Solution:
The specifications are reorganized as

Anti-aliasing filter operating at the sampling rate ¼ 6,000 Hz
Passband frequency range ¼ 0e800 Hz
Stopband frequency range ¼ 1e3 kHz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 50 dB
Filter type ¼ FIR

The block diagram and specifications are depicted in Figure 12.4.

Anti-aliasing
filter H(z)

x n( ) w n( ) y m( )

6 6 2

3

f

2108.0

3

FIGURE 12.4

Filter specifications for Example 12.1.
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The Hamming window is selected, since it provides 0.019 dB ripple and 53 dB stopband attenuation. The
normalized transition band is given by

Df ¼ fstop � fpass
fs

¼ 1;000� 800

6;000
¼ 0:033

The length of the filter and the cutoff frequency can be determined by

N ¼ 3:3

Df
¼ 3:3

0:033
¼ 100

We choose an odd number; that is, N ¼ 101, and

fc ¼ fpass þ fstop
2

¼ 800þ 1;000

2
¼ 900 Hz

12.1.2 Sampling Rate Increase by an Integer Factor

Increasing a sampling rate is a process of upsampling by an integer factor of L. This process is
described as follows:

y
�
m
� ¼

8<
: x

�
m

L

�
m ¼ nL

0 otherwise

(12.9)

where n ¼ 0; 1; 2;/; xðnÞ is the sequence to be upsampled by a factor of L, and yðmÞ is the upsampled
sequence. As an example, suppose that the data sequence is given as follows:

xðnÞ : 8 8 4 � 5 � 6 .

After upsampling the data sequence xðnÞ by a factor of 3 (adding L - 1 zeros for each sample), we have
the upsampled data sequence wðmÞ as

wðmÞ : 8 0 0 8 0 0 4 0 0 � 5 0 0 � 6 0 0 .

The next step is to smooth the upsampled data sequence via an interpolation filter. The process is
illustrated in Figure 12.5A.

Similar to the downsampling case, assuming that the data sequence has the current sampling period
of T , the Nyquist frequency is given by fmax ¼ fs=2. After usampling by a factor of L, the new
sampling period becomes T=L, thus the new sampling frequency is changed to be

fsL ¼ Lfs (12.10)

This indicates that after upsampling, the spectral replicas originally centered at �fs, �2fs, . are
included in the frequency range from 0 Hz to the new Nyquist limit Lfs=2 Hz, as shown in
Figure 12.5B. To remove those included spectral replicas, an interpolation filter with a stop frequency
edge of fs=2 in Hz must be attached, and the normalized stop frequency edge is given by

Ustop ¼ 2p

�
fs
2

�
�
�
T

L

�
¼ p

L
radians (12.11)
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After filtering via the interpolation filter, we will achieve the desired spectrum for yðnÞ, as shown in
Figure 12.5B. Note that since the interpolation is to remove the high-frequency images that are aliased
by the upsampling operation, it is essentially an anti-aliasing lowpass filter.

To verify the upsampling principle, we generate the signal xðnÞ with 1 kHz and 2.5 kHz as follows:

x
�
n
� ¼ 5 sin

�
2p� 1;000n

8;000

�
þ cos

�
2p� 2;500n

8;000

�

with a sampling rate of fs ¼ 8;000 Hz. The spectrum of xðnÞ is plotted in Figure 12.6. Now we
upsample xðnÞ by a factor of 3, that is, L ¼ 3. We know that the sampling rate is increased to be
3 � 8,000 ¼ 24,000 Hz. Hence, without using the interpolation filter, the spectrum would contain the
image frequencies originally centered at the multiple frequencies of 8 kHz. The top plot in Figure 12.6
shows the spectrum for the sequence after upsampling and before applying the interpolation filter.

Now we apply an FIR lowpass filter designed with a length of 53, a cutoff frequency of 3,250 Hz,
and a new sampling rate of 24,000 Hz as the interpolation filter, whose normalized frequency should be

Uc ¼ 2p� 3;250�
�

1

24;000

�
¼ 0:2708p
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FIGURE 12.5A

Block diagram for the upsampling process with L ¼ 3.
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The bottom plot in Figure 12.6 shows the spectrum for yðmÞ after applying the interpolation filter,
where only the original signals with frequencies of 1 kHz and 2.5 kHz are presented. Program 12.2
shows the implementation details in MATLAB.
Program 12.2. MATLAB program for interpolation.

close all; clear all
% Upsampling filter (see Chapter 7 for FIR filter design)
B ¼[-0.00012783931504 0.00069976044649 0.00123831516738 0.00100277549136.
-0.00025059018468 -0.00203448515158 -0.00300830295487 -0.00174101657599.
0.00188598835011 0.00578414933758 0.00649330625041 0.00177982369523.
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f s f sL
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FIGURE 12.5B

Spectra before and after upsampling
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-0.00670672686935 -0.01319379342716 -0.01116855281442 0.00123034314117.
0.01775600060894 0.02614700427364 0.01594155162392 -0.01235169936557.
-0.04334322148505 -0.05244745563466 -0.01951094855292 0.05718573279009.
0.15568416401644 0.23851539047347 0.27083333333333 0.23851539047347.
0.15568416401644 0.05718573279009 -0.01951094855292 -0.05244745563466.
-0.04334322148505 -0.01235169936557 0.01594155162392 0.02614700427364.
0.01775600060894 0.00123034314117 -0.01116855281442 -0.01319379342716.
-0.00670672686935 0.00177982369523 0.00649330625041 0.00578414933758.
0.00188598835011 -0.00174101657599 -0.00300830295487 -0.00203448515158.
-0.00025059018468 0.00100277549136 0.00123831516738 0.00069976044649.
-0.00012783931504];

% Generate the 2048 samples with fs ¼ 8000 Hz
fs¼8000; % Sampling rate
N¼2048; % Number of samples
L ¼ 3; % Upsampling factor
n¼0:1:N-1;
x¼5*sin(n*pi/4)þcos(5*n*pi/8);
% Upsampling by a factor of L
w¼zeros(1,L*N);
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FIGURE 12.6

(Top) The spectrum after upsampling and before applying the interpolation filter; (bottom) spectrum after

applying the interpolation filter.
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for n¼0:1:N-1
w(L*nþ1)¼x(nþ1);

end
NL ¼ length(w); % Length of the upsampled data
W¼2*abs(fft(w,NL))/NL;W(1)¼W(1)/2; % Compute one-sided amplitude spectrum
f¼[0:1:NL/2-1]*fs*L/NL; % Map the frequency index to the frequency (Hz)
% Interpolation
y¼filter(B,1,w); % Apply interpolation filter
Y¼2*abs(fft(y,NL))/NL;Y(1)¼Y(1)/2; % Compute the one-sided amplitude spectrum
fsL¼[0:1:NL/2-1]*fs*L/NL; % Map the frequency index to the frequency (Hz)
subplot(2,1,1);plot(f,W(1:1:NL/2));grid; xlabel(’Frequency (Hz)’);
subplot(2,1,2);plot(fsL,Y(1:1:NL/2));grid; xlabel(’Frequency (Hz)’);

Now let us study how to design an interpolation filter via Example 12.2.

EXAMPLE 12.2
Consider a DSP upsampling system with the following specifications:

Sampling rate ¼ 6,000 Hz
Input audio frequency range ¼ 0e800 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 50 dB
Upsample factor L ¼ 3
Determine the FIR filter length, cutoff frequency, and window type if the window design method is used.

Solution:
The specifications are reorganized as follows:

Interpolation filter operating at the sampling rate ¼ 18,000 Hz
Passband frequency range ¼ 0e800 Hz
Stopband frequency range ¼ 3e9 kHz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 50 dB
Filter type: FIR filter

The block diagram and filter frequency specifications are given in Figure 12.7.

Anti-image filter
H(z)

x n( ) ( )w m y m( )

6 18 18

9630 8.0

3

FIGURE 12.7

Filter frequency specifications for Example 12.2.
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We choose the Hamming window for this application. The normalized transition band is

Df ¼ fstop � fpass
fsL

¼ 3;000� 800

18;000
¼ 0:1222

The length of the filter and the cutoff frequency can be determined by

N ¼ 3:3

Df
¼ 3:3

0:1222
¼ 27

and the cutoff frequency is given by

fc ¼ fpass þ fstop
2

¼ 3;000þ 800

2
¼ 1;900 Hz:

12.1.3 Changing the Sampling Rate by a Noninteger Factor L/M

With an understanding of the downsampling and upsampling processes, we now study sampling rate
conversion by a noninteger L=M. This can be viewed as two sampling conversion processes. In step 1,
we perform the upsampling process by a factor of integer L following application of an interpolation
filter H1ðzÞ; in step 2, we continue filtering the output from the interpolation filter via an anti-aliasing
filter H2ðzÞ, and finally execute downsampling. The entire process is illustrated in Figure 12.8.

Since the interpolation and anti-aliasing filters are in a cascaded form and operate at the same rate,
we can select one of them. We choose the one with the lower stop frequency edge and choose the most
demanding requirements for passband gain and stopband attenuation for the filter design. A lot of
computational savings can be achieved by using one lowpass filter. We illustrate the procedure via the
following simulation. Let us generate the signal xðnÞ by

x
�
n
� ¼ 5 sin

�
2p� 1;000n

8;000

�
þ cos

�
2p� 2;500n

8;000

�

with a sampling rate of fs ¼ 8;000 Hz and frequencies of 1 kHz and 2.5 kHz. Now we resample xðnÞ to
3,000 Hz by a noninteger factor of 0.375, that is,�

L

M

�
¼ 0:375 ¼ 3

8

Upsampling is at a factor of L ¼ 3 and the upsampled sequence is filtered by an FIR lowpass filter
designed with a filter length N ¼ 53 and a cutoff frequency of 3,250 Hz at a sampling rate of 3 � 8,000
¼ 24,000 Hz. The spectrum for the upsampled sequence and the spectrum after application of the
interpolation filter are plotted in Figure 12.9A.

Interpolation
filter H1(z)

x n( )
Anti-aliasing
filter H2(z)

( )y m

M
 H(z)

L

FIGURE 12.8

Block diagram for sampling rate conversion.
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The sequence from step 1 can be filtered via another FIR lowpass filter with filter length N ¼ 159 and
a cutoff frequency of 1,250 Hz, followed by downsampling by a factor of M ¼ 8. The spectrum after
the anti-aliasing filter and the spectrum for the final output yðmÞ are plotted in Figure 12.9B. Note that
the anti-aliasing filter removes the frequency component of 2.5 kHz to avoid aliasing. This is because
after downsampling, the Nyquist limit is 1.5 kHz. As we discussed previously, we can select one filter
for implementation. We choose a FIR lowpass filter with N ¼ 159 and a cutoff frequency of 1,250 Hz
because its bandwidth is smaller than that of the interpolation filter. The MATLAB implementation is
listed in Program 12.3.
Program 12.3 MATLAB program for changing sampling rate with a noninteger factor.

close all; clear all;clc;
% Downsampling filter
Bdown¼firwd(159,1,2*pi*1250/24000,0,4);
% Generate 2048 samples with fs¼8000 Hz
fs¼8000; % Original sampling rate
N ¼ 2048; % The number of samples
L¼3; % Upsampling factor
M¼8; % Downsampling factor
n¼0:1:N-1; % Generate the time index
x¼5*sin(n*pi/4)þcos(5*n*pi/8); % Generate the test signal
% Upsampling by a factor of L
w1¼zeros(1,L*N);
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FIGURE 12.9A

(Top) Spectrum after upsampling, and (bottom) spectrum after interpolation filtering.
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for n¼0:1:N-1
w1(L*nþ1)¼x(nþ1);

end
NL¼ length(w1); % Length of upsampled data
W1¼2*abs(fft(w1,NL))/NL;W1(1)¼W1(1)/2; % Compute the one-sided

% amplitude spectrum
f¼[0:1:NL/2-1]*fs*L/NL; % Map frequency index to its frequency in Hz
subplot(3,1,1);plot(f,W1(1:1:NL/2));grid
xlabel(’Frequency (Hz)’);
w2¼filter(Bdown,1,w1); % Perform the combined anti-aliasing filter
W2¼2*abs(fft(w2,NL))/NL;W2(1)¼W2(1)/2; % Compute the one-sided

% amplitude spectrum
y2¼w2(1:M:NL);
NM¼length(y2); % Length of the downsampled data
Y2¼2*abs(fft(y2,NM))/NM;Y2(1)¼Y2(1)/2;% Compute the one-sided

%amplitude spectrum
% Map frequency index to its frequency in Hz before downsampling
fbar¼[0:1:NL/2-1]*24000/NL;
% Map frequency index to its frequency in Hz
fsM¼[0:1:NM/2-1]*(fs*L/M)/NM;
subplot(3,1,2);plot(f,W2(1:1:NL/2));grid; xlabel(’Frequency (Hz)’);
subplot(3,1,3);plot(fsM,Y2(1:1:NM/2));grid; xlabel(’Frequency (Hz)’);
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FIGURE 12.9B

(Top) Spectrum after anti-aliasing filtering, and (bottom) spectrum after downsampling.
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Therefore, three steps are required to accomplish the process:

1. Upsampling by a factor of L ¼ 3;
2. Filtering the upsampled sequence by an FIR lowpass filter designed with filter length N ¼ 159 and

a cutoff frequency of 1,250 Hz at a sampling rate of 3� 8,000 ¼ 24,000 Hz;
3. Downsampling by a factor of M ¼ 8.

EXAMPLE 12.3
Consider a sampling conversion DSP system (Figure 12.10A) with the following specifications:

Audio input xðnÞ is sampled at the rate of 6,000 Hz.
Audio output yðmÞ is operated at the rate of 9,000 Hz.
Determine the filter length and cutoff frequency for the combined anti-aliasing filter HðzÞ, and the window types,
respectively, if the window design method is used.

Solution:
The filter frequency specifications and corresponding block diagram are developed in Figure 12.10B.
Specifications for the interpolation filter H1ðzÞ:
Passband frequency range ¼ 0e2,500 Hz
Passband ripples for H1ðzÞ ¼ 0.04 dB
Stopband frequency range ¼ 3,000e9,000 Hz
Stopband attenuation ¼ 42 dB
Specifications for the anti-aliasing filter H2ðzÞ:
Passband frequency range ¼ 0e2,500 Hz

Interpolation
filter H1(z)

x n( )
3

Anti-aliasing
filter H2(z)

y m( )

2

FIGURE 12.10A

Sampling conversion in Example 12.3.
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FIGURE 12.10B

Filter frequency specifications for Example 12.3.
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Passband ripples for H2ðzÞ ¼ 0.02 dB
Stopband frequency range ¼ 4,500e9,000 Hz
Stopband attenuation ¼ 46 dB
Combined specifications HðzÞ:
Passband frequency range ¼ 0e2,500 Hz
Passband ripples for HðzÞ ¼ 0.02 dB
Stopband frequency range ¼ 3,000e9,000 Hz
Stopband attenuation ¼ 46 dB

We use an FIR filter with a Hamming window. Since

Df ¼ fstop � fpass
fsL

¼ 3;000� 2;500

18;000
¼ 0:0278

the length of the filter and the cutoff frequency can be determined by

N ¼ 3:3

Df
¼ 3:3

0:0278
¼ 118:8

We choose N ¼ 119, and

fc ¼ fpass þ fstop
2

¼ 3;000þ 2;500

2
¼ 2;750 Hz

12.1.4 Application: CD Audio Player

In this application example, we will discuss principles of the upsampling and interpolation-filter
processes used in CD audio systems to help with reconstruction filter design.

Each raw digital sample recorded on a CD audio system contains 16 bits and is sampled at the rate
of 44.1 kHz. Figure 12.11 describes a portion of one channel of the CD player in terms of a simplified
block diagram.

Let us consider the situation without upsampling and application of a digital interpolation filter. We
know that the audio signal has a bandwidth of 22.05 kHz, that is, the Nyquist frequency, and digital-to-
analog conversion (DAC) produces the sample-and-hold signals that contain the desired audio band
and images thereof. To achieve the audio band signal, we need to apply a reconstruction filter (also
called a smooth filter or anti-image filter) to remove all image frequencies beyond the Nyquist
frequency of 22.05 kHz. Due to the requirement of the sharp transition band, a higher-order analog
filter design becomes a requirement.

The design of the higher-order analog filter is complex and expensive to implement. As shown
in Figure 12.11, in order to relieve such design constraints, we can add the upsampling process

Interpolation
filter H(z)

x n( )

L

y m( )w m( )
CD

Player
Analog

reconstruction
filter H(s)

DAC

y t( )

f s Lf s Lf s

FIGURE 12.11

Sample rate conversion in the CD audio player system.
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before DAC, followed by application of the digital interpolation filter (assume L ¼ 4). Certainly,
the interpolation filter design must satisfy the specifications studied in the previous section on
increasing the sampling rate by an integer factor. Again, after digital interpolation, the audio band
is kept the same, while the sampling frequency is increased by fourfold (L ¼ 4), that is, 44.1� 4 ¼
176.4 kHz.

Since the audio band of 22.05 kHz is now relatively low compared with the new folding frequency
(176.4/2¼ 88.2 kHz), the use of a simple first-order or second-order analog anti-image filter may be
sufficient. Let us look the following simulation.

A test audio signal with a frequency of 16 kHz and a sampling rate of 44.1 kHz is generated using
the formula

x
�
n
� ¼ sin

�
2p� 16;000n

441;000

�

If we use an upsampling factor of 4, then the bandwidth would increase to 88.2 kHz. Based on the
audio frequency of 16 kHz, the original Nyquist frequency of 22.05 kHz, and the new sampling rate of
176.4 kHz, we can determine the filter length as

Df ¼ 22:05� 16

176:4
¼ 0:0343

Using the Hamming window for FIR filter design leads to

N ¼ 3:3

Df
¼ 96:2

We choose N ¼ 97. The cutoff frequency therefore is

fc ¼ 16þ 22:05

2
¼ 19:025 kHz

The spectrum of the interpolated audio test signal is shown in Figure 12.12, where the top plot
illustrates that after the upsampling, the audio test signal has a frequency of 16 kHz, along with image
frequencies coming from 44.1 – 16 ¼ 28.1 kHz, 44.1 þ 16 ¼ 60.1 kHz, 88.2 – 16 ¼ 72.2 kHz, and so
on. The bottom graph describes the spectrum after the interpolation filter. From lowpass FIR filtering,
an interpolated audio signal with a frequency of 16 kHz is observed.

Let us examine the corresponding process in the time domain, as shown in Figure 12.13. The upper
left plot shows the original samples. The upper right plot describes the upsampled signals. The lower
left plot shows the signals after the upsampling process and digital interpolation filter. Finally, the lower
right plot shows the sample-and-hold signals after DAC. Clearly, we can easily design a reconstruction
filter to smooth the sample-and-hold signals and obtain the original audio test signal. The advantage of
reducing hardware is illustrated. The MATLAB implementation can be seen in Program 12.4.
Program 12.4. MATLAB program for CD player example.

close all; clear all; clc
% Generate the 2048 samples with fs ¼ 44100 Hz
fs¼ 44100; % Original sampling rate
T¼1/fs; % Sampling period
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N¼2048; % Number of samples
L¼4;
fsL¼fs*L; % Upsampling rate
%Upsampling filter (see Chapter 7 for FIR filter design)
Bup¼firwd(97,1,2*19025*pi/fsL,0,4);
n¼0:1:N-1; % Generate the time indices
x¼5*sin(2*pi*16000*n*T); % Generate the test signal
% Upsampling by a factor of L
w¼zeros(1,L*N);
for n¼0:1:N-1
w(L*nþ1)¼x(nþ1);

end
NL¼length(w); % Number of the upsampled data
W¼2*abs(fft(w,NL))/NL;W(1)¼W(1)/2; % Compute the one-sided

% amplitude spectrum
f¼[0:1:NL/2-1]*fs*L/NL; % Map the frequency index to its frequency in Hz
f¼f/1000; % Convert to kHz
% Interpolation
y¼filter(Bup,1,w); % Perform the interpolation filter
Y¼2*abs(fft(y,NL))/NL;Y(1)¼Y(1)/2; % Compute the one-sided

% amplitude spectrum
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FIGURE 12.12

(Top) The spectrum after upsampling, and (bottom) the spectrum after applying the interpolation filter.
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subplot(2,1,1);plot(f,W(1:1:NL/2));grid;
xlabel(’Frequency (kHz)’); axis([0 f(length(f)) 0 2]);
subplot(2,1,2);plot(f,Y(1:1:NL/2));grid;
xlabel(’Frequency (kHz)’);axis([0 f(length(f)) 0 2]);
figure
subplot(2,2,1);stem(x(21:30));grid
xlabel(’Number of Samples’);ylabel(’x(n)’);
subplot(2,2,2);stem(w(81:120));grid
xlabel(’Number of Samples’); ylabel(’w(n)’);
subplot(2,2,3);stem(y(81:120));grid
xlabel(’Number of Samples’); ylabel(’y(n)’)
subplot(2,2,4);stairs([80:1:119]*1000*T,y(81:120));grid
xlabel(’Time (ms)’); ylabel(’y(t)’)

12.1.5 Multistage Decimation

The multistage approach for downsampling rate conversion can be used to dramatically reduce the
anti-aliasing filter length. Figure 12.14 describes a two-stage decimator.

As shown in Figure 12.14, a total decimation factor is M ¼ M1 �M2. Here, even though we
develop a procedure for a two-stage case, a similar principle can be applied to general multistage cases.
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Plots of signals at each stage according to the block diagram in Figure 12.11.
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Using the two-stage decimation in Figure 12.15, the final Nyquist limit is
fs
2M

after final down-

sampling. So our useful information bandwidth should stop at the frequency edge of
fs
2M

. Next, we

need to determine the stop frequency edge for the anti-aliasing lowpass filter at stage 1 before the first
decimation process begins. This stop frequency edge is actually the lower frequency edge of the first

image replica centered at the sampling frequency of
fs
M1

after the stage 1 decimation. This lower

frequency edge of the first image replica is then determined by

fs
M1

� fs
2M

After downsampling, we expect that some frequency components from
fs

2M1
to

fs
M1

� fs
2M

to be folded

over to the frequency band between
fs
2M

and
fs

2M1
. However, these aliased frequency components do not

affect the final useful band between 0 Hz to
fs
2M

and will be removed by the anti-aliasing filter(s) in the

future stage(s). As illustrated in Figure 12.15, any frequency components beyond the edge
fs
M1

� fs
2M
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Multistage decimation.
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Stopband frequency edge for the anti-aliasing filter at stage 1 for two-stage decimation.
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can fold over into the final useful information band to create aliasing distortion. Therefore, we can use
this frequency as the lower stop frequency edge of the anti-aliasing filter to prevent the aliasing
distortion at the final stage. The upper stopband edge (Nyquist limit) for the anti-image filter at stage 1

is clearly
fs
2
, since the filter operates at fs samples per second. So the stopband frequency range at

stage 1 is therefore from
fs
M1

� fs
2M

to
fs
2
. The aliasing distortion, introduced into the frequency band

from
fs
2M

to
fs

2M1
, will be filtered out after future decimation stage(s).

Similarly, for stage 2, the lower frequency edge of the first image developed after stage 2 down-
sampling is

fs
M1M2

� fs
2M

¼ fs
2M

As is evident in our two-stage scheme, the stopband frequency range for the second anti-aliasing

filter at stage 2 should be from
fs
2M

to
fs

2M1
.

We summarize the specifications for the two-stage decimation as follows:
Filter requirements for stage 1:

• Passband frequency range ¼ 0 to fp

• Stopband frequency range ¼ fs
M1

� fs
2M

to
fs
2

• Passband ripple ¼ dp=2, where dp is the combined absolute ripple on the passband
• Stopband attenuation ¼ ds

Filter requirements for stage 2:

• Passband frequency range ¼ 0 to fp

• Stopband frequency range ¼ fs
M1 �M2

� fs
2M

to
fs

2M1

• Passband ripple ¼ dp=2, where dp is the combined absolute ripple on the passband
• Stopband attenuation ¼ ds

Example 12.4 illustrates the two-stage decimator design.

EXAMPLE 12.4
Determine the anti-aliasing FIR filter lengths and cutoff frequencies for the two-stage decimator with the following
specifications and the block diagram in Figure 12.16A:

Original sampling rate: fs ¼ 240 kHz
Audio frequency range: 0e3,400 Hz
Passband ripple: dp ¼ 0:05 (absolute)
Stopband attenuation: ds ¼ 0:005 (absolute)
FIR filter design using the window method
New sampling rate: fsM ¼ 8 kHz
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Solution:

M ¼ 240 kHz

8 kHz
¼ 30 ¼ 10� 3

We chooseM1 ¼ 10 andM2 ¼ 3; there could be other choices. Figure 12.16B shows the block diagram and filter
frequency specifications.
Filter specifications for H1ðzÞ:
Passband frequency range: 0e3,400 Hz
Passband ripples: 0.05/2 ¼ 0.025 (dp dB ¼ 20 log10ð1þ dpÞ ¼0.212 dB)
Stopband frequency range: 20,000e120,000 Hz
Stopband attenuation: 0.005, ds dB ¼ �20� log10ðdsÞ ¼ 46 dB
Filter type: FIR, Hamming window

Note that the lower stopband edge can be determined as

fstop ¼ fs
M1

� fs
2�M

¼ 240;000

10
� 240;000

2� 30
¼ 20;000 Hz

Df ¼ fstop � fpass
fs

¼ 20;000� 3;400

240;000
¼ 0:06917

The length of the filter and the cutoff frequency can be determined by

N ¼ 3:3

Df
¼ 47:7

We choose N ¼ 49, and

fc ¼ fpass þ fstop
2

¼ 20;000þ 3;400

2
¼ 11;700 Hz
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Multistage decimation in Example 12.4.
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FIGURE 12.16B

Filter frequency specifications for Example 12.4.
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Filter specifications for H2ðzÞ:
Passband frequency range: 0e3,400 Hz
Passband ripples: 0.05/2 ¼ 0.025 (0.212 dB)
Stopband frequency range: 4,000e12,000 Hz
Stopband attenuation: 0.005, dsdB ¼ 46 dB
Filter type: FIR, Hamming window

Note that

Df ¼ fstop � fpass
fsM1

¼ 4;000� 3;400

24;000
¼ 0:025:

The length of the filter and the cutoff frequency can be determined by

N ¼ 3:3

Df
¼ 132

We choose N ¼ 133, and

fc ¼ fpass þ fstop
2

¼ 4;000þ 3;400

2
¼ 3;700 Hz

The reader can verify this case by using only one stage with a decimation factor of M ¼ 30. Using the Hamming
window for the FIR filter, the resulting number of taps is 1,321, and the cutoff frequency is 3,700 Hz. Thus, such
a filter requires a huge number of computations and causes a large delay during implementation compared with the
two-stage case.

The multistage scheme is very helpful for sampling rate conversion between audio systems. For
example, to convert CD audio at a sampling rate of 44.1 kHz to MP3 or Digital Audio Tape (DAT), in
which the sampling rate of 48 kHz is used, the conversion factor L=M ¼ 48=44:1 ¼ 160=147 is
required. Using the single stage scheme may cause impractical FIR filter sizes for interpolation and
downsampling. However, since L=M ¼ 160=147 ¼ ð4=3Þð8=7Þð5=7Þ, we may design an efficient
three-stage system, in which stages 1, 2, and 3 use the conversion factors L=M ¼ 8=7, L=M ¼ 5=7,
and L=M ¼ 4=3, respectively.

12.2 POLYPHASE FILTER STRUCTURE AND IMPLEMENTATION
Due to the nature of the decimation and interpolation processes, polyphase filter structures can be
developed to efficiently implement the decimation and interpolation filters (using fewer multiplica-
tions and additions). As we will explain, these filters are all-pass filters with different phase shifts
(Proakis and Manolakis, 1996), thus we call them polyphase filters.

Here, we skip their derivations and illustrate implementations of decimation and interpolation
using simple examples. Consider the interpolation process shown in Figure 12.17, where L ¼ 2.

x n( )

2

w m( ) y m( )

FIGURE 12.17

Upsampling by a factor of 2 and a four-tap interpolation filter.
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We assume that the FIR interpolation filter has four taps, shown as

H
�
z
� ¼ h

�
0
�þ h

�
1
�
z�1 þ h

�
2
�
z�2 þ h

�
3
�
z�3

and the filter output is

yðmÞ ¼ hð0ÞwðmÞ þ hð1Þwðm� 1Þ þ hð2Þwðm� 2Þ þ hð3Þwðm� 3Þ

For the purpose of comparison, the direct interpolation process shown in Figure 12.17 is summarized
in Table 12.1, where wðmÞ is the upsampled signal and yðmÞ the interpolated output. Processing each
input sample xðnÞ requires applying the difference equation twice to obtain yð0Þ and yð1Þ. Hence, for
this example, we need eight multiplications and six additions.

The output results in Table 12.1 can be easily obtained by using the polyphase filters shown in
Figure 12.18.

In general, there are L polyphase filters. With a designed interpolation filter HðzÞ of N taps, we can
determine each bank of filter coefficients as follows:

rk
�
n
� ¼ h

�
k þ nL

�
for k ¼ 0; 1;/; L� 1 and n ¼ 0; 1;/;

N

L
� 1 (12.12)

2

2
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y m1( )
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f s L f s
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w n1( )

FIGURE 12.18

Polyphase filter implementation for the interpolation in Figure 12.17 (4 multiplications and 3 additions for

processing each input sample x(n)).

Table 12.1 Results of the Direct Interpolation Process in Figure 12.17 (8 multiplications and 6
additions for processing each input sample x(n))

n xðnÞ m wðmÞ yðmÞ

n ¼ 0 xð0Þ m ¼ 0 wð0Þ ¼ xð0Þ yð0Þ ¼ hð0Þxð0Þ
m ¼ 1 wð1Þ ¼ 0 yð1Þ ¼ hð1Þxð0Þ

n ¼ 1 xð1Þ m ¼ 2 wð2Þ ¼ xð1Þ yð2Þ ¼ hð0Þxð1Þ þ hð2Þxð0Þ
m ¼ 3 wð3Þ ¼ 0 yð3Þ ¼ hð1Þxð1Þ þ hð3Þxð0Þ

n ¼ 2 xð2Þ m ¼ 4 wð4Þ ¼ xð2Þ yð4Þ ¼ hð0Þxð2Þ þ hð2Þxð1Þ
m ¼ 5 wð5Þ ¼ 0 yð5Þ ¼ hð1Þxð2Þ þ hð3Þxð1Þ

. . . . .
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For our example, L ¼ 2 and N ¼ 4, we have L� 1 ¼ 1, and N=L� 1 ¼ 1, respectively. Hence,
there are two filter banks, r0ðzÞ and r1ðzÞ, each having a length of 2, as illustrated in Figure 12.18.
When k ¼ 0 and n ¼ 1, the upper limit of time index required for hðk þ nLÞ is
k þ nL ¼ 0þ 1� 2 ¼ 2. When k ¼ 1 and n ¼ 1, the upper limit of the time index for h(kþnL) is 3.
Hence, the first filter r0ðzÞ has the coefficients hð0Þ and hð2Þ. Similarly, the second filter r1ðzÞ has
coefficients hð1Þ and hð3Þ. In fact, the filter coefficients of r0ðzÞ are a decimated version of h(n)
starting at k ¼ 0, while the filter coefficients of r1ðzÞ are a decimated version of h(n) starting at k ¼ 1,
and so on.
As shown in Figure 12.18, we can reduce the computational complexity from eight multiplications
and six additions down to four multiplications and three additions for processing each input sample
xðnÞ. Generally, the computation can be reduced by a factor of L as compared with the direct process.

The commutative model for the polyphase interpolation filter is given in Figure 12.19.

EXAMPLE 12.5
Verify y(1) in Table 12.1 using the polyphase filter implementation in Figures 12.18 and 12.19, respectively.

Solution:
Applying the ployphase interpolation filter as shown in Figure 12.18 leads to

w0ðnÞ ¼ hð0ÞxðnÞ þ hð2Þxðn � 1Þ
w1ðnÞ ¼ hð1ÞxðnÞ þ hð3Þxðn � 1Þ

When n ¼ 0,

w0ð0Þ ¼ hð0Þxð0Þ
w1ð0Þ ¼ hð1Þxð0Þ

After interpolation, we have

y0ðmÞ : w0ð0Þ 0 /

and

y1ðmÞ : 0 w1ð0Þ 0 /

Note: there is a unit delay for the second filter bank. Hence

m ¼ 0; y0ð0Þ ¼ hð0Þxð0Þ; y1ð0Þ ¼ 0

m ¼ 1; y0ð1Þ ¼ 0; y1ð1Þ ¼ hð1Þxð0Þ

x n( ) y n0 ( )

y n1( )

y m( )
f s

L f s

Switch

FIGURE 12.19

Commutative model for the polyphase interpolation filter.
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Combining two channels, we finally get

m ¼ 0; yð0Þ ¼ y0ð0Þ þ y1ð0Þ ¼ hð0Þxð0Þ
m ¼ 1; yð1Þ ¼ y0ð1Þ þ y1ð1Þ ¼ hð1Þxð0Þ

Therefore, yð1Þ matches that in the direct interpolation process given in Table 12.1.
Applying the polyphase interpolation filter using the commutative model in Figure 12.19, we have

y0ðnÞ ¼ hð0ÞxðnÞ þ hð2Þxðn � 1Þ
y1ðnÞ ¼ hð1ÞxðnÞ þ hð3Þxðn � 1Þ

When n ¼ 0,

m ¼ 0; yð0Þ ¼ y0ð0Þ ¼ hð0Þxð0Þ þ hð2Þxð � 1Þ ¼ hð0Þxð0Þ
m ¼ 1; yð1Þ ¼ y1ð0Þ ¼ hð1Þxð0Þ þ hð3Þxð � 1Þ ¼ hð1Þxð0Þ

Clearly, yð1Þ ¼ hð1Þxð0Þ matches the yð1Þ result in Table 12.1.

Next, we will briefly explain the properties of polyphase filters (that is, they have all-pass gain and
possible different phases). Each polyphase filter rkðnÞ operating at the original sampling rate fs
(assuming 8 kHz) is a downsampled version of the interpolation filter hðnÞ operating at the upsampling
rate Lfs (32 kHz assuming an interpolation factor of L¼ 4). Considering that the designed interpolation
FIR filter coefficients hðnÞ are the impulse response sequence with a flat frequency spectrum up to
a bandwidth of fs=2 (assuming a bandwidth of 4 kHz with a perfect flat frequency magnitude response,
theoretically) at a sampling rate of Lfs (32 kHz), we then downsample hðnÞ to obtain polyphase filters
by a factor of L ¼ 4 and operate them at a sampling rate of fs (8 kHz).

The Nyquist frequency after downsampling should be ðLfs=2Þ=L ¼ fs=2 (4 kHz); at the same time,
each downsampled sequence rkðnÞ operating at fs (8 kHz) has a flat spectrum up to fs=2 (4 kHz) due to
the fs=2 (4 kHz) bandlimited sequence of hðnÞ at the sampling rate of Lfs (32 kHz). Hence, all of the
ployphase filters are all-pass filters. Since each polyphase rkðnÞ filter has different coefficients, each
may have a different phase. Therefore, these polyphase filters are the all-pass filters with possible
different phases, theoretically.

Next, consider the decimation process in Figure 12.20. Assuming a three-tap decimation filter,
we have

H
�
z
� ¼ h

�
0
�þ h

�
1
�
z�1 þ h

�
2
�
z�2

wðnÞ ¼ hð0ÞxðnÞ þ hð1Þxðn� 1Þ þ hð2Þxðn� 2Þ
The direct decimation process is shown in Table 12.2 for the purpose of comparison. Obtaining each
output yðmÞ requires processing filter difference equations twice, resulting in six multiplications and
four additions for this particular example.

x n( )

2

w n( ) y m( )

FIGURE 12.20

Decimation by a factor of 2 and a three-tap anti-aliasing filter.
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The efficient way to implement a polyphase filter is given in Figure 12.21.
Similarly, there areM polyphase filters. With the designed decimation filter HðzÞ of N taps, we can

obtain filter bank coefficients by

rk
�
n
� ¼ h

�
k þ nM

�
for k ¼ 0; 1;/; M � 1 and n ¼ 0; 1;/;

N

M
� 1 (12.13)

For our example, we see that M � 1 ¼ 1 and N=M � 1 ¼ 1ðrounded upÞ. Thus, we have two
filter banks. Since k ¼ 0 and n ¼ 1, k þ nM ¼ 0þ 1� 2 ¼ 2. The time index upper limit
required for hðk þ nMÞ is 2 for the first filter bank r0ðzÞ. Hence r0ðzÞ has filter coefficients hð0Þ
and hð2Þ.

However, when k ¼ 1 and n ¼ 1, k þ nM ¼ 1þ 1� 2 ¼ 3, the time index upper limit required
for hðk þ nMÞ is 3 for the second filter bank, and the corresponding filter coefficients are required to be
hð1Þ and hð3Þ. Since our direct interpolation filter hðnÞ does not contain the coefficient hð3Þ, we set
hð3Þ ¼ 0 to get the second filter bank with one tap only, as shown in Figure 12.21. Also as shown in
that figure, achieving each yðmÞ requires three multiplications and one addition. In general, the number
of multiplications can be reduced by a factor of M.

The commutative model for the polyphase decimator is shown in Figure 12.22.

Table 12.2 Results of the Direct Decimation Process in Figure 12.20 (6 multiplications and 4
additions for obtaining each output yðmÞ)
n xðnÞ wðnÞ m yðmÞ

n ¼ 0 xð0Þ wð0Þ ¼ hð0Þxð0Þ m ¼ 0 yð0Þ ¼ hð0Þxð0Þ
n ¼ 1 xð1Þ wð1Þ ¼ hð0Þxð1Þ þ hð1Þxð0Þ discard
n ¼ 2 xð2Þ wð2Þ ¼ hð0Þxð2Þ þ hð1Þxð1Þ þ hð2Þxð0Þ m ¼ 1

yð1Þ ¼ hð0Þxð2Þþ
hð1Þxð1Þ þ hð2Þxð0Þ

n ¼ 3 xð3Þ wð3Þ ¼ hð0Þxð3Þ þ hð1Þxð2Þ þ hð2Þxð1Þ discard
n ¼ 4 xð5Þ wð4Þ ¼ hð0Þxð4Þ þ hð1Þxð3Þ þ hð2Þxð2Þ m ¼ 2

yð2Þ ¼ hð0Þxð4Þþ
hð1Þxð3Þ þ hð2Þxð2Þ

n ¼ 5 xð6Þ wð5Þ ¼ hð0Þxð5Þ þ hð1Þxð4Þ þ hð2Þxð3Þ discard
. . . . .
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FIGURE 12.21

Polyphase filter implementation for the decimation in Figure 12.20. (3 multiplications and 1 addition for obtaining

each output y(m)).
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EXAMPLE 12.6
Verify y(1) in Table 12.2 using the polyphase decimation filter implementation in Figure 12.21.

Solution:
Using Figure 12.21, we write the difference equations as

y0ðmÞ ¼ hð0Þw0ðmÞ þ hð2Þw0ðm � 1Þ
y1ðmÞ ¼ hð1Þw1ðmÞ

Assuming n ¼ 0, n ¼ 1, n ¼ 2, and n ¼ 3, we have the inputs as xð0Þ, xð1Þ, xð2Þ and xð3Þ, and
w0ðmÞ : xð0Þ xð2Þ /

Delaying xðnÞ by one sample and decimating it by a factor or 2 leads to

w1ðmÞ : 0 xð1Þ xð3Þ /

Hence, applying the filter banks yields the following: For m ¼ 0, we have inputs for each filter as

w0ð0Þ ¼ xð0Þ and w1ð0Þ ¼ 0

Then

y0ð0Þ ¼ hð0Þw0ð0Þ þ hð2Þw0ð � 1Þ ¼ hð0Þxð0Þ

y1ð0Þ ¼ hð1Þw1ð0Þ ¼ hð1Þ � 0 ¼ 0

Combining two channels, we obtain

yð1Þ ¼ y0ð1Þ þ y1ð1Þ ¼ hð0Þxð0Þ þ 0 ¼ hð0Þxð0Þ
For m ¼ 1, we get inputs for each filter as

w0ð1Þ ¼ xð2Þ and w1ð1Þ ¼ xð1Þ
Then

y0ð1Þ ¼ hð0Þw0ð1Þ þ hð2Þw0ð0Þ ¼ hð0Þxð2Þ þ hð2Þxð0Þ

y1ð1Þ ¼ hð1Þw1ð1Þ ¼ hð1Þxð1Þ
Combining two channels leads to

yð1Þ ¼ y0ð1Þ þ y1ð1Þ ¼ hð0Þxð2Þ þ hð2Þxð0Þ þ hð1Þxð1Þ
We note that yð1Þ is the same as that shown in Table 12.2. Similar analysis can be done for the commutative
model shown in Figure 12.22.
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FIGURE 12.22

Commutative model for the polyphase decimation filter.
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Program 12.5 demonstrates the polyphase implementation of decimation. The program is modified
based on Program 12.1.
Program 12.5. Decimation using polyphase implementation.

close all; clear all;
% Downsampling filter (see Chapter 7 for FIR filter design)
B ¼[0.00074961181416 0.00247663033476 0.00146938649416 -0.00440446121505.
-0.00910635730662 0.00000000000000 0.02035676831506 0.02233710562885.
-0.01712963672810 -0.06376620649567 -0.03590670035210 0.10660980550088.
0.29014909103794 0.37500000000000 0.29014909103794 0.10660980550088.
-0.03590670035210 -0.06376620649567 -0.01712963672810 0.02233710562885.
0.02035676831506 0.00000000000000 -0.00910635730662 -0.00440446121505.
0.00146938649416 0.00247663033476 0.00074961181416];

% Generate 2048 samples
fs¼8000; % Sampling rate
N¼2048; % Number of samples
M¼2; % Downsample factor
n¼0:1:N-1;
x¼5*sin(n*pi/4)þcos(5*n*pi/8);
% Compute the single-sided amplitude spectrum
% AC component will be doubled, and DC component will be kept the
% same value
X¼2*abs(fft(x,N))/N;X(1)¼X(1)/2;
% Map the frequency index up to the folding frequency in Hz
f¼[0:1:N/2-1]*fs/N;
% Decimation
w0¼x(1:M:N); p0¼B(1:2:length(B)); % Downsampling
w1¼filter([0 1],1,x); % Delay one sample
w1¼w1(1:M:N); p1¼B(2:M:length(B)) % Downsampling
y¼filter(p0,1,w0)þfilter(p1,1,w1);
NM¼length(y); % Length of the downsampled data
% Compute the single-sided amplitude spectrum for the downsampled
% signal
Y¼2*abs(fft(y,NM))/NM;Y(1)¼Y(1)/2;
% Map the frequency index to the frequency in Hz
fsM¼[0:1:NM/2-1]*(fs/M)/NM;
% Plot spectra
subplot(2,1,1);plot(f,X(1:1:N/2));grid; xlabel(’Frequency (Hz)’);
subplot(2,1,2);plot(fsM,Y(1:1:NM/2));grid; xlabel(’Frequency (Hz)’);

Program 12.6 demonstrates polyphase implementation of interpolation using the information in
Program 12.2.
Program 12.6. Interpolation using polyphase implementation.

close all; clear all
% Upsampling filter (see Chapter 7 for FIR filter design)
B ¼[ -0.00012783931504 0.00069976044649 0.00123831516738 0.00100277549136.
-0.00025059018468 -0.00203448515158 -0.00300830295487 -0.00174101657599.
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0.00188598835011 0.00578414933758 0.00649330625041 0.00177982369523.
-0.00670672686935 -0.01319379342716 -0.01116855281442 0.00123034314117.
0.01775600060894 0.02614700427364 0.01594155162392 -0.01235169936557.
-0.04334322148505 -0.05244745563466 -0.01951094855292 0.05718573279009.
0.15568416401644 0.23851539047347 0.27083333333333 0.23851539047347.
0.15568416401644 0.05718573279009 -0.01951094855292 -0.05244745563466.
-0.04334322148505 -0.01235169936557 0.01594155162392 0.02614700427364.
0.01775600060894 0.00123034314117 -0.01116855281442 -0.01319379342716.
-0.00670672686935 0.00177982369523 0.00649330625041 0.00578414933758.
0.00188598835011 -0.00174101657599 -0.00300830295487 -0.00203448515158.
-0.00025059018468 0.00100277549136 0.00123831516738 0.00069976044649.
-0.00012783931504];

% Generate 2048 samples with fs¼8000 Hz
fs¼8000; % Sampling rate
N¼2048; % Number of samples
L ¼ 3; % Upsampling factor
n¼0:1:N-1;
x¼5*sin(n*pi/4)þcos(5*n*pi/8);
p0¼B(1:L:length(B)); p1¼B(2:L:length(B)); p2¼B(3:L:length(B));
% Interpolation
w0¼filter(p0,1,x);
w1¼filter(p1,1,x);
w2¼filter(p2,1,x);
y0¼zeros(1,L*N);y0(1:L:length(y0))¼w0;
y1¼zeros(1,L*N);y1(1:L:length(y1))¼w1;
y1¼filter([0 1],1,y1);
y2¼zeros(1,L*N);y2(1:L:length(y2))¼w2;
y2¼filter([0 0 1],1,y2);
y¼y0þy1þy2; % Interpolated signal
NL ¼ length(y); % Length of the upsampled data
X¼2*abs(fft(x,N))/N;X(1)¼X(1)/2; % Compute the one-sided amplitude

% spectrum
f¼[0:1:N/2-1]*fs/N; % Map the frequency index to the frequency (Hz)
Y¼2*abs(fft(y,NL))/NL;Y(1)¼Y(1)/2; % Compute the one-sided amplitude

% spectrum
fsL¼[0:1:NL/2-1]*fs*L/NL; % Map the frequency index to the frequency (Hz)
subplot(2,1,1);plot(f,X(1:1:N/2));grid; xlabel(’Frequency (Hz)’);
subplot(2,1,2);plot(fsL,Y(1:1:NL/2));grid; xlabel(’Frequency (Hz)’);

Note that wavelet transform and subband coding are also topics in the area of multirate signal
processing. We will pursue these subjects in Chapter 13.

12.3 OVERSAMPLING OF ANALOG-TO-DIGITAL CONVERSION
Oversampling of the analog signal has become more popular in the DSP industry to improve the
resolution of analog-to-digital conversion (ADC). Oversampling uses a sampling rate that is much
higher than the Nyquist rate. We can define an oversampling ratio as
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fs
2fmax

>> 1 (12.14)

The benefits of an oversampling ADC include

1. helping to design a simple analog anti-aliasing filter before ADC, and
2. reducing the ADC noise floor with possible noise shaping so that a low-resolution

ADC can be used.

12.3.1 Oversampling and Analog-to-Digital Conversion Resolution

To begin developing the relation between oversampling and ADC resolution, we first summarize the
regular ADC and some useful definitions discussed in Chapter 2:

Quantization noise power ¼ s2q ¼ D2

12
(12.15)

Quantization step ¼ D ¼ A

2n
(12.16)

where A ¼ full range of the analog signal to be digitized and n ¼ number of bits per sample (ADC
resolution).

Substituting Equation (12.16) into Equation (12.15), we have

Quantization noise power ¼ s2q ¼ A2

12
� 2�2n (12.17)

The power spectral density of the quantization noise with an assumption of uniform probability
distribution is shown in Figure 12.23. Note that this assumption is true for quantizing a uniformly
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FIGURE 12.23

Regular ADC system.

586 CHAPTER 12 Multirate Digital Signal Processing



distributed signal in a full range with a sufficiently long duration. It is not generally true in practice.
See research papers authored by Lipshitz et al. (1992) and Maher (1992). However, using the
assumption will guide us to some useful results for oversampling systems.

The quantization noise power is the area obtained from integrating the power spectral density
function in the range of �fs=2 to fs=2. Now let us examine the oversampling ADC, where the
sampling rate is much larger than that of the regular ADC; that is fs >> 2fmax. The scheme is shown in
Figure 12.24.

As we can see, oversampling can reduce the level of noise power spectral density. After the
decimation process with the decimation filter, only a portion of quantization noise power in the range
from �fmax and fmax is kept in the DSP system. We call this an in-band frequency range.

In Figure 12.24, the shaded area, which is the quantization noise power, is given by

Quantization noise power ¼
ZN

�N

P
�
f
�
df ¼ 2fmax

fs
� s2q ¼ 2fmax

fs
$
A2

12
� 2�2m (12.18)

Assuming that the regular ADC shown in Figure 12.23 and the oversampling ADC shown in
Figure 12.24 are equivalent, we set their quantization noise powers to be the same to obtain

A2

12
$2�2n ¼ 2fmax

fs
$
A2

12
� 2�2m (12.19)

Equation (12.19) leads to two useful equations for applications:

n ¼ mþ 0:5� log2

�
fs

2fmax

�
and (12.20)

fs ¼ 2fmax � 22ðn�mÞ (12.21)
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FIGURE 12.24

Oversampling ADC system.
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where

fs ¼ sampling rate in the oversampling DSP system
fmax ¼ maximum frequency of the analog signal
m ¼ number of bits per sample in the oversampling DSP system
n ¼ number of bits per sample in the regular DSP system using the minimum sampling rate

From Equation (12.20) and given the number of bits (m) used in the oversampling scheme, we can
determine the number of bits per sample equivalent to the regular ADC. On the other hand, given the
number of bits in the oversampling ADC, we can determine the required oversampling rate so that the
oversampling ADC is equivalent to the regular ADC with the larger number of bits per sample (n). Let
us look at the following examples.

EXAMPLE 12.7
Given an oversampling audio DSP system with maximum audio input frequency of 20 kHz and ADC resolution of
14 bits, determine the oversampling rate to improve the ADC resolution to 16-bit resolution.

Solution:
Based on the specifications, we have

fmax ¼ 20 kHz; m ¼ 14 bits and n ¼ 16 bits

Using Equation (12.21) leads to

fs ¼ 2fmax � 22ðn�mÞ ¼ 2� 20� 22ð16�14Þ ¼ 640 kHz

Since fs=ð2fmaxÞ ¼ 24, we see that each doubling of the minimum sampling rate (2fmax ¼ 40 kHz) will increase
the resolution by a half bit.

EXAMPLE 12.8
Given an oversampling audio DSP system with a maximum audio input frequency of 4 kHz, and ADC resolution of 8
bits, an a sampling rate of 80 MHz, determine the equivalent ADC resolution.

Solution:
Since fmax ¼ 4 kHz, fs ¼ 80 kHz, and m ¼ 8 bits, appyling Equation (12.20) yields

n ¼ m þ 0:5� log2

�
fs

2fmax

�
¼ 8þ 0:5� log2

�
80;000 kHz

2� 4 kHz

�
z15 bits

The MATLAB program shown in Program 12.7 validates the oversampling technique. We consider
the following signal,

xðtÞ ¼ 1:5 sin ð2p� 150tÞ þ 0:9 sin ð2p� 175t þ p=6Þ þ 0:6 sin ð2p� 200t þ p=4Þ (12.22)

with a regular sampling rate of 1 kHz. The oversampling rate is 4 kHz and each sample is quantized
using a 3-bit code. The anti-aliasing lowpass filter is designed with a cutoff frequency of
U ¼ 2pfmaxT ¼ 2p� 500=4;000 ¼ 0:25p radians. Figure 12.25 shows the frequency responses of
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the designed filter while Figure 12.26 compares the signals in the time and frequency domains,
respectively, where xðtÞ denotes the continuous version, xqðnÞ is the quantized version using a regular
sampling rate of 1 kHz, and yqðnÞ is the enhanced version using the oversampling system with L ¼ 4.
The detailed amplitude comparisons are given in Figure 12.27. The measured signal-to-noise ratios
(SNRs) are 14.3 dB using the regular sampling system and 21.0 dB using the oversampling system.
Since L¼ 4, the achieved signal is expected to have 4-bit quality (0:5� log2 4 ¼ 1 bit improvement).
From simulation, we achieve an SNR improvement of approximately 6dB. The improvement will stop
when L increases due to the fact that when the sampling increases the quantization error may have
correlation with the sinusoidal signal. The degradation performance can be cured using the dithering
technique (Tan and Wang, 2011), which is beyond our scope.
Program 12.7. Oversampling implementation.

clear all; close all,clc
ntotal¼512;
n¼0:ntotal; % Number of samples
L¼4; % Oversampling factor
nL¼0:ntotal*L; % Number of samples for oversampling
numb¼3; % Number of bits
A¼2^(numb-1)-1; % Peak value
f1¼150;C1¼0.5*A;f2¼175;C2¼A*0.3;f3¼200;C3¼A*0.2; % Frequencies and amplitudes
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FIGURE 12.25

Frequency responses of the designed filter.

12.3 Oversampling of Analog-to-Digital Conversion 589



fmax¼500;fs¼1000;T¼1/fs; % Maximum frequency, sampling rate, sampling period
fsL¼L*fs;TL¼1/fsL;% Oversampling rate and oversampling period
% Sampling at fs¼1000 Hz
x¼C1*sin(2*pi*f1*n*T)þC2*sin(2*pi*f2*T*nþpi/6)þC3*sin(2*pi*f3*T*nþpi/4);
xq¼round(x); % Quantized signal at the minimum sampling rate
NN¼length(n);
f¼[0:ntotal-1]*fs/NN;
M¼32*L;nd¼M/L; % Delay in terms of samples due to anti-aliasing filtering
B¼firwd(2*Mþ1,1,2*pi*fmax/fsL,0,4); % Anti-aliasing filter design (5% transition
% bandwidth)
figure(1);
freqz(B,1,1000,fsL)
% Oversampling
xx¼C1*sin(2*pi*f1*nL*TL)þC2*sin(2*pi*f2*nL*TLþpi/6)þC3*sin(2*pi*f3*nL*TLþpi/4);
xxq¼round(xx); % Quantized signal
% Down sampling
y¼filter(B,1,xxq);% Anti-aliasing filtering
yd¼y(1:L:length(y));% Downsample
figure (2)
subplot(3,2,1);plot(n,x,’k’);grid;axis([0 500 -5 5]);ylabel(’x(t)’)
Ak¼2*abs(fft(x))/NN; Ak(1)¼Ak(1)/2;
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Signal comparisons in both the time and frequency domains.
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subplot(3,2,2);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid;ylabel(’X(f)’); axis([0 500
-4 2])
subplot(3,2,3);plot(n,xq,’k’);grid;axis([0 500 -5 5]);ylabel(’xq(n)’);
Ak¼2*abs(fft(xq))/NN; Ak(1)¼Ak(1)/2;
subplot(3,2,4);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid;ylabel(’Xq(f)’); axis([0 500
-4 2])
subplot(3,2,5);plot(n,yd,’k’);grid;axis([0 500 -5 5]);ylabel(’yq(n)’);
xlabel(’Sample number’);
Ak¼2*abs(fft(yd))/NN; Ak(1)¼Ak(1)/2;
subplot(3,2,6);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid;ylabel(’Yq(f)’); axis([0 500
-4 2])
xlabel(’Frequency (Hz)’);
figure (3)
plot(n(1:50),x(1:50),’k’,’LineWidth’,2); hold % Plot of first 50 samples
stairs(n(1:50),xq(1:50),’b’);
stairs(n(1:50),yd(1þnd:50þnd),’r’,’LineWidth’,2);grid
axis([0 50 -5 5]);xlabel(’Sample number’);ylabel(’Amplitudes’)
snr(x,xq);
snr(x(1:ntotal-nd),yd(1þnd:ntotal));
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Comparisons of continuous, regular sampled, and oversampled signal amplitudes.
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12.3.2 Sigma-Delta Modulation Analog-to-Digital Conversion

To further improve ADC resolution, sigma-delta modulation (SDM) ADC is used. The principles of
the first-order SDM are described in Figure 12.28.

First, the analog signal is sampled to obtain the discrete-time signal xðnÞ. This discrete-time signal
is subtracted by the analog output from the m-bit DAC, converting the m-bit oversampled digital signal
yðnÞ. Then the difference is sent to the discrete-time analog integrator, which is implemented by the
switched-capacitor technique, for example. The output from the discrete-time analog integrator is
converted using an m-bit ADC to produce the oversampled digital signal. Finally, the decimation filter
removes outband quantization noise. Further decimation processes can change the oversampling rate
back to the desired sampling rate for the output digital signal w(m).

To examine the SDM, we need to develop a DSP model for the discrete-time analog filter described
in Figure 12.29.

As shown in Figure 12.29, the input signal cðnÞ designates the amplitude at time instant n, while the
output dðnÞ is the area under the curve at time instant n, which can be expressed as a sum of the area
under the curve at time instant n� 1 and an area increment:

dðnÞ ¼ dðn� 1Þ þ area incremetal

Using the extrapolation method, we have

dðnÞ ¼ dðn� 1Þ þ 1� cðnÞ (12.23)

Applying the z-transform to Equation (12.23) leads to a transfer function of the discrete-time analog
filter as

H
�
z
� ¼ DðzÞ

CðzÞ ¼ 1

1� z�1
(12.24)

Again, considering that them-bit quantization requires one sample delay, we get the DSP model for the
first-order SDM depicted in Figure 12.30, where yðnÞ is the oversampling data encoded by m bits each,
and eðnÞ represents quantization error.

The SDM DSP model represents a feedback control system. Appling the z-transform leads to

Y
�
z
� ¼ 1

1� z�1

�
X
�
z
�� z�1Y

�
z
��þ E

�
z
�

(12.25)
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FIGURE 12.28

Block diagram of SDM ADC.
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After simple algebra, we have

Y
�
z
� ¼ XðzÞ|ffl{zffl}

Original

digital signal

transform

þ �1� z�1
�

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Highpass

filter

$ EðzÞ|ffl{zffl}
Quantization

error

transform

(12.26)

In Equation (12.26), the indicated highpass filter pushes quantization noise to the high-frequency
range, where later the quantization noise can be removed by the decimation filter. Thus we call this
highpass filter ð1� z�1Þ the noise shaping filter (illustrated in Figure 12.31).

Shaped-in-band noise power after use of decimation filter can be estimated by the solid area under
the curve. We have

Shaped-in-band noise power ¼
ZUmax

�Umax

s2q

2p

		1� e�jU
		2dU (12.27)
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FIGURE 12.29

Illustration of discrete-time analog integrator.
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DSP model for first-order SDM ADC.
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Using the Maclaurin series expansion and neglecting the higher-order terms due to the small value of
Umax, we yield

1� e�jU ¼ 1�
 
1þ ð�jUÞ

1!
þ ð�jUÞ2

2!
þ/

!
z jU

Applying this approximation to Equation (12.27) leads to

Shaped-in-band noise powerz

ZUmax

�Umax

s2q

2p
jjUj2dU ¼ s2q

3p
U3
max (12.28)

After simple algebra, we have

Shaped-in-band noise powerz
p2s2q

3

�
2fmax

fs

�3

¼ p2

3
$
A22�2m

12

�
2fmax

fs

�3

(12.29)

If we let the shaped-in-band noise power equal the quantization noise power from the regular ADC
using a minimum sampling rate, we have

p2

3
$
A22�2m

12

�
2fmax

fs

�3

¼ A2

12
$2�2n (12.30)
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Noise shaping of quantization noise for SDM ADC.
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We modify Equation (12.30) into the following useful formats for applications:

n ¼ mþ 1:5� log2

�
fs

2fmax

�
� 0:86 (12.31)

�
fs

2fmax

�3

¼ p2

3
� 22ðn�mÞ (12.32)

EXAMPLE 12.9
Given the following DSP system specifications, determine the equivalent ADC resolution.

Oversampling rate system
First-order SDM with 2-bit ADC
Sampling rate ¼ 4 MHz
Maximum audio input frequency ¼ 4 kHz

Solution:
Since m ¼ 2 bits, and

fs
2fmax

¼ 4;000 kHz

2� 4 kHz
¼ 500

we calculate

n ¼ m þ 1:5� log2

�
fs

2fmax

�
� 0:86 ¼ 2þ 1:5� log2 ð500Þ � 0:86z15 bits

We can also extend the first-order SDM DSP model to the second-order SDM DSP model by
cascading one section of the first-order discrete-time analog filter as depicted in Figure 12.32.

Similarly to the first-order SDM DSP model, applying the z-transform leads to the following
relationship:

Y
�
z
� ¼ XðzÞ|ffl{zffl}

Original

digital signal

transform

þ �
1� z�1

�
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Highpass

noise shaping

filter

2 $ EðzÞ|ffl{zffl}
Quantization

error

transform

(12.33)

Notice that the noise shape filter becomes a second-order highpass filter; hence, the more quantization
noise is pushed to the high frequency range, the better ADC resolution is expected to be. In a similar
analysis to the first-order SDM, we get the following useful formulas:

n ¼ mþ 2:5� log2

�
fs

2fmax

�
� 2:14 (12.34)
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DSP model for the second-order SDM ADC.

�
fs

2fmax

�5

¼ p4

5
� 22ðn�mÞ (12.35)

In general, the Kth-order SDM DSP model and ADC resolution formulas are given as

Y
�
z
� ¼ XðzÞ|ffl{zffl}

Original

digital signal

transform

þ �
1� z�1

�K
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Highpass

noise shaping

filter

� EðzÞ|ffl{zffl}
Quantization

error

transform

(12.36)

n ¼ mþ 0:5$ð2K þ 1Þ � log2

�
fs

2fmax

�
� 0:5� log2

�
p2K

2K þ 1

�
(12.37)

�
fs

2fmax

�2Kþ1

¼ p2K

2K þ 1
� 22ðn�mÞ (12.38)

EXAMPLE 12.10
Given an oversampling rate DSP system with the following specifications, determine the effective ADC resolution:

Second-order SDM ¼ 1-bit ADC
Sampling rate ¼ 1 MHz
Maximum audio input frequency ¼ 4 kHz

Solution:

n ¼ 1þ 2:5� log2

�
1;000 kHz

2� 4 kHz

�
� 2:14z16 bits
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We implement the first-order SDMsystemusing the same continuous signal inEquation (12.22). The
continuoussignal isoriginally sampledat1kHzandeachsample isencodedusing3bits.TheSDMsystem
uses an oversampling rate of 8 kHz (L ¼ 8) and each sample is quantized using a 3-bit code. The anti-
aliasing lowpass filter is designedwith a cutoff frequency ofU ¼ 2pfmaxT ¼ 2p� 500=8;000 ¼ p=8
radians. Figure 12.33 shows the frequency responses of the designed filter while Figure 12.34
compares the time and frequency domain signals, where xðtÞ designates the continuous version, xqðnÞ
denotes the quantized version using a regular sampling rate (L ¼ 1), and yqðnÞ is the enhanced version
using L ¼ 8. The detailed amplitude comparisons are given in Figure 12.35. The measured SNRs are
14.3 dB in the regular sampling system and 33.83 dB in the oversampling SDM system. We observe
a significant SNR improvement of 19.5 dB. The detailed implementation using MATLAB is given in
Program 12.8.
Program 12.8. First-order SDM oversampling implementation.

clear all; close all;clc
ntotal¼512; % Number of samples
n¼0:ntotal;
L¼8; % Oversampling factor
nL¼0:ntotal*L;numb¼3;A¼2^(numb-1)-1; % Peak value
f1¼150;C1¼0.5*A;f2¼175;C2¼A*0.3;f3¼200;C3¼A*0.2;% Frequencies and amplitudes
fmax¼500;fs¼1000; T¼1/fs; % Sampling rate and sampling period
fsL¼L*fs;TL¼1/fsL; % Oversampling rate and oversampling period
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FIGURE 12.33

Frequency responses of the designed filter.
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% Sampling at fs ¼ 1000 Hz
x¼C1*sin(2*pi*f1*n*T)þC2*sin(2*pi*f2*T*nþpi/6)þC3*sin(2*pi*f3*T*nþpi/4);
xq¼round(x); % Quantization
NN¼length(n);
M¼32*L;nd¼M/L; % Delay in terms of samples for anti-aliasing filtering
B¼firwd(2*Mþ1,1,2*pi*fmax/fsL,0,4); % Design of an anti-aliasing filter
figure(1)
freqz(B,1,1000,fsL);
% Oversampling
xx¼C1*sin(2*pi*f1*nL*TL)þC2*sin(2*pi*f2*nL*TLþpi/6)þC3*sin(2*pi*f3*nL*TLþpi/4);
% The first-order SDM processing
yq¼zeros(1,ntotal*Lþ1þ1); % Initializing the buffer
y¼yq;

for i¼1:ntotal*L
y(iþ1)¼(xx(iþ1)-yq(i))þy(i);
yq(iþ1)¼round(y(iþ1));

end
xxq¼yq(1:ntotal*Lþ1); % Signal quantization
% Downsampling
y¼filter(B,1,xxq);
yd¼y(1:L:length(y));
f¼[0:ntotal-1]*fs/NN;
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Signal comparisons in both the time and frequency domains.
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figure (2)
subplot(3,2,1);plot(n,x,’k’);grid;axis([0 500 -5 5]);ylabel(’x(t)’);
Ak¼2*abs(fft(x))/NN; Ak(1)¼Ak(1)/2;
subplot(3,2,2);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid;
axis([0 500 -3 2]);ylabel(’X(f)’);
subplot(3,2,3);plot(n,xq,’k’);grid;axis([0 500 -5 5]);ylabel(’xq(n)’);
Ak¼2*abs(fft(xq))/NN; Ak(1)¼Ak(1)/2;
subplot(3,2,4);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid
axis([0 500 -3 2]);ylabel(’Xq(f)’);
subplot(3,2,5);plot(n,yd,’k’);grid;axis([0 500 -5 5]);ylabel(’yq(n)’);
xlabel(’Sample number’);
Ak¼2*abs(fft(yd))/NN; Ak(1)¼Ak(1)/2;
subplot(3,2,6);plot(f(1:NN/2),log10(Ak(1:NN/2)),’k’);grid
axis([0 500 -3 2]);ylabel(’Yq(f)’);xlabel(’Frequency (Hz)’);
figure (3)
plot(n(1:50),x(1:50),’k’,’LineWidth’,2); hold
stairs(n(1:50),xq(1:50),’b’);
stairs(n(1:50),yd(1þnd:50þnd),’r’,’LineWidth’,2);
axis([0 50 -5 5]);grid;xlabel(’Sample number’);ylabel(’Amplitudes’);
snr(x,xq);
snr(x(1:ntotal-nd),yd(1þnd:ntotal));
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FIGURE 12.35

Comparison of continuous, regular sampled, and oversampled signal amplitudes.
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Next, we review application of oversampling ADC in industry. Figure 12.36 illustrates a function
diagram for the MAX1402 low-power, multichannel oversampling sigma-delta analog-to-digital
converter used in industry. It applies a sigma-delta modulator with a digital decimation filter to achieve
16-bit accuracy. The device offers three fully differential input channels, which can be independently
programmed. It can also be configured as five pseudo-differential input channels. It comprises two
chopper buffer amplifiers and a programmable gain amplifier, a DAC unit with predicted input sub-
tracted from the analog input to acquire the differential signal, and a second-order switched-capacitor
sigma-delta modulator.

The chip produces a 1-bit data stream, which will be filtered by the integrated digital filter to
complete ADC. The digital filter’s user-selectable decimation factor offers flexibility as conversion
resolution can be reduced in exchange for a higher data rate or vice versa. The integrated digital
lowpass filter is a first-order or third-order Sinc infinite impulse response filter. Such a filter offers
notches corresponding to its output data rate and its frequency harmonics, so it can effectively reduce
the developed image noises in the frequency domain (the Sinc filter is beyond the scope of our
discussion). The MAX1402 can provide 16-bit accuracy at 480 samples per second and 12-bit
accuracy at 4,800 samples per second. The chip finds wide application in sensors and instrumentation.
The MAX1402 data sheet contains detailed figure information (Maxim Integrated Products, 2007).

FIGURE 12.36

Functional diagram for the sigma-delta ADC.
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12.4 APPLICATION EXAMPLE: CD PLAYER
Figure 12.37 illustrates a CD playback system, also described earlier in this chapter. A laser
optically scans the tracks on a CD to produce a digital signal. The digital signal is then
demodulated, and parity bits are used to detect bit errors due to manufacturing defects, dust, and so
on, and to correct them. The demodulated signal is again oversampled by a factor of 4 and hence
the sampling rate is increased to 176.4 kHz for each channel. Each digital sample then passes
through a 14-bit DAC, which produces the sample-and-hold voltage signals that pass the anti-image
lowpass filter. The output from each analog filter is fed to its corresponding loudspeaker. Over-
sampling relaxes the design requirements of the analog anti-image lowpass filter, which is used to
smooth out the voltage steps.

The earliest system used a third-order Bessel filter with a 3-dB gain attenuation at 30 kHz. Notice
that first-order sigma delta modulation (first-order SDM) is added to the 14-bit DAC unit to further
improve the 14-bit DAC to 16-bit DAC.

Let us examine the single-channel DSP portion as shown in Figure 12.38.
The spectral plots for the oversampled and interpolated signal xðnÞ, the 14-bit SDM output yðnÞ,

and the final analog output audio signal are given in Figure 12.39. As we can see in plot (a) in the
figure, the quantization noise is uniformly distributed, and only in-band quantization noise (0 to 22.05
kHz) is expected. Again, 14 bits for each sample are kept after oversampling. Without using the first-
order SDM, we expect the effective ADC resolution due to oversampling to be

n ¼ 14þ 0:5� log2

�
176:4

44:1

�
¼ 15 bits

which is fewer than 16 bits. To improve quality further, the first-order SDM is used. The in-band
quantization noise is then shaped. The first-order SDM pushes quantization noise to the high-
frequency range, as illustrated in plot (b) in Figure 12.39. The effective ADC resolution now becomes

n ¼ 14þ 1:5� log2

�
176:4

44:1

�
� 0:86z 16 bits
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FIGURE 12.37

Simplified decoder of a CD recording system.
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Hence, 16-bit ADC audio quality is preserved. On the other hand, from plot (c) in Figure 12.39, the
audio occupies a frequency range up to 22.05 kHz, while the DSP Nyquist limit is 88.2 kHz, so the
low-order analog anti-image filter can satisfy the design requirement.
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Illustration of oversampling and SDM ADC used in the decoder of a CD recording system.
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FIGURE 12.39

Spectral illustrations for oversampling and SDM ADC used in the decoder of a CD recording system.
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12.5 UNDERSAMPLING OF BANDPASS SIGNALS
As we discussed in Chapter 2, the sampling theorem requires that the sampling rate be twice as large as
the highest frequency of the analog signal to be sampled. The sampling theorem ensures the complete
reconstruction of the analog signal without aliasing distortion. In some applications, such as the
modulated signals in communications systems, the signal exists in only a small portion of the band-
width. Figure 12.40 shows an amplitude modulated (AM) signal in both the time domain and
frequency domain. Assuming that the message signal has a bandwidth of 4 kHz and a carrier frequency
of 96 kHz, the upper frequency edge of the AM signal is therefore 100 kHz (fcþB). Then the tradi-
tional sampling process requires that the sampling rate be larger than 200 kHz 2(fcþB), resulting in at
a high processing cost. Note that sampling the baseband signal of 4 kHz only requires a sampling rate
of 8 kHz (2B).

If a certain condition is satisfied at the undersampling stage, we are able to make use of the aliasing
signal to recover the message signal, since the aliasing signal contains the folded original message
information (which we used to consider distortion). The reader is referred to the undersampling
technique discussed in Ifeachor and Jervis (2002) and Porat (1997). Let the message to be recovered
have a bandwidth of B, the theoretical minimum sampling rate be fs ¼ 2B, and the carrier frequency
of the modulated signal be fc. We discuss the following cases.

Case 1
If fc ¼ even integer� B and fc ¼ 2B, the sampled spectrum with all the replicas will be as shown

in Figure 12.41(a).
As an illustrative example in the time domain for Case 1, suppose we have a bandpass signal with

a carrier frequency of 20 Hz; that is,

xðtÞ ¼ cos ð2p� 20tÞmðtÞ (12.39)

t
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f
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spectrum with a

bandwidth of B Hz

FIGURE 12.40

Message signal, modulated signal, and their spectra.
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where mðtÞ is the message signal with a bandwidth of 2 Hz. Using a sampling rate of 4 Hz by
substituting t ¼ nT , where T ¼ 1=fs into Equation (12.39), we get the sampled signal as

xðnTÞ ¼ cos ð2p� 20tÞmðtÞ		
t¼nT

¼ cos ð2p� 20n=4ÞmðnTÞ (12.40)

Since 10np ¼ 5nð2pÞ is a multiple of 2p,

cos ð2p� 20n=4Þ ¼ cos ð10pnÞ ¼ 1 (12.41)

we obtain the undersampled signal as

xðnTÞ ¼ cos ð2p� 20n=4ÞmðnTÞ ¼ mðnTÞ (12.42)

which is a perfect digital message signal. Figure 12.42 shows the bandpass signal and its sampled
signals when the message signal is 1 Hz, given as

mðtÞ ¼ cos ð2ptÞ (12.43)

Case 2
If fc ¼ odd integer� B and fc ¼ 2B, the sampled spectrum with all the replicas will be as

shown in Figure 12.41(b), where the spectral portions L and U are reversed. Hence, frequency
reversal will occur. Then a further digital modulation in which the signal is multiplied by the
digital oscillator with a frequency of B Hz can be used to adjust the spectrum to be the same as
that in Case 1.

As another illustrative example for Case 2, let us sample the following the bandpass signal with
a carrier frequency of 22 Hz, given by

xðtÞ ¼ cos ð2p� 22tÞmðtÞ (12.44)
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FIGURE 12.41

Spectrum of the undersampled signal.
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Applying undersampling using a sampling rate of 4 Hz, it follows that

xðnTÞ ¼ cos ð2p� 22n=4ÞmðnTÞ ¼ cos ð11npÞmðnTÞ (12.45)

Since 11np can be either an odd or an even integer multiple of p, we have

cos
�
11pn

� ¼
(
�1 n ¼ odd

1 n ¼ even
(12.46)

We see that Equation (12.46) causes the message samples to change sign alternatively with a carrier
frequency of 22 Hz, which is the odd integer multiple of the message bandwidth of 2 Hz. This in fact
will reverse the baseband message spectrum. To correct the spectrum reversal, we multiply an
oscillator with a frequency of B ¼ 2 Hz by the bandpass signal, that is

xðtÞcos ð2p� 2tÞ ¼ cos ð2p� 22tÞmðtÞcos ð2p� 2tÞ (12.47)

Then the undersampled signal is given by

xðnTÞcos ð2p� 2n=4Þ ¼ cos ð2p� 22n=4ÞmðnTÞcos ð2p� 2n=4Þ
¼ cos ð11npÞmðnTÞcos ðnpÞ (12.48)
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Plots of the bandpass signal and sampled signal for Case 1.
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Plots of the bandpass signals and sampled signals for Case 2.

Since

cos ð11pnÞcos ðpnÞ ¼ 1 (12.49)

it follows that

xðnTÞcos ð2p� 2n=4Þ ¼ cos ðp� 11nÞmðnTÞcos ðp� nÞ ¼ mðnTÞ (12.50)

which is the recovered message signal. Figure 12.43 shows the sampled bandpass signals with the
reversed message spectrum and the corrected message spectrum, respectively, for a message signal
having a frequency of 0.5 Hz; that is,

mðtÞ ¼ cos ð2p� 0:5tÞ (12.51)

Case 3
If fc ¼ noninterger� B, we can extend the bandwidth B to B such that

fc ¼ integer� B and fs ¼ 2B (12.52)

Then we can apply Case 1 or Case 2. An illustration of Case 3 is included in the following
example.
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EXAMPLE 12.11
Given a bandpass signal with the spectrum and carry frequency fc shown in Figures 12.44A, 12.44B, and
12.44C, respectively, and assuming the baseband bandwidth B ¼ 4 kHz, select the sampling rate and sketch the
sampled spectrum ranging from 0 Hz to the carrier frequency for each of the following carrier frequencies:

f
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20100
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15 17
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FIGURE 12.44A

Sampled signal spectrum for fc ¼ 16 kHz.

f

0 0201

kHz

12

f kHz
20100

Bandpass signal with
baseband bandwidth

B=4 kHz

Bandpass signal
sampled at fs=8 kHz

3 5

1311

11 13 19

FIGURE 12.44B

Sampled signal spectrum for fc ¼ 12 kHz.
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Sampled signal spectrum for fc ¼ 18 kHz.
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a. fc ¼ 16 kHz
b. fc ¼ 12 kHz
c. fc ¼ 18 kHz

Solution:

a. Since fc=B ¼ 4 is an even number, which is Case 1, we select fs ¼ 8 kHz and sketch the sampled spectrum
shown in Figure 12.44A.

b. Since fc=B ¼ 3 is an odd number, we select fs ¼ 8 kHz and sketch the sampled spectrum shown in
Figure 12.44B.

c. Now, fc=B ¼ 4:5, which is a noninteger. We extend the bandwidth B ¼ 4:5 kHz, so fc=B ¼ 4 and
fs ¼ 2B ¼ 9 kHz. The sketched spectrum is shown in Figure 12.44C.

Simulation Example
An AM with a 1-kHz message signal is given as

xðtÞ ¼ ½1þ 0:8� sinð2p� 1; 000tÞ�cos ð2p� fctÞ (12.53)

Assuming a message bandwidth of 4 kHz, determine the sampling rate, use MATLAB to sample the
AM signal, and sketch the sampled spectrum up to the sampling frequency for each of the following
carrier frequencies:

a. fc ¼ 96 kHz
b. fc ¼ 100 kHz
c. fc ¼ 99 kHz

a. For this case, fc=B ¼ 24 is an even number. We select fs ¼ 8 kHz. Figure 12.45A describes the
simulation, where the upper left plot is the AM signal, the upper right plot is the spectrum of
the AM signal, the lower left plot is the undersampled signal, and the lower right plot is
the spectrum of the undersampled signal displayed from 0 to 8 kHz.

b. fc=B ¼ 25 is an odd number, so we choose fs ¼ 8 kHz, and a further process is needed. We
can multiply the undersampled signal by a digital oscillator with a frequency of B ¼ 4 kHz
to achieve the 1-kHz baseband signal. The plots of the AM signal spectrum, undersampled
signal spectrum, and the oscillator mixed signal and its spectrum are shown in
Figure 12.45B.

c. For fc ¼ 99 kHz, fc=B ¼ 24:75. We extend the bandwidth to B ¼ 4:125 so that fc=B ¼ 24.
Hence, fs ¼ 8:25 kHz is used as the undersampling rate. Figure 12.45C shows the plots for the
AM signal, the AM signal spectrum, the undersampled signal based on the extended baseband
width, and the sampled signal spectrum ranging from 0 to 8.25 kHz, respectively.

This example verifies the principles of undersampling of bandpass signals.

12.6 SAMPLING RATE CONVERSION USING THE TMS320C6713 DSK
Downsampling by an integer factor of M using the TMS320C6713 is depicted in Figure 12.46. The
idea is that we set up the DSK running at the original sampling rate and update the DAC channel once
for M samples. The program (Tan and Jiang, 2008) is shown in Program 12.9.
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Program 12.9. Downsampling implementation (anti-aliasing filter has 67 coefficients that are stored in
an array b[67]).

int M¼2;
float x[67];
float y[1]¼{0.0};
interrupt void c_int11()
{

float lc; /*Left channel input */
float rc; /*Right channel input */
float lcnew; /*Left channel output */
float rcnew; /*Right channel output */
int i,j;
float sum;

// Left channel and right channel inputs
AIC23_data.combo¼input_sample();
lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
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FIGURE 12.45A

Sampled AM signal and spectrum for fc ¼ 96 kHz.
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for (j¼0;j<M;jþþ)
{
for(i¼66; i>0; i--) // Update input buffer
{ x[i]¼x[i-1]; }
x[0]¼lc; // Load new sample
sum¼0.0;
for(i¼0;i<67;iþþ) // FIR filtering
{ sum¼sumþx[i]*b[i]; }
if (j¼¼ 0)
{ y[0]¼sum; } // Update DAC with processed sample (decimation)

}
// End of the DSP algorithm

lcnew¼y[0]; /* Send to DAC */
rcnew¼y[0];
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}
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FIGURE 12.45B

Sampled AM signal and spectrum for fc ¼ 100 kHz.
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Upsampling by an integer factor of L using the TMS320C6713 is depicted in Figure 12.47. Again,
we set up the DSK to run at the upsampling rate fsL and acquire a sample from the ADC channel
once for L samples. The program (Tan and Jiang, 2008) is shown in Program 12.10.
Program 12.10. Upsampling implementation (anti-image filter has 67 coefficients that are stored in an
array b[67]).

int L¼2;
int Lcount¼0;
float x[67];
float y[1]¼{0.0};
interrupt void c_int11()
{

float lc; /*Left channel input */
float rc; /*Right channel input */
float lcnew; /*Left channel output */
float rcnew; /*Right channel output */
int i,j;

// Left channel and right channel inputs
AIC23_data.combo¼input_sample();
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FIGURE 12.45C

Sampled AM signal and spectrum for fc ¼ 99 kHz.
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lc¼(float) (AIC23_data.channel[LEFT]);
rc¼ (float) (AIC23_data.channel[RIGHT]);

// Insert DSP algorithm below
Lcountþþ;
for(i¼66; i>0; i--) // Update input buffer with zeros
{ x[i]¼x[i-1]; }
x[0]¼0;
if (Lcount¼¼L)
{
x[0]¼lc; // Load new sample for every L samples
Lcount ¼0;

}
y[0]¼0.0;
for(i¼0;i<67;iþþ) // FIR filtering
{ y[0]¼y[0]þx[i]*b[i]; }
y[0]¼(float) L*y[0]
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FIGURE 12.46

Downsampling using the TMS320C6713.
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Upsampling using the TMS320C6713.
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// End of the DSP algorithm
lcnew¼y[0]; /* Send to DAC */
rcnew¼y[0];
AIC23_data.channel[LEFT]¼(short) lcnew;
AIC23_data.channel[RIGHT]¼(short) rcnew;
output_sample(AIC23_data.combo);

}

12.7 SUMMARY
1. Downsampling (decimation) by an integer factor of M means taking one sample from the data

sequence xðnÞ for every M samples and discarding the last M � 1 samples.
2. Upsampling (interpolation) by an integer factor of Lmeans inserting L� 1 zeros for every sample

in the data sequence xðnÞ.
3. Downsampling requires a decimation (anti-aliasing) filter to avoid frequency aliasing before

downsampling.
4. Upsampling requires an interpolation (anti-image) filter to remove the images after interpolation.
5. Changing the sampling rate by a noninteger factor of L=M requires two stages: an interpolation

stage and a downsampling stage.
6. Two-stage decimation can dramatically reduce the anti-aliasing filter length.
7. Polyphase implementations of the decimation filter and interpolation filter can reduce the

complexity of the filter operations, that is, fewer multiplications and additions.
8. Using oversampling can improve the regular ADC resolution. Sigma-delta modulation ADC can

achieve even higher ADC resolution, using the noise shaping effect for further reduction of
quantization noise.

9. The audio CD player uses multirate signal processing and oversampling.
10. Undersampling can be used to sample the bandpass signal, leading to applications in

communications.

12.8 PROBLEMS

12.1. Consider a single-stage decimator with the following specifications:
Original sampling rate ¼ 1 kHz
Decimation factor M ¼ 2
Frequency of interest ¼ 0e100 Hz
Passband ripple ¼ 0.015 dB
Stopband attenuation ¼ 40 dB

a. Draw the block diagram for the decimator.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the anti-aliasing FIR filter design.

12.2. Consider a single-stage interpolator with the following specifications:
Original sampling rate ¼ 1 kHz
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Interpolation factor L ¼ 2
Frequency of interest ¼ 0e150 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 45 dB

a. Draw the block diagram for the interpolator.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the anti-image FIR filter design.

12.3. Consider a single stage decimator with the following specifications:
Original sampling rate ¼ 8 kHz
Decimation factor M ¼ 4
Frequency of interest ¼ 0e800 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 46 dB,

a. Draw the block diagram for the decimator.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the anti-aliasing FIR filter design.

12.4. Consider a single-stage interpolator with the following specifications:
Original sampling rate ¼ 8 kHz
Interpolation factor L ¼ 3
Frequency of interest ¼ 0e3,400 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 46 dB

a. Draw the block diagram for the interpolator.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the anti-image FIR filter design.

12.5. Consider the sampling conversion from 4 kHz to 3 kHz with the following specifications:
Original sampling rate ¼ 4 kHz
Interpolation factor L ¼ 3
Decimation factor M ¼ 2
Frequency of interest ¼ 0e400 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 46 dB

a. Draw the block diagram for the interpolator.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the combined FIR filter H(z).

12.6. Consider the design of a two-stage decimator with the following specifications:
Original sampling rate ¼ 32 kHz
Frequency of interest ¼ 0e250 Hz
Passband ripple ¼ 0.05 (absolute)
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Stopband attenuation ¼ 0.005 (absolute)
Final sampling rate ¼ 1,000 Hz

a. Draw the decimation block diagram.

b. Specify the sampling rate for each stage.

c. Determine the window type, filter length, and cutoff frequency for the first stage if the
window method is used for anti-aliasing FIR filter design (H1ðzÞ).

d. Determine the window type, filter length, and cutoff frequency for the second stage if the
window method is used for the anti-aliasing FIR filter design (H2ðzÞ).

12.7. Consider the sampling conversion from 6 kHz to 8 kHz with the following specifications:
Original sampling rate ¼ 6 kHz
Interpolation factor L ¼ 4
Decimation factor M ¼ 3
Frequency of interest ¼ 0e2,400 Hz
Passband ripple ¼ 0.02 dB
Stopband attenuation ¼ 46 dB

a. Draw the block diagram for the processor.

b. Determine the window type, filter length, and cutoff frequency if the window method is
used for the combined FIR filter HðzÞ.

12.8. Consider the design of a two-stage decimator with the following specifications:
Original sampling rate ¼ 320 kHz
Frequency of interest ¼ 0�3,400 Hz
Passband ripple ¼ 0.05 (absolute)
Stopband attenuation ¼ 0.005 (absolute)
Final sampling rate ¼ 8,000 Hz

a. Draw the decimation block diagram.

b. Specify the sampling rate for each stage.

c. Determine the window type, filter length, and cutoff frequency for the first stage if the
window method is used for anti-aliasing FIR filter design (H1ðzÞ).

d. Determine the window type, filter length, and cutoff frequency for the second stage if the
window method is used for anti-aliasing FIR filter design (H2ðzÞ).

12.9. a. Given an interpolator filter

H
�
z
� ¼ 0:25þ 0:4z�1 þ 0:5z�2

draw the block diagram for interpolation polyphase filter implementation for
the case of L ¼ 2.

b. Given a decimation filter

H
�
z
� ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3

draw the block diagram for decimation polyphase filter implementation for the case ofM ¼ 2.
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12.10. Using the commutative models for the polyphase interpolation and decimation filters,

a. draw the block diagram for interpolation polyphase filter implementation for the case of
L ¼ 2, and HðzÞ ¼ 0:25þ 0:4z�1 þ 0:5z�2 ;

b. draw the block diagram for decimation polyphase filter implementation for the case of
M ¼ 2, and HðzÞ ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3.

12.11. a. Given an interpolator filter

H
�
z
� ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3 þ 0:7z�4 þ 0:6z�5;

draw the block diagram for interpolation polyphase filter implementation for the case of
L ¼ 4.

b. Given a decimation filter

H
�
z
� ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3 þ 0:5z�3 þ 0:4z�4

draw the block diagram for decimation polyphase filter implementation for the case of
M ¼ 4.

12.12. Using the commutative models for the polyphase interpolation and decimation filters,

a. draw the block diagram for interpolation polyphase filter implementation for the case
of L ¼ 4, and HðzÞ ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3 þ 0:7z�4 þ 0:6z�5;

b. draw the block diagram for decimation polyphase filter implementation for the case of
M ¼ 4, and HðzÞ ¼ 0:25þ 0:4z�1 þ 0:5z�2 þ 0:6z�3 þ 0:5z�3 þ 0:4z�4.

12.13. Consider a speech system with the following specifications:
Speech input frequency range: 0e4 kHz
ADC resolution ¼ 16 bits
Current sampling rate ¼ 8 kHz

a. Determine the oversampling rate if a 12-bit ADC chip is used to replace the speech
system.

b. Draw the block diagram.

12.14. Consider a speech system with the following specifications:
Speech input frequency range: 0e4 kHz
ADC resolution ¼ 6 bits
Oversampling rate ¼ 4 MHz

a. Draw the block diagram.

b. Determine the actual effective ADC resolution (number of bits per sample).

12.15. Consider an audio system with the following specifications:
Audio input frequency range: 0e15 kHz
ADC resolution ¼ 16 bits
Current sampling rate ¼ 30 kHz
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a. Determine the oversampling rate if a 12-bit ADC chip is used to replace the audio system.

b. Draw the block diagram.

12.16. Consider an audio system with the following specifications:
Audio input frequency range: 0e15 kHz
ADC resolution ¼ 6 bits
Oversampling rate ¼ 45 MHz

a. Draw the block diagram.

b. Determine the actual effective ADC resolution (number of bits per sample).

12.17. Consider the following specifications of an oversampling DSP system:
Audio input frequency range: 0e4 kHz
First-order SDM with a sampling rate of 128 kHz
ADC resolution in SDM ¼ 1 bit

a. Draw the block diagram using the DSP model.

b. Determine the equivalent (effective) ADC resolution.

12.18. Consider the following specifications of an oversampling DSP system:
Audio input frequency range: 0e20 kHz
Second-order SDM with a sampling rate of 160 kHz
ADC resolution in SDM ¼ 10 bits

a. Draw the block diagram using the DSP model.

b. Determine the equivalent (effective) ADC resolution.

12.19. Consider the following specifications of an oversampling DSP system:
Signal input frequency range: 0e500 Hz
First-order SDM with a sampling rate of 128 kHz
ADC resolution in SDM ¼ 1 bit

a. Draw the block diagram using the DSP model.

b. Determine the equivalent (effective) ADC resolution.

12.20. Consider the following specifications of an oversampling DSP system:
Signal input frequency range: 0e500 Hz
Second-order SDM with a sampling rate of 16 kHz
ADC resolution in SDM ¼ 8 bits

a. Draw the block diagram using the DSP model.

b. Determine the equivalent (effective) ADC resolution.

12.21. Given a bandpass signal with a spectrum shown in Figure 12.48, and assuming the
bandwidth B ¼ 5 kHz, select the sampling rate and sketch the sampled spectrum
ranging from 0 Hz to the carrier frequency for each of the following carrier
frequencies:

a. fc ¼ 30 kHz
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b. fc ¼ 25 kHz

c. fc ¼ 33 kHz

12.22. Given a bandpass signal with a spectrum shown in Figure 12.48, and assuming fs ¼ 10
kHz, select the sampling rate and sketch the sampled spectrum ranging from 0 Hz to the
carrier frequency for each of the following carrier frequencies:

a. fc ¼ 15 kHz

b. fc ¼ 20 kHz

12.23. Given a bandpass signal with a spectrum shown in Figure 12.48, and assuming B ¼ 5 kHz,
select the sampling rate and sketch the sampled spectrum ranging from 0 Hz to the carrier
frequency for each of the following carrier frequencies:

a. fc ¼ 35 kHz

b. fc ¼ 40 kHz

c. fc ¼ 22 kHz

12.8.1 MATLAB Problems
Use MATLAB to solve Problems 12.24 to 12.30.

12.24. Generate a sinusoid with a frequency of 1,000 Hz for 0.05 second using a sampling rate of
8 kHz.

a. Design a decimator to change the sampling rate to 4 kHz with the specifications below:
Signal frequency range: 0e1,800 Hz
Hamming window required for FIR filter design

b. Write a MATLAB program to implement the downsampling scheme, and plot the
original signal and the downsampled signal versus the sample number, respectively.

12.25. Generate a sinusoid with a frequency of 1,000 Hz for 0.05 second using a sampling rate of
8 kHz.

a. Design an interpolator to change the sampling rate to 16 kHz with the following spec-
ifications:
Signal frequency range: 0e3,600 Hz
Hamming window required for FIR filter design

f

0

kHz

cf

Bandpass signal with
baseband bandwidth

B=5 kHz

5cf 5cf2cf 2cf

FIGURE 12.48

Spectrum of the bandpass signal in Problem 12.21.
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b. Write a MATLAB program to implement the upsampling scheme, and plot the original
signal and the upsampled signal versus the sample number, respectively.

12.26. Generate a sinusoid with a frequency of 500 Hz for 0.1 second using a sampling rate of
8 kHz.

a. Design an interpolation and decimation processing algorithm with the following spec-
ifications to change the sampling rate to 22 kHz:
Signal frequency range: 0e3,400 Hz
Hamming window required for FIR filter design

b. Write a MATLAB program to implement the scheme, and plot the original signal and the
sampled signal at the rate of 22 kHz versus the sample number, respectively.

12.27. Repeat Problem 12.24 using the polyphase form for the decimator.

12.28. Repeat Problem 12.25 using the polyphase form for the interpolator.

12.29. a. Use MATLAB to create a 1-second sinusoidal signal using a sampling rate of 1 kHz,

xðtÞ ¼ 1:8 cos ð2p� 100tÞ þ 1:0 sin ð2p� 150t þ p=4Þ
where each sample xðtÞ can be rounded off using a 3-bit signed integer (directly round off
the calculated xðtÞ). Evaluate the signal-to-quantization-noise ratio (SQNR).

b. Use MATLAB to design an oversampling system including an anti-aliasing filter with
a selectable integer factor L using the same equation for the input x(t).

c. Recover the signal using the quantized 3-bit signal and measure the SQNRs for the
following integer factors: L ¼ 2, L ¼ 4, L ¼ 8, L ¼ 16, and L ¼ 32. From the
results, explain which one offers better quality for the recovered signals.

12.30. a. Use MATLAB to create a 1-second sinusoidal signal using a sampling rate of 1 kHz,

xðtÞ ¼ 1:8 cos ð2p� 100tÞ þ 1:0 sin ð2p� 150t þ p=4Þ
where each sample x(t) can be rounded off using a 3-bit signed integer (directly round off
the calculated x(t)). Evaluate the signal-to-quantization-noise ratio (SQNR).

b. Use MATLAB to implement the first-order SDM system including an anti-aliasing filter
with an oversampling factor of 16. Measure the SQNR (signal to noise ratio due to
quantization).

c. Use MATLAB to implement the second-order SDM system including an anti-aliasing
filter with an oversampling factor of 16. Measure the SQNR. Compare the SQNR with
the one obtained in (b).

12.8.2 MATLAB Project

12.31. Audio rate conversion system:
Given a 16-bit stereo audio file (“No9seg.wav”) with a sampling rate of 44.1 kHz, design
a multistage conversion system and implement the designed system to convert the audio file
from 44.1 to 48 kHz. Listen and compare the quality of the original audio with the converted
audio.
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OBJECTIVES

This chapter is a continuation of Chapter 12 and further studies basic principles of multirate digital signal
processing, specifically for subband and wavelet transform coding. First, the chapter explains digital filter
bank theory and develops subband coding techniques for compressing various signals, including speech
and seismic data. Then the chapter focuses on wavelet basics with applications of waveform coding and
signal denoising.

13.1 SUBBAND CODING BASICS
In many applications such as speech and audio analysis, synthesis, and compression, digital filter
banks are often used. The filter bank system consists of two stages. The first stage, called the
analysis stage, is in the form of filter bank decomposition, in which the signal is filtered into
subbands along with a sampling rate decimation; the second stage interpolates the decimated sub-
band signals to reconstruct the original signal. For the purpose of data compression, spectral
information from each subband channel can be used to quantize the subband signal efficiently to
achieve efficient coding.

Figure 13.1 illustrates the basic framework for a four-channel filter bank analyzer and synthe-
sizer. At the analysis stage, the input signal xðnÞ at the original sampling rate fs is divided via the
analysis filter bank into four channels, x0ðmÞ, x1ðmÞ, x2ðmÞ, and x3ðmÞ, each at the decimated
sampling rate fs=M, whereM ¼ 4. For the synthesizer, these four decimated signals are interpolated
via a synthesis filter bank. The outputs from all four channels (x0ðnÞ, x1ðnÞ, x2ðnÞ, and x3ðnÞ) of the
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synthesis filter bank are then combined to reconstruct the original signal xðnÞ at the original sampling
rate fs. Each channel essentially generates a bandpass signal. The decimated signal spectrum for
channel 0 can be achieved via a standard downsampling process, while the decimated spectra of
other channels can be obtained using the principle of undersampling of bandpass signals with an
integer band (discussed in Section 12.5), where the inherent frequency aliasing or image properties
of decimation and interpolation are involved. The theoretical development will follow next. With
a proper design of analysis and synthesis filter banks, we are able to achieve perfect reconstruction of
the original signal.

Let us examine the spectral details of each band (subband). Figure 13.2 depicts the spectral
information of the analysis and synthesis stages, as shown in Figure 13.2(a) and (b). H0ðzÞ and G0ðzÞ
are the analysis and synthesis filters of channel 0, respectively. At the analyzer (Figure 13.2(c) to (e)),
xðnÞ is bandlimited by a lowpass filter H0ðzÞ to get w0ðnÞ and decimated byM ¼ 4 to obtain x0ðmÞ. At
the synthesizer (Figure 13.2(f) to (h)), x0ðmÞ is upsampled by a factor of 4 to obtain w0ðnÞ and then
goes through the anti-aliasing (synthesis) filter G0ðzÞ to achieve the lowpass signal x0ðnÞ.

Figure 13.3 depicts the analysis and synthesis stages for channel 1 (see Figure 13.3(a) and (b)).
H1ðzÞ and G1ðzÞ are the bandpass analysis and synthesis filters, respectively. Similarly, at the analyzer
(Figure 13.3(c) to (e)), xðnÞ is filtered by a bandpass filter H1ðzÞ to get w1ðnÞ and decimated byM ¼ 4
to obtain x1ðmÞ. Since the lower frequency edge of W1ðzÞ is fc=B ¼ 1 ¼ odd number, where
fc ¼ fs=ð2MÞ ¼ B, fc corresponds to the carrier frequency, and B is the baseband bandwidth as
depicted in Section 12.5, the reversed spectrum in the baseband results in Figure 13.3(e). However, this
is not a problem, since at the synthesizer as shown in Figures 13.3(f) and (g), the spectral reversal occurs
again so thatW1ðzÞ will have the same spectral components asW1ðzÞ at the analyzer. After w1ðnÞ goes
through the anti-aliasing (synthesis) filter G1ðzÞ, we achieve the reconstructed bandpass signal x1ðnÞ.

Figure 13.4 describes the analysis and synthesis stages for channel 2. At the analyzer
(Figure 13.4(c) to (e)), xðnÞ is filtered by a bandpass filter H2ðzÞ to get w2ðnÞ and decimated byM ¼ 4
to obtain x2ðmÞ. Similarly, considering the lower frequency edge ofW2ðzÞ as fc ¼ 2ðfs=ð2MÞÞ ¼ 2B,
fc=B ¼ 2 ¼ even. Therefore, we obtain the nonreversed spectrum in the baseband as shown in
Figure 13.4(f). At the synthesizer shown in Figure 13.4(g), the spectrum W2ðzÞ has the same spectral
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FIGURE 13.1

Filter bank framework with an analyzer and synthesizer.

622 CHAPTER 13 Subband- and Wavelet-Based Coding



1( )H 1( )GM↓ M↑( )x n 1( )x m 1( )x m
1( )x n1( )w n

1( )w n

( )X f

1( )W f

1( )X f
1( )X f

1( )W f

1( )X f

f

f

f

f

f

f

/ 2sf

/ 2sf

/(2 )sM sf f M

sf sf /sM sf f M /sM sf f M sf sf

/(2 )sM sf f M

/ 2sf

/ 2sf

(a)

(c)

(d)

(e)

(b)

(h)

(g)

(f)

FIGURE 13.3

Analysis and synthesis stages for channel 1.
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Analysis and synthesis stages for channel 0.
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components asW2ðzÞ at the analyzer. After w2ðnÞ is filtered by the synthesis bandpass filter, G2ðzÞ, we
get the reconstructed bandpass signal x2ðnÞ.

The process in channel 3 is similar to that in channel 1 with the spectral reversal effect and is
illustrated in Figure 13.5.

Now let us examine the theory. Without quantization of subband channels, perfect reconstruction of
the filter banks (see Figure 13.1) depends on the analysis and syntheses filter effects. To develop the
perfect reconstruction required of the analysis and synthesis filters, consider a signal in a single
channel flowing up to the synthesis filter in general as depicted in Figure 13.6.

As shown in Figure 13.6, wðnÞ is the output signal from the analysis filter H(z) at the original
sampling rate, that is,

WðzÞ ¼ HðzÞXðzÞ (13.1)

xdðmÞ is the downsampled version of wðnÞ while wðnÞ is the interpolated version of wðnÞ prior to the
synthesis filter and can be expressed as

wðnÞ ¼
(
wðnÞ n ¼ 0; M; 2M;.

0 otherwise
(13.2)

Using a delta function dðnÞ, that is, dð0Þ ¼ 1 for n ¼ 0 and dðnÞ ¼ 0 for ns0, we can write wðnÞ as

wðnÞ ¼
"XN
k¼ 0

dðn� kMÞ
#
wðnÞ ¼ iðnÞwðnÞ (13.3)
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FIGURE 13.4

Analysis and synthesis stages for channel 2.
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where iðnÞ is defined as iðnÞ ¼ PN
k¼ 0 dðn� kMÞ ¼ dðnÞ þ dðn�MÞ þ dðn� 2MÞ þ/

Clearly, iðnÞ is a periodic function (impulse train with a period of M samples) as shown in
Figure 13.7 where M ¼ 4.

We can determine the discrete Fourier transform of the impulse train with a period ofM samples as

IðkÞ ¼
XM�1

n¼ 0

iðnÞe�j2pkn
M ¼

XM�1

n¼ 0

dðnÞe�j2pkn
M ¼ 1 (13.4)

( )H M↓ M↑( )x n
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FIGURE 13.6

Signal flow in one channel.
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Analysis and synthesis stages for channel 3.
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Hence, using the inverse of discrete Fourier transform, iðnÞ can be expressed as

iðnÞ ¼ 1

M

XM�1

k¼ 0

IðkÞej2pknM ¼ 1

M

XM�1

k¼ 0

ej
2pkn
M (13.5)

Substituting Equation (13.5) into Equation (13.3) leads to

wðnÞ ¼ 1

M

XM�1

k¼ 0

wðnÞej2pknM (13.6)

Applying the z-transform in Equation (13.6), we achieve the fundamental relationship between WðzÞ
and WðzÞ :

WðzÞ ¼ 1

M

XM�1

k¼ 0

XN
n¼ 0

wðnÞej2pknM z�n ¼ 1

M

XM�1

k¼ 0

XN
n¼ 0

wðnÞ
�
e�j2pk

M z
��n

¼ 1

M

XM�1

k¼ 0

W
�
e�j2pk

M z
�

¼ 1

M

h
W
�
e�j2p�0

M z
�
þW

�
e�j2p�1

M z
�
þ/þW

�
e�j2p�ðM�1Þ

M z
�i

(13.7)

Equation (13.7) indicates that the signal spectrum WðzÞ before the synthesis filter is an average of the
various modulated spectrumWðzÞ. Notice that bothWðzÞ andWðzÞ are at the original sampling rate fs.
We will use this result for further development in the next section.

13.2 SUBBAND DECOMPOSITION AND TWO-CHANNEL PERFECT
RECONSTRUCTION QUADRATURE MIRROR FILTER BANK
To explore Equation (13.7), let us begin with a two-band case as illustrated in Figure 13.8.

Substituting M ¼ 2 in Equation (13.7), it follows that

WðzÞ ¼ 1

2

X1
k¼ 0

Wðe�j2pk
2 zÞ ¼ 1

2
½WðzÞ þWð�zÞ� (13.8)

( )i n

n

1.0

FIGURE 13.7

Impulse train with a period 4 samples.
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Applying for each band in Figure 13.8 by substituting Equation (13.1) in Equation (13.8), we have

Y0ðzÞ ¼ 1

2
G0ðzÞðH0ðzÞXðzÞ þ H0ð�zÞXð�zÞÞ (13.9)

Y1ðzÞ ¼ 1

2
G1ðzÞðH1ðzÞXðzÞ þ H1ð�zÞXð�zÞÞ (13.10)

Since the synthesized signal XðzÞ is the sum of Y0ðzÞ and Y1ðzÞ, it can be expressed as

XðzÞ ¼ 1

2
ðG0ðzÞH0ðzÞ þ G1ðzÞH1ðzÞÞXðzÞ

þ 1

2
ðG0ðzÞH0ð�zÞ þ G1ðzÞH1ð�zÞÞXð�zÞ

¼ AðzÞXðzÞ þ SðzÞXð�zÞ

(13.11)

For perfect reconstruction, the recovered signal xðnÞ should be a scaled and delayed version of the
original signal xðnÞ, that is, xðnÞ ¼ cxðn� n0Þ. Hence, to achieve a perfect reconstruction, it is
required that

SðzÞ ¼ 1

2
ðG0ðzÞH0ð�zÞ þ G1ðzÞH1ð�zÞÞ ¼ 0 (13.12)

AðzÞ ¼ 1

2
ðG0ðzÞH0ðzÞ þ G1ðzÞH1ðzÞÞ ¼ cz�n0 (13.13)

where c is the constant while n0 is the delay introduced by the analysis and synthesis filters.
Forcing SðzÞ ¼ 0 leads to the following relationship:

G0ðzÞ
G1ðzÞ ¼ �H1ð�zÞ

H0ð�zÞ (13.14)

It follows that

G0ðzÞ ¼ �H1ð�zÞ (13.15)
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FIGURE 13.8

Two-band filter bank system.
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G1ðzÞ ¼ H0ð�zÞ (13.16)

Substituting G0ðzÞ and G1ðzÞ in Equation (13.13) gives

AðzÞ ¼ 1

2
ðH0ð�zÞH1ðzÞ � H0ðzÞH1ð�zÞÞ (13.17)

Assume H0ðzÞ and H1ðzÞ are N-tap FIR filters, where N is even, and let

H1ðzÞ ¼ z�ðN�1ÞH0ð�z�1Þ (13.18)

Notice that

H1ð�zÞ ¼ �z�ðN�1ÞH0ðz�1Þ (13.19)

Substituting Equations (13.18) and (13.19), we can simplify Equation (13.17) as

AðzÞ ¼ 1

2
z�ðN�1ÞðH0ðzÞH0ðz�1Þ þ H0ð�zÞH0ð�z�1ÞÞ (13.20)

Finally, for perfect reconstruction, we require that

H0ðzÞH0ðz�1Þ þ H0ð�zÞH0ð�z�1Þ ¼ RðzÞ þ Rð�zÞ ¼ constant (13.21)

where

RðzÞ ¼ H0ðzÞH0ðz�1Þ ¼ aN�1z
N�1 þ aN�2z

N�2 þ/þ a0z
0 þ/þ aN�1z

�ðN�1Þ (13.22)

Rð�zÞ ¼ H0ð�zÞH0ð�z�1Þ ¼ �aN�1z
N�1 þ aN�2z

N�2 þ/þ a0z
0 þ/� aN�1z

�ðN�1Þ (13.23)

It is important to note that the sum of RðzÞ þ Rð�zÞ only consists of even order of powers of z, since the
terms with odd powers of z cancel each other. Using algebraic simplification, we conclude that the
coefficients of RðzÞ ¼ HðzÞHðz�1Þ are essentially samples of the autocorrelation function given by

rðnÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ nÞ ¼ rð�nÞ ¼ h0ðnÞ1h0ðnÞ (13.24)

where1 denotes the correlation operation. Hence, we require rðnÞ ¼ 0 for n ¼ even and ns0, that is,

rð2nÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ 2nÞ ¼ 0 (13.25)

For the normalization for n ¼ 0, we require

XN�1

k¼ 0

jh0ðkÞj2¼ 0:5 (13.26)

We then obtain the filter design constraint as

rð2nÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ 2nÞ ¼ dðnÞ (13.27)
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For a two-band filter bank, h0ðkÞ and h1ðkÞ are designed as lowpass and highpass filters, respectively,
which are essentially the quadrature mirror filters. Their expected frequency responses must satisfy
Equation (13.28) and are shown in Figure 13.9:

��H0ðejUÞ
��2þ��H1ðejUÞ

��2¼ 1 (13.28)

Equation (13.28) implies that

RðzÞ þ Rð�zÞ ¼ 1 (13.29)

To verify Equation (13.29), we use

��HðejUÞ��2¼ HðejUÞHðe�jUÞ ¼ HðzÞHðz�1Þ��
z¼ejU

Equation (13.28) becomes

H0ðzÞH0ðz�1Þ þ H1ðzÞH1ðz�1Þ��
z¼ejU

¼ 1

which is equivalent to

H0ðzÞH0ðz�1Þ þ H1ðzÞH1ðz�1Þ ¼ 1

From Equation (13.18), we can verify that

H1ðzÞH1ðz�1Þ ¼ H0ð�zÞH0ð�z�1Þ
Finally, we see that

H0ðzÞH0ðz�1Þ þ H1ðzÞH1ðz�1Þ
¼ H0ðzÞH0ðz�1Þ þ H0ð�zÞH0ð�z�1Þ ¼ RðzÞ þ Rð�zÞ ¼ 1

Once the lowpass analysis filter H0ðzÞ is designed, the highpass filter can be obtained using the
developed relationship in Equation (13.18). The key equations are summarized as follows:

0

1

/ 2

Lowpass Highpass

0 ( )H 1( )H

0

FIGURE 13.9

Frequency responses for quadrature mirror filters.
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Filter design constraint equations for the lowpass filter H0ðzÞ:

RðzÞ ¼ H0ðzÞH0ðz�1Þ
RðzÞ þ Rð�zÞ ¼ 1

rð2nÞ ¼ 0:5dðnÞ

Equations for the other filters:

H1ðzÞ ¼ z�ðN�1ÞH0ð�z�1Þ
G0ðzÞ ¼ �H1ð�zÞ
G1ðzÞ ¼ H0ð�zÞ

Design of the analysis and synthesis filters to satisfy the above conditions is very challenging. Smith
and Barnwell (1984) were the first to show that perfect reconstruction in a two-band filter bank is
possible when the linear phase of the FIR filter requirement is relaxed. The Smith–Barnwell filters are
called the conjugate quadrature filters (PR-CQF). Eight- and 16-tap PR-CQF coefficients are listed in
Table 13.1. As shown in Table 13.1, the filter coefficients are not symmetric; hence, the obtained
analysis filter does not have a linear phase. The detailed design of Smith–Barnwell filters can be found
in their research paper (Smith and Barnwell, 1984) and the design of other types of analysis and
synthesis filters can be found in Akansu and Haddad (1992).

Now let us verify the filter constraint in the following example.

Table 13.1 SmitheBarnwell PR-CQF Filters

8 Taps 16 Taps

0.0348975582178515 0.02193598203004352

�0.01098301946252854 0.001578616497663704

�0.06286453934951963 �0.06025449102875281

0.223907720892568 �0.0118906596205391

0.556856993531445 0.137537915636625

0.357976304997285 0.05745450056390939

�0.02390027056113145 �0.321670296165893

�0.07594096379188282 �0.528720271545339

�0.295779674500919

0.0002043110845170894

0.0290669978946796

�0.03533486088708146

�0.006821045322743358

0.02606678468264118

0.001033363491944126

�0.01435930957477529
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EXAMPLE 13.1
Use the 8-tap PR-CQF coefficients (Table 13.1) and MATLAB to verify the following conditions:

rð2nÞ ¼
XN�1

k¼0

h0ðkÞh0ðk þ 2nÞ ¼ 0:5dðnÞ

RðzÞ þ Rð�zÞ ¼ 1

Also, plot the magnitude frequency responses of the analysis and synthesis filters.

Solution:
Since rðnÞ ¼ PN�1

k¼0 h0ðkÞh0ðk þ nÞ, we obtain the following:
For n ¼ 0,

rð0Þ ¼
X8�1

k ¼0

h0ðkÞh0ðkÞ ¼ h20ð0Þ þ h20ð1Þ þ/þ h20ð7Þ ¼ 0:5

For n ¼ 1,

rð1Þ ¼
X8�1

k ¼0

h0ðkÞh0ðk þ 1Þ ¼ h0ð0Þh0ð1Þ þ h0ð1Þh0ð2Þ þ/þ h0ð6Þh0ð7Þ ¼ 0:3035

For n ¼ �1,

rð�1Þ ¼
X8�1

k ¼0

h0ðkÞh0ðk � 1Þ ¼ h0ð1Þh0ð0Þ þ h0ð2Þh0ð1Þ þ/þ h0ð7Þh0ð6Þ ¼ 0:3035

For n ¼ 2,

rð2Þ ¼
X8�1

k ¼0

h0ðkÞh0ðk þ 2Þ ¼ h0ð0Þh0ð2Þ þ h0ð1Þh0ð3Þ þ/þ h0ð5Þh0ð7Þ ¼ 0:0

For n ¼ �2,

rð�2Þ ¼
X8�1

k ¼0

h0ðkÞh0ðk � 2Þ ¼ h0ð2Þh0ð0Þ þ h0ð3Þh0ð1Þ þ/þ h0ð7Þh0ð5Þ ¼ 0:0

We can easily verify that rðnÞ ¼ 0 for ns0 and n ¼ even number.
Next, we use the MATLAB built-in function xcorr() to compute the autocorrelation coefficients. The results are

listed as

>>h0¼[0.0348975582178515 �0.01098301946252854 �0.06286453934951963 .

0.223907720892568 0.556856993531445 0.357976304997285 .

�0.02390027056113145 �0.07594096379188282];

>>p¼xcorr(h0,h0)

p ¼ �0.0027 �0.0000 0.0175 0.0000 �0.0684 �0.0000 0.3035 0.50000

0.3035 �0.0000 �0.0684 0.0000 0.0175 �0.0000 �0.0027

We observe that there are 15 coefficients. The middle one is rð0Þ ¼ 0:5 and we also have rð�2Þ ¼ rð�4Þ ¼
rð�6Þ ¼ 0 as well as rð�1Þ ¼ 0:3035, rð�3Þ ¼ �0:0684, rð�5Þ ¼ 0:0175, and rð�7Þ ¼ �0:0027.
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Next, we write

RðzÞ ¼ �0:0027z7 � 0:0000z6 þ 0:0175z5 þ 0:0000z4 � 0:0684z3 � 0:0000z2 þ 0:3035z1 þ 0:5000z0

þ 0:3035z�1 � 0:0000z�2 � 0:0684z�3 þ 0:0000z�4 þ 0:0175z�5 � 0:0000z�6 � 0:0027z�7

Substituting z ¼ �z in RðzÞ yields
Rð�zÞ ¼ 0:0027z7 � 0:0000z6 � 0:0175z5 þ 0:0000z4 þ 0:0684z3 � 0:0000z2 � 0:3035z1 þ 0:5000z0

� 0:3035z�1 � 0:0000z�2 þ 0:0684z�3 þ 0:0000z�4 � 0:0175z�5 � 0:0000z�6 þ 0:0027z�7

Clearly, by adding the expressions RðzÞ and Rð�zÞ, we can verify that

RðzÞ þ Rð�zÞ ¼ 1

Using MATLAB, the PR-CQF frequency responses are plotted and shown in Figure 13.10.

Figure 13.11 shows the perfect reconstruction of the two-band system in Figure 13.8 using two-
band CQF filters for speech data. The MATLAB program is listed in Program 13.1, in which the
quantization is deactivated. Since the obtained signal-to-noise ratio (SNR) ¼ 135.5803 dB, a perfect
reconstruction is achieved. Notice that both x0ðmÞ and x1ðmÞ have half of the data samples, where
x0ðmÞ contains low-frequency components with more signal energy while x1ðmÞ possesses high-
frequency components with less signal energy.
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Magnitude frequency responses of the analysis and synthesis filters in Example 13.1.
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Program 13.1. Two-band subband system MATLAB implementation.

% This program is for implementing analysis and synthesis using two subbands.
close all; clear all;clc
% Smith-Barnwell PR-CQF 8-taps
h0¼[0.0348975582178515 -0.01098301946252854 -0.06286453934951963 .

0.223907720892568 0.556856993531445 0.357976304997285 .

-0.02390027056113145 -0.07594096379188282];
% Read data file "orig.dat" with sampling rate of 8 kHz
load orig.dat; % Load speech data
M¼2; % Downsample factor
N¼length(h0); PNones¼ones(1,N); PNones(2:2:N)¼-1;
h1¼h0.*PNones; h1¼h1(N:-1:1);
g0¼-h1.*PNones; g1¼h0.*PNones;
disp(’check R(z)þR(-z) ¼>’);
xcorr(h0,h0)
sum(h0.*h0)
w¼0:pi/1000:pi;
fh0¼freqz(h0,1,w); fh1¼freqz(h1,1,w);
plot(w,abs(fh0),’k’,w,abs(fh1),’k’);grid; axis([0 pi 0 1.2]);
xlabel(’Frequency in radians’);ylabel(’Magnitude)’)
figure
speech¼orig;
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Two-band analysis and synthesis for speech data.
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% Analysis
sb_low¼filter(h0,1,speech); sb_high¼filter(h1,1,speech);
% Downsampling
sb_low¼sb_low(1:M:length(sb_low)); sb_high¼sb_high(1:M:length(sb_high));
% Quantization
%sb_low¼round((sb_low/2^15)*2^9)*2^(15-9); %Quantization with 10 bits
%sb_high¼round((sb_high/2^15)*2^5)*2^(15-5); % Quantization with 6 bits
% Synthesis
low_sp¼zeros(1,M*length(sb_low)); % Upsampling
low_sp(1:M:length(low_sp))¼sb_low;
high_sp¼zeros(1,M*length(sb_high)); high_sp(1:M:length(high_sp))¼sb_high;
low_sp¼filter(g0,1,low_sp); high_sp¼filter(g1,1,high_sp);
rec_sig¼2*(low_spþhigh_sp);
% Signal alignment for SNR calculations
speech¼[zeros(1,N-1) speech]; % Align the signal
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Four-band implementation based on a binary tree structure.
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subplot(4,1,1);plot(speech);grid,ylabel(’x(n)’);axis([0 20000 -20000 20000]);
subplot(4,1,2);plot(sb_low);grid,ylabel(’x0(m)’); axis([0 10000 -20000 20000]);
subplot(4,1,3);plot(sb_high);grid, ylabel(’x1(m)’); axis([0 10000 -2000 2000]);
subplot(4,1,4);plot(rec_sig);grid, ylabel(’xbar(n)’),xlabel(’Sample number’);
axis([0 20000 -20000 20000]);
NN¼min(length(speech),length(rec_sig));
err¼rec_sig(1:NN)-speech(1:NN);
SNR¼sum(speech.*speech)/sum(err.*err);
disp(’PR reconstruction SNR dB¼>’);
SNR¼10*log10(SNR)

This two-band composition method can easily be extended to a multiband filter bank using a binary
tree structure. Figure 13.12 describes a four-band implementation. As shown in Figure 13.12, the filter
banks divide an input signal into two equal subbands, resulting the low (L) and high (H) bands using
PR-QMF. This two-band PR-QMF again splits L and H into half bands to produce quarter bands: LL,
LH, HL, and HH. The four-band spectrum is labeled in Figure 13.12(b). Note that the HH band is
actually centered in ½p=2;3p=4� instead of ½3p=4;p�.

In signal coding applications, a dyadic subband tree structure is often used, as shown in Figure 13.13,
where the PR-QMF bank splits only the lower half of the spectrum into two equal bands at any level.
Through continuation of splitting, we can achieve a coarser-and-coarser version of the original signal.

13.3 SUBBAND CODING OF SIGNALS
Subband analysis and synthesis can be successfully applied to signal coding. Figure 13.14 presents an
example of a two-band case. The analytical signals from each channel are filtered by the analysis filter,
downsampled by a factor of 2, and quantized using quantizers Q0 and Q1 each with a assigned number
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Four-band implementation based on a dyadic tree structure.
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of bits. The quantized codes are multiplexed for transmission or storage. At the synthesis stage, the
received or recovered quantized signals are demultiplexed, upsampled by a factor of 2, and processed
by the synthesis filters. Then the output signals from all the channels are added to reconstruct the
original signal. Since the signal from each analytical channel is quantized, the resultant scheme is
a lossy compression one. The coding quality can be measured using the SNR.

Figure 13.15 shows speech coding results using a subband coding system (two-band) with the
following specifications:
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Two-band filter bank system used for signal compression.
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Two-subband compression for speech data.
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Sampling rate ¼ 8 ksps (kilosamples per second)
Sample size ¼ 16 bits/sample
Original data rate ¼ 8 kHz � 16 bits ¼128 kbps (kilobits per second)

We assign ten bits for Q0 (since the low-band signal contains more energy) and six bits for Q1.
We obtain a new data rate of (10 þ 6) bits � 8 ksps/2 ¼ 64 kbps. The MATLAB
implementation is shown in Program 13.1 with the activated quantizers. Notice that x0ðmÞ and
x1ðmÞ in Figure 13.15 are the quantized versions using Q0 and Q1. The measured SNR is
24.51 dB.

Figure 13.16 shows the results using a four-band system. We designate both Q0 and Q1 as 11 bits,
Q3 as 10 bits, and Q2 as 0 bits (discarded). Note that the HL band contains the highest frequency
components with the lowest signal energy level (see Figure 13.12(b)). Hence, we discard HL band
information to increase the coding efficiency. Therefore, we obtain the data rate as (11þ11þ10þ0)
bits� 8 ksps/4¼ 64 kbps. The measured SNR is 27.06 dB. A four-band system offers a possibility of
signal quality improvement over the two-band system. Plots for the original speech, reconstructed
speech, and quantized signal version for each subband are displayed in Figure 13.17.

Figure 13.18 shows the results using a four-band system (Figure 13.16) for encoding seismic data.
The seismic signal (provided by the US Geological Survey (USGS)) Albuquerque Seismological
Laboratory) has a sampling rate of 15 Hz with 6,700 data samples, and each sample is encoded
in 32 bits. For the four-band system, the bit allocations for all bands are as follows: Q0 (LL)¼21 bits,
Q1 (LH) ¼ 21 bits, Q3 (HL) ¼ 0 (discarded), and Q4 (HH) ¼19 bits. We achieve a compression ratio
of 4:1 with SNR ¼ 36.00 dB.
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Four-subband compression for speech data.
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13.4 WAVELET BASICS AND FAMILIES OF WAVELETS
Wavelet transform has become a powerful tool for signal processing. It offers time–frequency analysis
to decompose the signal in terms of a family of wavelets or a set of basic functions, which have a fixed
shape but can be shifted and dilated in time. The wavelet transform can present a signal with a good
time resolution or a good frequency resolution. There are two types of wavelet transforms: the
continuous wavelet transform (CWT) and the discrete wavelet transform (DWT). Specifically, the
DWT provides an efficient tool for signal coding. It operates on discrete samples of the signal and has
a relation with the dyadic subband coding described in Section 13.2. The DWT resembles other
discrete transforms, such as the discrete Fourier transform (DFT) or the discrete cosine transform
(DCT). In this section, without getting too detailed with mathematics, we review the basics of the
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Four-subband compression for 16-bit speech data and SNR ¼ 27.5 dB.
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CWT, which will lay out the foundation. Next, we emphasize the DWT for applications of signal
coding.

Let us examine a signal sampled at 1 kHz with 1024� 32 (32,678) samples given by

xðtÞ ¼ 0:5cosð2p� 80tÞ½uðtÞ � uðt � 8Þ� þ sinð2p� 180tÞ½uðt � 8Þ � uðt � 16Þ�
þsinð2p� 250tÞ½uðt � 16Þ � uðt � 32Þ� þ 0:1sinð2p� 0:8tÞ½uðt � 8Þ � uðt � 24Þ� (13.30)

The signal contains four sinusoids: 80 Hz for 0 � t < 8 seconds, 180 Hz for 8 � t < 16 seconds,
350 Hz for 16 � t � 32 seconds, and finally 0.8 Hz for 8 � t � 24 seconds. All the signals are plotted
separately in Figure 13.19 while Figure 13.20 shows the combined signal and its DFT spectrum.

Based on the traditional spectral analysis shown in Figure 13.20, we can identify the frequency
components of 80, 180, and 350 Hz. However, the 0.8-Hz component and transient behaviors such as
the start and stop time instants of the sinusoids (discontinuity) cannot be observed from the spectrum.
Figure 13.21 depicts the wavelet transform of the same signal. The horizontal axis is time in seconds
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Four-subband compression for 32-bit seismic data and SNR ¼ 36 dB.
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Individual signal components.
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Combined signal and its spectrum.
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while the vertical axis is index j, which is inversely proportional to the scale factor (a ¼ 2�j). As will
be discussed, the larger the scale factor (the smaller the index j), the smaller the frequency value. The
amplitudes of the wavelet transform are displayed according to the intensity. The brighter the intensity,
the larger the amplitude. The areas with brighter intensities indicate the strongest resonances between
the signal and the wavelets of various frequency scales and time shifts. In Figure 13.21, the four
different frequency components and the discontinuities of the sinusoids are displayed as well. We can
further observe the fact that the finer the frequency resolution, the coarser the time resolution. For
example, we can clearly identify the start and stop times for 80-, 180-, and 350-Hz frequency
components, but frequency resolution is coarse, since index j has larger frequency spacing. However,
for the 0.8-Hz sinusoid, we have fine frequency resolution (small frequency spacing so we can see the
0.8-Hz sinusoid) and coarse time resolution as evidenced by the way in which the start and stop times
are blurred.

The CWT is defined as

Wða; bÞ ¼
ZN

�N

f ðtÞjabðtÞdt (13.31)

where Wða; bÞ is the wavelet transform and jabðtÞ is called the mother wavelet, which is defined as

jabðtÞ ¼ 1ffiffiffi
a

p j

�
t � b

a

�
(13.32)

The wavelet function consists of two important parameters: scaling a and translation b. A scaled
version of the function jðtÞ with a scale factor of a is defined as jðt=aÞ. Consider a base function
jðtÞ ¼ cosðutÞ when a ¼ 1. When a > 1, jðtÞ ¼ cosðut=aÞ is a scaled function with a frequency
less than u rad/s. When a < 1, jðtÞ ¼ cosðut=aÞ has a frequency larger than u. Figure 13.22 shows
the scaled wavelet functions.

FIGURE 13.21

Wavelet transform amplitudes.
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A translated version of the function jðtÞ with a shifted time constant b is defined as jðt � bÞ.
Figure 13.23 shows several translated versions of the wavelet. A scaled and translated function jðtÞ is
given by jððt � bÞ=aÞ. This means that jððt � bÞ=aÞ changes frequency and time shift. Several
combined scaling and translated wavelets are displayed in Figure 13.24.

Besides these two properties, a wavelet function must satisfy admissibility and regularity
conditions (vanishing moment up to a certain order). Admissibility requires that the wavelet
(mother wavelet) have a bandpass-limited spectrum and a zero average in the time domain,
which means that wavelets must be oscillatory. Regularity requires that wavelets have some
smoothness and concentration in both time and frequency domains. This topic is beyond the
scope of this book and the details can be found in Akansu and Haddad (1992). There exists
a pair of wavelet functions: the father wavelet (also called the scaling function) and mother
wavelet. Figure 13.25 shows a simplest pair of wavelets: the Haar father wavelet and mother
wavelet.

To devise an efficient wavelet transform algorithm, we let the scale factor be a power of two,
that is,

a ¼ 2�j (13.33)

Note that the larger the index j, the smaller the scale factor a ¼ 2�j. The time shift becomes

b ¼ k2�j ¼ ka (13.34)
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Scaled wavelet functions.
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Translated wavelet functions.
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Scaled and translated wavelet functions.
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Substituting Equations (13.33) and (13.34) into the base function gives

j

�
t � b

a

�
¼ j

�
t � kb

a

�
¼ jða�1t � kÞ ¼ jð2jt � kÞ (13.35)

We can define a mother wavelet at scale j and translation k as

jjkðtÞ ¼ 2j=2jð2jt � kÞ (13.36)

Similarly, a father wavelet (scaling function) at scale j and translation k is defined as

fjkðtÞ ¼ 2j=2fð2jt � kÞ (13.37)
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Haar (a) father and (b) mother wavelets.

EXAMPLE 13.2
Sketch the Haar father wavelet families for four different scales, j ¼ 0;1;2;3, for a period of one second.

644 CHAPTER 13 Subband- and Wavelet-Based Coding



Solution:
Based on Equation (13.37), we can determine the wavelet at each required scale as follows:

For j ¼ 0, f0kðtÞ ¼ fðt � kÞ, only k ¼ 0 is required to cover a 1-second duration.
For j ¼ 1, f1kðtÞ ¼ ffiffiffi

2
p

fð2t � kÞ, k ¼ 0 and k ¼ 1 are required.
For j ¼ 2, f2kðtÞ ¼ 2fð4t � kÞ, we need k ¼ 0;1;2;3.
For j ¼ 3, f3kðtÞ ¼ 2

ffiffiffi
2

p
fð8t � kÞ, we need k ¼ 0;1;2;/;7.

Using Figure 13.25(a), we obtain the plots shown in Figure 13.26.

EXAMPLE 13.3
Sketch the Haar mother wavelet families for four different scales, j ¼ 0;1;2;3, for a period of 1 second.

Solution:
Based on Equation (13.36), we have

For j ¼ 0, j0k ¼ jðt � kÞ, k ¼ 0 and k ¼ 1 are required.
For j ¼ 1, j1k ¼ ffiffiffi

2
p

jð2t � kÞ, k ¼ 0 and k ¼ 1 are required.
For j ¼ 2, j2k ¼ 2jð4t � kÞ, we need k ¼ 0;1;2;3.
For j ¼ 3, j3kðtÞ ¼ 2

ffiffiffi
2

p
jð8t � kÞ, we need k ¼ 0;1;2;/;7.
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FIGURE 13.26

Haar father wavelets at different scales and translations.
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Using Figure 13.25(b), we obtain the plots shown in Figure 13.27.

A signal can be expanded by the father wavelets (scaling function and its translations) at level j.
More accuracy can be achieved by using the larger j. The expanded function is approximated by

f ðtÞz fjðtÞ ¼
XN

k¼�N

cjðkÞ2j=2fð2jt � kÞ (13.38)

where the wavelet coefficients cjðkÞ can be determined by an inner product:

cjðkÞ ¼ �
f ðtÞfjkðtÞ

	 ¼
Z

f ðtÞ2j=2fð2jt � kÞdt: (13.39)

EXAMPLE 13.4
Approximate the following function using the Haar scaling function at level j ¼ 1:

f ðtÞ ¼
(
2 0 � t < 0:5

1 0:5 � t � 1
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FIGURE 13.27

Haar mother wavelet at different scales and translations.
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Solution:
Substituting j ¼ 1 in Equation (13.38) leads to

f ðtÞz f1ðtÞ ¼
XN

k ¼�N

c1ðkÞ21=2fð2t � kÞ

We only need k ¼ 0 and k ¼ 1 to cover the range 0 � t � 1, that is,

f ðtÞ ¼ c1ð0Þ21=2fð2tÞ þ c1ð1Þ21=2fð2t � 1Þ

Notice that

fð2tÞ ¼
(
1 for 0 � t � 0:5

0 elsewhere
and fð2t � 1Þ ¼

(
1 for 0:5 � t � 1

0 elsewhere

Applying Equation (13.39) yields

c1ð0Þ ¼
Z1=2
0

f ðtÞ21=2fð2tÞdt ¼
Z1=2
0

2� 21=2 � 1dt ¼ 21=2

Similarly,

c1ð1Þ ¼
Z1
1=2

f ðtÞ21=2fð2t � 1Þdt ¼
Z1
1=2

1� 21=2 � 1dt ¼ 0:5� 21=2

Then substituting the coefficients c1ð0Þ and c1ð1Þ leads to
f1ðtÞ ¼ 21=2 � 21=2fð2tÞ þ 0:5� 21=221=2fð2t � 1Þ ¼ 2fð2tÞ þ fð2t � 1Þ ¼ f ðtÞ

Equation (13.39) can also be approximated numerically:

cjðkÞz
XM�1

m¼ 0

f ðtmÞ2j=2fð2jtm � kÞDt

where tm ¼ mDt is the time instant, Dt denotes the time step, and M is the number of intervals. In
this example, if we choose Dt ¼ 0:2, then M ¼ 5 and tm ¼ mDt. The numerical calculations for
Example 13.4 are done as follows:

c1ð0Þz
P4
m¼ 0

f ðtmÞ21=2fð2tmÞDt ¼ 21=2½f ð0Þ � fð0Þ þ f ð0:2Þ � fð0:4Þ

þf ð0:4Þ � fð0:8Þ þ f ð0:6Þ � fð1:2Þ þ f ð0:8Þ � fð1:6Þ�Dt
¼ 21=2ð2� 1þ 2� 1þ 2� 1þ 1� 0þ 1� 0Þ � 0:2 ¼ 1:2� 21=2

c1ð1Þz
P4
m¼ 0

f ðtmÞ21=2fð2tm � 1ÞDt ¼ 21=2½f ð0Þ � fð�1Þ þ f ð0:2Þ � fð�0:6Þ

þf ð0:4Þ � fð�0:2Þ þ f ð0:6Þ � fð0:2Þ þ f ð0:8Þ � fð0:6Þ�Dt
¼ 21=2ð2� 0þ 2� 0þ 2� 0þ 1� 1þ 1� 1Þ � 0:2 ¼ 0:4� 21=2
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Finally, we have

f1ðtÞ ¼ 1:2� 21=2 � 21=2fð2tÞ þ 0:4� 21=221=2fð2t � 1Þ ¼ 2:4fð2tÞ þ 0:8fð2t � 1Þz f ðtÞ
It is clear that there is a numerical error. The error can be reduced when a smaller time interval Dt is
adopted.

Figure 13.28 demonstrates the approximation of a sinusoidal delaying function using the scaling
functions (Haar father wavelets) at different scales, i.e., j ¼ 0; 1; 2; 4; 5.

Now, let us examine the function approximation at resolution j ¼ 1:

f1ðtÞz
XN

k¼�N

c1ðkÞ
ffiffiffi
2

p
fð2t � kÞ ¼ c1ð0Þ

ffiffiffi
2

p
fð2tÞ þ c1ð1Þ

ffiffiffi
2

p
fð2t � 1Þ

We also look at another possibility at a coarser scale with both the scaling functions (father wavelets)
and mother wavelets, that is, j ¼ 0:

f1ðtÞz
PN

k¼�N
c0ðkÞf0kðtÞ þ

PN
k¼�N

d0ðkÞj0kðtÞ

¼ c0ð0Þf00ðtÞ þ d0ð0Þj00ðtÞ ¼ c0ð0ÞfðtÞ þ d0ð0ÞjðtÞ
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FIGURE 13.28

Signal expanded by Haar father wavelets.
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Furthermore, we see that

f1ðtÞz c0ð0ÞfðtÞ þ d0ð0ÞjðtÞ

¼ c0ð0Þ
�

1ffiffiffi
2

p fð2tÞ þ 1ffiffiffi
2

p fð2t � 1Þ
�
þ d0ð0Þ

�
1ffiffiffi
2

p fð2tÞ � 1ffiffiffi
2

p fð2t � 1Þ
�

¼ 1ffiffiffi
2

p ðc0ð0Þ þ d0ð0ÞÞfð2tÞ þ 1ffiffiffi
2

p ðc0ð0Þ � d0ð0ÞÞfð2t � 1Þ

We observe that

c1ð0Þ ¼ 1

2
ðc0ð0Þ þ d0ð0ÞÞ

c1ð1Þ ¼ 1

2
ðc0ð0Þ � d0ð0ÞÞ

This means that

S1 ¼ S0WW0

where S1 contains functions in terms of basis scaling functions at f1kðtÞ, and the function can also be
expanded using the scaling functions f0kðtÞ and wavelet functions j0kðtÞ at a coarser level j� 1. In
general, the following statement is true:

Sj ¼ Sj�1WWj�1 ¼ ½Sj�2WWj�2�WWj�1

¼ f½Sj�3WWj�3�WWj�2gWWj�1

/ ¼ S0WW0WW1W/WWj�1:

(13.40)

Hence, the approximation of fjðtÞ can be expressed as

f ðtÞz fjðtÞ ¼ PN
k¼�N

cjðkÞfjkðtÞ

¼ PN
k¼�N

cj�1ðkÞfðj�1ÞkðtÞ þ
PN

k¼�N
dj�1ðkÞjðj�1ÞkðtÞ

¼ PN
k¼�N

cðj�1ÞðkÞ2ðj�1Þ=2fð2ðj�1Þt � kÞ þ PN
k¼�N

dðj�1ÞðkÞ2ðj�1Þ=2jð2ðj�1Þt � kÞ

Repeating the expansion of the first sum leads to

f ðtÞz fJðtÞ ¼ PN
k¼�N

c0ðkÞf0kðtÞ þ
PJ�1

j¼ 0

PN
k¼�N

djðkÞjjkðtÞ

¼ PN
k¼�N

c0ðkÞfðt � kÞ þ PJ�1

j¼ 0

PN
k¼�N

djðkÞ2j=2jð2jt � kÞ
(13.41)
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where the mother wavelet coefficients djðkÞ can also be determined by the inner product:

djðkÞ ¼ �
f ðtÞjjkðtÞ

	 ¼
Z

f ðtÞ2j=2jð2jt � kÞdt (13.42)

Figure 13.29 demonstrates the function approximation (Figure 13.28) with the base scaling function at
resolution j ¼ 0, and mother wavelets at scales j ¼ 0; 1; 2; 3; 4. The combined approximation
(J ¼ 5) using Equation (13.41) is shown in Figure 13.30.

13.5 MULTIRESOLUTION EQUATIONS
There are two very important equations for multiresolution analysis. Each scaling function can be
constructed by a linear combination of translations with the doubled frequency of a base scaling
function fð2tÞ, that is,

fðtÞ ¼
XN

k¼�N

ffiffiffi
2

p
h0ðkÞfð2t � kÞ (13.43)
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FIGURE 13.29

Approximations using Haar scaling functions and mother wavelets.
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where h0ðkÞ is a set of scaling function coefficients (wavelet filter coefficients). The mother wavelet
function can also be built by a sum of translations with the double frequency of the base scaling
function fð2tÞ, that is,

jðtÞ ¼
XN

k¼�N

ffiffiffi
2

p
h1ðkÞfð2t � kÞ (13.44)

where h1ðkÞ is another set of wavelet filter coefficients. Let us verify these two relationships via
Example 13.5 below.

EXAMPLE 13.5
Determine h0ðkÞ for the Haar father wavelet.

Solution:
From Equation (13.43), we can express

fðtÞ ¼
ffiffiffi
2

p
h0ð0Þfð2tÞ þ

ffiffiffi
2

p
h0ð1Þfð2t � 1Þ

Then we deduce that

h0ð0Þ ¼ h0ð1Þ ¼ 1=
ffiffiffi
2

p

Figure 13.31 shows that the Haar father wavelet is the sum of two scaling functions at scale j ¼ 1.
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Signal coded using the wavelets at resolution J ¼ 5.
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EXAMPLE 13.6
Determine h1ðkÞ for the Haar mother wavelet.

Solution:
From Equation (13.44), we can write

jðtÞ ¼
ffiffiffi
2

p
h1ð0Þfð2tÞ þ

ffiffiffi
2

p
h1ð1Þfð2t � 1Þ

Hence, we deduce that

h1ð0Þ ¼ 1=
ffiffiffi
2

p
and h1ð1Þ ¼ �1=

ffiffiffi
2

p

Figure 13.32 shows that the Haar mother wavelet is the difference of two scaling functions at scale j ¼ 1.

Notice that the relation between H0ðzÞ and H1ðzÞ exists and is given by

h1ðkÞ ¼ ð�1Þkh0ðN � 1� kÞ (13.45)

We can verify Equation (13.45) for the Haar wavelet:

h1ðkÞ ¼ ð�1Þkh0ð1� kÞ
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Haar wavelets in Example 13.5.
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h1ð0Þ ¼ ð�1Þ0h0ð1� 0Þ ¼ h0ð1Þ ¼ 1=
ffiffiffi
2

p

h1ð1Þ ¼ ð�1Þ1h0ð1� 1Þ ¼ �h0ð0Þ ¼ �1=
ffiffiffi
2

p

This means that once we obtain the coefficients of h0ðkÞ, the coefficients h1ðkÞ can be determined via
Equation (13.45). We do not aim to obtain wavelet filter coefficients here. The topic is beyond the
scope of this book and the details are given in Akansu and Haddad (1992). Instead, some typical filter
coefficients for Haar and Daubechies are given in Table 13.2.

We can apply the Daubechies-4 filter coefficients to examine multiresolution Equations (13.43) and
(13.44). From Table 13.2, we have

h0ð0Þ ¼ 0:4830; h0ð1Þ ¼ 0:8365; h0ð2Þ ¼ 0:2241; h0ð3Þ ¼ �0:1294

We then expand Equation (13.43) as

fðtÞ ¼
ffiffiffi
2

p
h0ð0Þfð2tÞ þ

ffiffiffi
2

p
h0ð1Þfð2t � 1Þ þ

ffiffiffi
2

p
h0ð2Þfð2t � 2Þ þ

ffiffiffi
2

p
h0ð3Þfð2t � 3Þ
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Haar wavelets in Example 13.6.
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Figure 13.33 shows each component at resolution j ¼ 1 and the constructed scaling function fðtÞ.
The original scaling function fðtÞ is also included as shown in the last plot for comparison.

With the given coefficients h0ðkÞ and applying Equation (13.45), we can obtain the wavelet
coefficients h1ðkÞ as

h1ð0Þ ¼ �0:1294; h1ð1Þ ¼ � 0:2241; h1ð2Þ ¼ 0:8365; and h1ð2Þ ¼ �0:4830

Table 13.2 Typical Wavelet Filter Coefficients h0ðkÞ
Haar Daubechies 4 Daubechies 6 Daubechies 8

0.707106781186548
0.707106781186548

0.482962913144534
0.836516303737808
0.224143868042013

�0.129409522551260

0.332670552950083
0.806891509311093
0.459877502118492

�0.135011020010255
�0.085441273882027
0.035226291885710

0.230377813308896
0.714846570552915
0.630880767929859

�0.027983769416859
�0.187034811719093
0.030841381835561
0.032883011666885

�0.010597401785069
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FIGURE 13.33

Constructed 4-tap Daubechies father wavelet.

654 CHAPTER 13 Subband- and Wavelet-Based Coding



Expanding Equation (13.44) leads to

jðtÞ ¼
ffiffiffi
2

p
h1ð0Þfð2tÞ þ

ffiffiffi
2

p
h1ð1Þfð2t � 1Þ þ

ffiffiffi
2

p
h1ð2Þfð2t � 2Þ þ

ffiffiffi
2

p
h1ð3Þfð2t � 3Þ

Similarly, Figure 13.34 displays each component at resolution j ¼ 1 and the constructed mother
wavelet function jðtÞ. The last plot displays the original mother wavelet function jðtÞ for
comparison.

13.6 DISCRETE WAVELET TRANSFORM
Now let us examine the discrete wavelet transform (DWT). We begin with coding a signal using
a wavelet expansion as follows:

f ðtÞz fjþ1ðtÞ ¼
XN

k¼�N

cjðkÞ2j=2fð2jt � kÞ þ
XN

k¼�N

djðkÞ2j=2jð2jt � kÞ (13.46)
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FIGURE 13.34

Constructed 4-tap Daubechies mother wavelet.
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By applying and continuing to apply Equation (13.46), f ðtÞ can be coded at any level we wish.
Furthermore, by recursively applying Equation (13.46) until j ¼ 0, we can obtain signal expansion
using all the mother wavelets plus one scaling function at scale j ¼ 0, that is,

f ðtÞz fJðtÞ ¼
XN

k¼�N

c0ðkÞfðt � kÞ þ
XJ�1

j¼ 0

XN
k¼�N

djðkÞ2j=2jð2jt � kÞ (13.47)

All cjðkÞ and all djðkÞ are called the wavelet coefficients. They are essentially weights for the scaling
function(s) and wavelet functions (mother wavelets). The DWT computes these wavelet coefficients.
On the other hand, given the wavelet coefficients, we are able to reconstruct the original signal by
applying the inverse discrete wavelet transform (IDWT).

Based on the wavelet theory without proof (see Appendix F), we can perform the DWT using the
analysis equations as follows:

cjðkÞ ¼
XN

m¼�N

cjþ1ðmÞh0ðm� 2kÞ (13.48)

djðkÞ ¼
XN

m¼�N

cjþ1ðmÞh1ðm� 2kÞ (13.49)

where h0ðkÞ are the lowpass wavelet filter coefficients listed in Table 13.2, while h1ðkÞ, the highpass
filter coefficients, can be determined by

h1ðkÞ ¼ ð�1Þkh0ðN � 1� kÞ (13.50)

These lowpass and highpass filters are called the quadrature mirror filters (QMF). As an example, the
frequency responses of the 4-tap Daubechies wavelet filters are plotted in Figure 13.35.

Next, we need to determine the filter inputs cjþ1ðkÞ in Equations (13.48) and (13.49). In practice,
since j is a large number, the function fð2jt � kÞ appears to be close to an impulse-like function, that
is, fð2jt � kÞz2�jdðt � k2�jÞ. For example, the Haar scaling function can be expressed as
fðtÞ ¼ uðtÞ � uðt � 1Þ, where uðtÞ is the step function. We can easily get fð25t � kÞ ¼ uð25t � kÞ �
uð25t � 1� kÞ ¼ uðt � k2�5Þ � uðt � ðk þ 1Þ2�5Þ for j ¼ 5, which is a narrow pulse with a
unit height and a width 2�5 located at t ¼ k2�5. The area of the pulse is therefore 2�5. When
j approaches a larger positive integer, fð2jt � kÞz2�jdðt � k2�jÞ. Therefore, f ðtÞ approximated by the
scaling function at level j is rewritten as

f ðtÞz fjðtÞ ¼ PN
k¼�N

cjðkÞ2j=2fð2jt � kÞ

¼ /þ cjð0Þ2j=2fð2jtÞ þ cjð1Þ2j=2fð2jt � 1Þ þ cjð2Þ2j=2fð2jt � 2Þ þ/

z/þ cjð0Þ2�j=2dðtÞ þ cjð1Þ2�j=2dðt � 1� 2�jÞ þ cjð2Þ2�j=2dðt � 2� 2�jÞ þ/

(13.51)

On the other hand, if we sample f ðtÞ using the same sample interval Ts ¼ 2�j (time resolution), the
discrete-time function can be expressed as

f ðnÞ ¼ f ðnTsÞ ¼ /þ f ð0TsÞTsdðt � TsÞ þ f ðTsÞTsdðt � TsÞ þ f ð2TsÞTsdðn� 2TsÞ þ/ (13.52)
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Hence, comparing Equation (13.51) with the discrete-time version in Equation (13.52), it follows that

cjðkÞ2�j=2 ¼ f ðkÞTs (13.53)

Substituting Ts ¼ 2�j in Equation (13.53) leads to

cjðkÞ ¼ 2�j=2f ðkÞ (13.54)

With the obtained sequence cjðkÞ using sample values f ðkÞ, we can perform the DWT using Equations
(13.48) and (13.49). Furthermore, Equations (13.48) and (13.49) can be implemented using a dyadic
tree structure similar to the subband coding case. Figure 13.36 depicts the case for j ¼ 2.

Note that the reversed sequences h0ð�kÞ and h1ð�kÞ are used in the analysis stage. Similarly, the
IDWT (synthesis equation) can be developed (see Appendix F) and expressed as

cjþ1ðkÞ ¼
XN

m¼�N

cjðmÞh0ðk � 2mÞ þ
XN

m¼�N

djðmÞh1ðk � 2mÞ (13.55)

Finally, the signal amplitude can be rescaled by

f ðkÞ ¼ 2j=2cjðkÞ (13.56)

An implementation for j ¼ 2 using the dyadic subband coding structure is illustrated in Figure 13.37.
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FIGURE 13.35

Frequency responses for 4-tap Daubechies filters.
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Now, let us study the DWT and IDWT in the following examples.

EXAMPLE 13.7
Given the sample values [4 2 �1 0], use the Haar wavelets to determine the wavelet coefficients.

Solution:
Form the filter inputs:

c2ðkÞ ¼ 2�2=2 � ½4 2 �1 0 � ¼


2 1 �1

2
0

�

The acquired Haar wavelet filter coefficients are listed as

h0ðkÞ ¼



1ffiffiffi
2

p 1ffiffiffi
2

p
�

and h1ðkÞ ¼



1ffiffiffi
2

p � 1ffiffiffi
2

p
�

The function is expanded by the scaling functions as

f ðtÞz f2ðtÞ ¼ PN
k ¼�N

cj ðkÞ2j=2fð2j t � kÞ

¼ 4� fð4tÞ þ 2� fð4t � 1Þ � 1� fð4t � 2Þ þ 0� fð4t � 3Þ:
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FIGURE 13.36

Analysis using the dyadic subband coding structure.
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FIGURE 13.37

Synthesis using the dyadic subband coding structure.
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We will verify this expression later. Applying the wavelet analysis equations, we have

c1ðkÞ ¼
XN

m¼�N

c2ðmÞh0ðm � 2kÞ

d1ðkÞ ¼
XN

m¼�N

c2ðmÞh1ðm � 2kÞ

Specifically,

c1ð0Þ ¼
XN

m¼�N

c2ðmÞh0ðmÞ ¼ c2ð0Þh0ð0Þ þ c2ð1Þh0ð1Þ ¼ 2� 1ffiffiffi
2

p þ 1� 1ffiffiffi
2

p ¼ 3
ffiffiffi
2

p

2

c1ð1Þ ¼
XN

m¼�N

c2ðmÞh0ðm � 2Þ ¼ c2ð2Þh0ð0Þ þ c2ð3Þh0ð1Þ ¼
�
�1

2

�
� 1ffiffiffi

2
p þ 0� 1ffiffiffi

2
p ¼ � 1

2
ffiffiffi
2

p

d1ð0Þ ¼
XN

m¼�N

c2ðmÞh1ðmÞ ¼ c2ð0Þh1ð0Þ þ c2ð1Þh1ð1Þ ¼ 2� 1ffiffiffi
2

p þ 1�
�
� 1ffiffiffi

2
p

�
¼ 1ffiffiffi

2
p

d1ð1Þ ¼
XN

m¼�N

c2ðmÞh1ðm � 2Þ ¼ c2ð2Þh1ð0Þ þ c2ð3Þh1ð1Þ ¼
�
�1

2

�
� 1ffiffiffi

2
p þ 0�

�
� 1ffiffiffi

2
p

�
¼ � 1

2
ffiffiffi
2

p

Using the subband coding method in Figure 13.36 yields

>> x0¼rconv([1 1]/sqrt(2),[2 1 �0.5 0])
x0 ¼ 2.1213 0.3536 �0.3536 1.4142
>> c1¼x0(1:2:4)
c1 ¼ 2.1213 �0.3536
>> x1¼rconv([1 �1]/sqrt(2),[2 1 �0.5 0])
x1 ¼ 0.7071 1.0607 �0.3536 �1.4142
>> d1¼x1(1:2:4)
d1 ¼ 0.7071 �0.3536

where the MATLAB function rconv() for filter operations with the reversed filter coefficients is listed in Section
13.8. Repeating for the next level, we have

c0ðkÞ ¼
XN

m¼�N

c1ðmÞh0ðm � 2kÞ

d0ðkÞ ¼
XN

m¼�N

c1ðmÞh1ðm � 2kÞ

Thus

c0ð0Þ ¼
XN

m¼�N

c1ðmÞh0ðmÞ ¼ c1ð0Þh0ð0Þ þ c1ð1Þh0ð1Þ ¼ 3
ffiffiffi
2

p

2
� 1ffiffiffi

2
p þ ð� 1

2
ffiffiffi
2

p Þ � 1ffiffiffi
2

p ¼ 5

4

d0ð0Þ ¼
XN

m¼�N

c1ðmÞh1ðmÞ ¼ c1ð0Þh1ð0Þ þ c1ð1Þh1ð1Þ ¼ 3
ffiffiffi
2

p

2
� 1ffiffiffi

2
p þ

�
� 1

2
ffiffiffi
2

p
�
�
�
� 1ffiffiffi

2
p

�
¼ 7

4
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The MATLAB verifications follow:

>> xx0¼rconv([1 1]/sqrt(2),c1)
xx0 ¼ 1.2500 1.2500
>> c0¼xx0(1:2:2)
c0 ¼ 1.2500
>> xx1¼rconv([1 �1]/sqrt(2),c1)
xx1 ¼ 1.7500 �1.7500
>> d0¼xx1(1:2:2)
d0 ¼ 1.7500

Finally, we pack the wavelet coefficients w2ðkÞ at j ¼ 2 together as

w2ðkÞ ¼ ½c0ð0Þd0ð0Þd1ð0Þd1ð1Þ� ¼


5

4

7

4

1ffiffiffi
2

p � 1

2
ffiffiffi
2

p
�

Then the function can be expanded using one scaling function and three mother wavelet functions:

f ðtÞz f2ðtÞ ¼ PN
k ¼�N

c0ðkÞfðt � kÞ þ P1
j ¼0

PN
k ¼�N

dj ðkÞ2j=2jð2j t � kÞ

¼ 5

4
fðtÞ þ 7

4
jðtÞ þ jð2tÞ � 1

2
jð2t � 1Þ

Figure 13.38 shows the plots for each function and the combined function to verify that f ðtÞ does have amplitudes
of 4, 2, �1, and 0.
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FIGURE 13.38

The signal reconstructed using the Haar wavelets in Example 13.7.
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We can use the MATLAB function dwt() provided in Section 13.8 to compute the DWT coefficients.
dwt.m
function w ¼ dwt(h0,c,kLevel)
% h0 ¼ wavelet filter coefficients (lowpass filter)
% c ¼ input vector
% kLevel ¼ level
% w¼ wavelet coefficients
The results are verified as follows:

>> w¼dwt([1/sqrt(2) 1/sqrt(2)],[4 2 �1 0]/2,2)’
w ¼ 1.2500 1.7500 0.7071 �0.3536

From Example 13.7, we can create a time–frequency plot of the DWT amplitudes in two dimen-
sions as shown in Figure 13.39. Assuming the sampling frequency is fs, we have the smallest frequency
resolution as fs=N ¼ fs=4, where N ¼ 4. When j (j ¼ 0) is small, we achieve a small frequency
resolution Df ¼ fs=4 and each wavelet presents four samples. In this case, we have a good fre-
quency resolution but a poor time resolution. Similarly, when j (j ¼ 1) is a large value, the frequency
resolution becomes Df ¼ 2fs=4 and each wavelet presents two samples (more details in the time
domain). Hence, we achieve a good time resolution but a poor frequency resolution. Note that
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FIGURE 13.39

Time–frequency plot of the DWT amplitudes.
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the DWT cannot achieve good resolutions in both frequency and time at the same time. The time–
frequency plot of the DWT amplitudes in terms of their intensity is shown in Figure 13.39(b), and the
time and frequency plane for the DWT is shown in Figure 13.40.

EXAMPLE 13.8
Given the wavelet coefficients obtained using the Haar wavelet filters

½c0ð0Þd0ð0Þd1ð0Þd1ð1Þ� ¼


5

4

7

4

1ffiffiffi
2

p � 1

2
ffiffiffi
2

p
�

perform the IDWT.

Solution:
From Equation (13.55) we get

c1ðkÞ ¼
XN

m¼�N

c0ðmÞh0ðk � 2mÞ þ
XN

m¼�N

d0ðmÞh1ðk � 2mÞ

Then we recover coefficients c1ðkÞ as

c1ð0Þ ¼
XN

m¼�N

c0ðmÞh0ð�2mÞ þ
XN

m¼�N

d0ðmÞh1ð�2mÞ

¼ c0ð0Þh0ð0Þ þ d0ð0Þh1ð0Þ ¼ 5

4
� 1ffiffiffi

2
p þ 7

4
� 1ffiffiffi

2
p ¼ 3

ffiffiffi
2

p

2

c1ð1Þ ¼
XN

m¼�N

c0ðmÞh0ð1� 2mÞ þ
XN

m¼�N

d0ðmÞh1ð1� 2mÞ

¼ c0ð0Þh0ð1Þ þ d0ð0Þh1ð1Þ ¼ 5

4
� 1ffiffiffi

2
p þ 7

4
�
�
� 1ffiffiffi

2
p

�
¼ � 1

2
ffiffiffi
2

p

MATLAB verification using Figure 13.37 is given as

>> c1¼fconv([1 1]/sqrt(2),[5/4 0])þfconv([1 �1]/sqrt(2),[7/4 0])
c1 ¼ 2.1213 �0.3536

High frequency 

(Large j, small scale=2 )j

Low frequency 

(Small j, large scale=2 )j

Time

FIGURE 13.40

Time–frequency plane.
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where the MATLAB function fconv() for filter operations with the forward filter coefficients is listed in Section 13.8.
Again, from Equation (13.55), we obtain

c2ðkÞ ¼
XN

m¼�N

c1ðmÞh0ðk � 2mÞ þ
XN

m¼�N

d1ðmÞh1ðk � 2mÞ

Substituting the achieved wavelet coefficients c2ðkÞ, we yield

c2ð0Þ ¼
XN

m¼�N

c1ðmÞh0ð�2mÞ þ
XN

m¼�N

d1ðmÞh1ð�2mÞ

¼ c1ð0Þh0ð0Þ þ d1ð0Þh1ð0Þ ¼ 3
ffiffiffi
2

p

2
�
�

1ffiffiffi
2

p
�
þ 1ffiffiffi

2
p � 1ffiffiffi

2
p ¼ 2

c2ð1Þ ¼
XN

m¼�N

c1ðmÞh0ð1� 2mÞ þ
XN

m¼�N

d1ðmÞh1ð1� 2mÞ

¼ c1ð0Þh0ð1Þ þ d1ð0Þh1ð1Þ ¼ 3
ffiffiffi
2

p

2
� 1ffiffiffi

2
p þ 1ffiffiffi

2
p

�
� 1ffiffiffi

2
p

�
¼ 1

c2ð2Þ ¼
XN

m¼�N

c1ðmÞh0ð2� 2mÞ þ
XN

m¼�N

d1ðmÞh1ð2� 2mÞ

¼ c1ð1Þh0ð0Þ þ d1ð1Þh1ð0Þ ¼
�
� 1

2
ffiffiffi
2

p
�
� 1ffiffiffi

2
p þ

�
� 1

2
ffiffiffi
2

p
�
� 1ffiffiffi

2
p ¼ �1

2

c2ð3Þ ¼
XN

m¼�N

c1ðmÞh0ð3� 2mÞ þ
XN

m¼�N

d1ðmÞh1ð3� 2mÞ

¼ c1ð1Þh0ð1Þ þ d1ð1Þh1ð1Þ ¼
�
� 1

2
ffiffiffi
2

p
�
� 1ffiffiffi

2
p þ

�
� 1

2
ffiffiffi
2

p
�
�
�
� 1ffiffiffi

2
p

�
¼ 0

We can verify the results using the MATLAB program as follows:

>> c2¼fconv([1 1]/sqrt(2),[3*sqrt(2)/2 0 �1/(2*sqrt(2)) 0])þfconv([1 �1]/sqrt(2),[1/sqrt(2) 0 �1/(2*sqrt(2)) 0])

c2 ¼ 2.0000 1.0000 �0.5000 0

Scaling the wavelet coefficients, we finally recover the original sample values as

f ðkÞ ¼ 22=2½2 1 � 0:5 0� ¼ ½4 2 � 1 0�

Similarly, we can use the MATLAB function idwt() provided in Section 13.8 to perform the IDWT.
idwt.m
function c ¼ idwt(h0,w,kLevel)
% h0 ¼ wavelet filter coefficients (lowpass filter)
% w¼ wavelet coefficients
% kLevel ¼ level
% c ¼ input vector
Appling the MATLAB function idwt() leads to

>> f¼2*idwt([1/sqrt(2) 1/sqrt(2)],[5/4 7/4 1/sqrt(2) �1/(2*sqrt(2))],2)’
f ¼ 4.0000 2.0000 �1.0000 0.0000

Since 2j=2 scales signal amplitudes down in the analysis stage and scales them back up in the synthesis stage, we
can omit 2j=2 by using cðkÞ ¼ f ðkÞ directly in practice.
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EXAMPLE 13.9
Given the sample values [4 2 �1 0], use the provided MATLAB DWT (dwt.m) and IDWT (idwt.m) and specified
wavelet filter to perform the DWT and IWDT without using the scale factor 2j=2.

a. Haar wavelet filter
b. 4-tap Daubechies wavelet filter

Solution:
a. From Table 13.2, the Haar wavelet filter coefficients are

h0 ¼
�

1ffiffiffi
2

p 1ffiffiffi
2

p
�

Applying the MATLAB functions dwt() and idwt(), we have

>> w¼dwt([1/sqrt(2) 1/sqrt(2)],[4 2 �1 0],2)’
w ¼ 2.5000 3.5000 1.4142 �0.7071

>> f¼idwt([1/sqrt(2) 1/sqrt(2)],w,2)’
f ¼ 4.0000 2.0000 �1.0000 0

b. From Table 13.2, the 4-Tap Duabechies wavelet filter coefficients are

h0¼[0.482962913144534 0.836516303737808 0.224143868042013 �0.129409522551260]

MATLAB program verification is demonstrated as follows:

>> w¼dwt([0.482962913144534 0.836516303737808 0.224143868042013 �0.129409522551260],
[4 2�1 0],2)’
w ¼ 2.5000 2.2811 �1.8024 2.5095

>> f¼idwt([0.482962913144534 0.836516303737808 0.224143868042013�0.129409522551260],
w,2)’

f ¼ 4.0000 2.0000 �1.0000 0

13.7 WAVELET TRANSFORM CODING OF SIGNALS
We can apply the DWT and IWDT for data compression and decompression. The compression and
decompression involves two stages, that is, the analysis stage and the synthesis stage. At the analysis
stage, the wavelet coefficients are quantized based on their significance. Usually, we assign more bits
to the coefficient in a coarser scale, since the corresponding subband has larger signal energy and low
frequency components. We assign a small number of bits to a coefficient that resides in a finer scale,
since the corresponding subband has lower signal energy and high frequency components. The
quantized coefficients can be efficiently transmitted. The DWT coefficients are laid out in a format
described in Figure 13.41. The coarse coefficients are placed towards the left side. For example, in
Example 13.7, we organized the DWT coefficient vector as

w2ðkÞ ¼ ½c0ð0Þd0ð0Þd1ð0Þd1ð1Þ� ¼


5

4

7

4

1ffiffiffi
2

p � 1

2
ffiffiffi
2

p
�

Let us look at the following simulation examples.
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EXAMPLE 13.10
Consider a 40-Hz sinusoidal signal plus random noise sampled at 8,000 Hz with 1,024 samples:

xðnÞ ¼ 100cos ð2p� 40nT Þ þ 10� randn

where T ¼ 1=8;000 seconds and randn is a random noise generator with a unit power and Gaussian distribution.
Use a 16-bit code for each wavelet coefficient and write a MATLAB program to perform data compression for each
of the following ratios: 2:1, 4:1, 8:1, and 16:1. Plot the reconstructed waveforms.

Solution:
We use the 8-tap Daubechies filter as listed in Table 13.2. We achieve the data compression by dropping the high
subband coefficients for each level consecutively and coding each wavelet coefficient in the lower subband using
16 bits. For example, we achieve the 2:1 compression ratio by omitting 512 high frequency coefficients at the first
level, 4:1 by omitting 512 high frequency coefficients at the first level, and 256 high frequency coefficients at the
second level, and so on. The recovered signals are plotted in Figure 13.42. SNR ¼ 21 dB is achieved for the 2:1
compression ratio. As we can see, when more and more higher frequency coefficients are dropped, the recon-
structed signal contains less and less details. The recovered signal with 16:1 compression presents the least
details but shows the smoothest signal. On the other hand, omitting the high frequency wavelet coefficients can be
very useful for a signal denoising application, in which the high frequency noise contaminating the clean signal is
removed. A complete MATLAB program is given in Program 13.2.

Program 13.2. Wavelet data compression.
close all; clear all;clc
t¼0:1:1023;t¼t/8000;
x¼100*cos(40*2*pi*t)þ10*randn(1,1024);
h0¼[0.230377813308896 0.714846570552915 0.630880767929859 .

-0.027983769416859 -0.187034811719092 0.030841381835561 ..
0.032883011666885 -0.010597401785069];

N¼1024; nofseg¼1
rec_sig¼[]; rec_sig2t1¼[]; rec_sig4t1¼[]; rec_sig8t1¼[]; rec_sig16t1¼[];
for i¼1:nofseg
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FIGURE 13.41

DWT coefficient layout.
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FIGURE 13.42

Reconstructed signal at various compression ratios.

sp¼x((i-1)*1024þ1:i*1024);
w¼dwt(h0,sp,10);

% Quantization
wmax¼round(max(abs(w)));
wcode¼round(2^15*w/wmax); % 16-bit code for storage
w¼wcode*wmax/2^15; % Recovered wavelet coefficients
w(513:1024)¼zeros(1,512); % 2:1 compression ratio
sig_rec2t1¼idwt(h0,w,10);
rec_sig2t1¼[rec_sig2t1 sig_rec2t1’];
w(257:1024)¼0; % 4:1 compression ratio
sig_rec4t1¼idwt(h0,w,10);
rec_sig4t1¼[rec_sig4t1 sig_rec4t1’];
w(129:1024)¼0; % 8:1 compression ratio
sig_rec8t1¼idwt(h0,w,10);
rec_sig8t1¼[rec_sig8t1 sig_rec8t1’];
w(65:1024)¼0; % 16:1 compression ratio
sig_rec16t1¼idwt(h0,w,10);
rec_sig16t1¼[rec_sig16t1 sig_rec16t1’];

end
subplot(5,1,1),plot(t,x,’k’); axis([0 0.12 -120 120]);ylabel(’x(n)’);
subplot(5,1,2),plot(t,rec_sig2t1,’k’); axis([0 0.12 -120 120]);ylabel(’2:1’);
subplot(5,1,3),plot(t,rec_sig4t1,’k’); axis([0 0.12 -120 120]);ylabel(4:1);
subplot(5,1,4),plot(t,rec_sig8t1,’k’); axis([0 0.12 -120 120]);ylabel(’8:1’);
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subplot(5,1,5),plot(t,rec_sig16t1,’k’); axis([0 0.12 -120 120]);ylabel(’16:1’);
xlabel(’Time (sec.)’)
NN¼min(length(x),length(rec_sig2t1)); axis([0 0.12 -120 120]);
err¼rec_sig2t1(1:NN)-x(1:NN);
SNR¼sum(x.*x)/sum(err.*err);
disp(’PR reconstruction SNR dB¼>’);
SNR¼10*log10(SNR)

Figure 13.43 shows the wavelet compression for 16-bit speech data sampled at 8 kHz. The original
speech data is divided into speech segments, each with 1,024 samples. After applying the DWT to each
segment, the coefficients, which correspond to high frequency components indexed from 513 to 1,024,
are discarded in order to achieve coding efficiency. The reconstructed speech data has a compression
ratio 2:1 with SNR ¼ 22 dB. The MATLAB program is given in Program 13.3.
Program 13.3. Wavelet data compression for speech segments.

close all; clear all;clc
load orig.dat ; % Load speech data
h0¼[0.230377813308896 0.714846570552915 0.630880767929859 .

-0.027983769416859 -0.187034811719092 0.030841381835561 ..
0.032883011666885 -0.010597401785069];

N¼length(orig);
nofseg¼ceil(N/1024);
speech¼zeros(1,nofseg*1024);
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FIGURE13.43

Reconstructed speech signal with compression ratio of 2 and SNR ¼ 22 dB.
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speech(1:N)¼orig(1:N); % Making the speech length a multiple of 1024 samples
rec_sig¼[];
for i¼1:nofseg
sp¼speech((i-1)*1024þ1:i*1024);
w¼dwt(h0,sp,10);

% Quantization
w¼(round(2^15*w/2^15))*2^(15-15);
w(513:1024)¼zeros(1,512); % Omitting the high frequency coefficients
sp_rec¼idwt(h0,w,10);
rec_sig¼[rec_sig sp_rec’];

end
subplot(2,1,1),plot([0:length(speech)-1],speech,’k’);axis([0 20000 -20000 20000]);
ylabel(’Original data x(n)’);
subplot(2,1,2),plot([0:length(rec_sig)-1],rec_sig,’k’);axis([0 20000 -20000 20000]);
xlabel(’Sample number’);ylabel(’Recovered x(n) CR¼2:1’);
NN¼min(length(speech),length(rec_sig));
err¼rec_sig(1:NN)-speech(1:NN);
SNR¼sum(speech.*speech)/sum(err.*err);
disp(’PR reconstruction SNR dB¼>’);
SNR¼10*log10(SNR)

Figure 13.44 displays the wavelet compression for 16-bit ECG data using Program 13.3. The
reconstructed ECG data has a compression ratio of 2:1 with SNR ¼ 33.8 dB.

Figure 13.45 illustrates an application of signal denoising using the DWTwith a coefficient threshold.
During the analysis stage, an obtained DWT coefficient (quantization is not necessary) is set to zero if its
value is less than the predefined threshold depicted in Figure 13.45. This simple technique is called the
hard threshold. Usually, the small wavelet coefficients are related to the high frequency components in
signals. Therefore, setting high frequency components to zero is the same as lowpass filtering.

An example is shown in Figure 13.46. The first plot depicts a 40-Hz noisy sinusoidal signal (sine
wave plus noise with SNR¼ 18 dB) and the clean signal with a sampling rate of 8,000 Hz. The second
plot shows that after zero threshold operations, 67% of coefficients are set to zero and the recovered
signal has SNR ¼ 19 dB. Similarly, the third and fourth plots illustrate that 93% and 97% of coef-
ficients are set to zero after threshold operations and the recovered signals have SNR ¼ 23 and 28 dB,
respectively. As an evidence that the signal is smoothed, that is, high frequency noise is attenuated, the
wavelet denoising technique is equivalent to lowpass filtering.

13.8 MATLAB PROGRAMS
In this section, four key MATLAB programs are listed. rconv() and fconv() perform circular
convolutions with the reversed filter coefficients and the forward filter coefficients, respectively. dwt()
and idwt() are the programs to compute the DWT coefficients and IDWT coefficients. The resolution
level can be specified.
Program 13.4. Circular convolution with the reversed filter coefficients (rconv.m).

function [y] ¼ rconv(h,c)
% Circular convolution using the reversed filter coefficients h(-k)
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Hard threshold for the DWT coefficients.
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Reconstructed ECG signal with compression ratio of 2 and SNR ¼ 33.8 dB.
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% h ¼ filter coefficients
% c ¼ input vector
% y ¼ output vector
N¼length(c); M¼length(h);
xx¼zeros(1,MþN-1);
xx(1:N)¼c;
xx(Nþ1:NþM-1)¼c(1:M-1); % Use periodized input
for n¼1:N;
y(n)¼0;
for m¼1:M

y(n)¼y(n)þh(m)*xx(nþm-1);
end

end

Program 13.5. Circular convolution with the forward filter coefficients (fconv.m).

function [y] ¼ fconv(h,c)
% Circular convolution using the forward filter coefficients h(k)
% h ¼ filter coefficients
% c ¼ input vector
% y ¼ output vector
N¼length(c); M¼length(h);
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Signal denoising using wavelet transform coding.
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x(1:NþM-1) ¼ zeros(1,NþM-1);
for j ¼ 1:N
x(j:Mþ(j-1)) ¼ x(j:Mþ(j-1)) þ c(j)*h;
end
for i ¼ NþM-1:-1:Nþ1
x(i-N) ¼ x(i-N) þ x(i); % Circular convolution
end
y¼x(1:N);

Program 13.6. DWT coefficients (dwt.m).

function w ¼ dwt(h0,c,kLevel)
% w ¼ dwt(h,c,k)
% Computes wavelet transform coefficients for a vector c using the
% orthonormal wavelets defined by the coefficients h.
% h ¼ wavelet coefficients
% c ¼input vector
% kLelvel¼ level
% w ¼ wavelet coefficients
n¼length(c); m ¼ length(h0);
h1 ¼ h0(m:-1:1); h1(2:2:m)¼-h1(2:2:m);
h0 ¼ h0(:)’; h1 ¼ h1(:)’;
c ¼ c(:); w ¼ c;
x ¼ zeros(nþm-2,1);
% Perform decomposition through k levels
% at each step, x ¼ periodized version of x coefficients
for j ¼ 1:kLevel

x(1:n) ¼ w(1:n);
for i ¼ 1:m-2
x(nþi) ¼ x(i);
end
for i ¼ 1:n/2
w(i) ¼ h0 * x(1 þ 2*(i-1):m þ 2*(i-1));
w(n/2 þ i) ¼ h1* x(1 þ 2*(i-1):m þ 2*(i-1));
end
n ¼ n/2;

end

Program 13.7. IDWT coefficients (idwt.m).

function c ¼ idwt(h0,w,kLevel)
% c ¼ idwt(h0,w,kLevel)
% Computes the inverse fast wavelet transform from data W using the
% orthonormal wavelets defined by the coefficients.
% h0 ¼ wavelet filter coefficients
% w ¼ wavelet coefficients
% kLevel ¼ level
% c ¼ IDWT coefficients
n¼length(w); m ¼ length(h0);
h1 ¼ h0(m:-1:1); h1(2:2:m)¼-h1(2:2:m);

13.8 Matlab Programs 671



h0 ¼ h0(:); h1 ¼ h1(:);
w ¼ w(:); c ¼ w;
x ¼ zeros(nþm-2,1);
% Perform the reconstruction through k levels
% x ¼ periodized version of x coefficients
n ¼ n/2^kLevel;
for i ¼ 1:kLevel
x(1:2*nþm-2) ¼ zeros(2*nþm-2,1);
for j ¼ 1:n
x(1þ2*(j-1):mþ2*(j-1)) ¼ x(1þ2*(j-1):mþ2*(j-1)) þ c(j)*h0 þ w(nþj)*h1;
end
for i ¼ 2*nþm-2:-1:2*nþ1
x(i-2*n) ¼ x(i-2*n) þ x(i);
end
c(1:2*n) ¼ x(1:2*n);
n ¼ 2 * n;

end

13.9 SUMMARY
1. A signal can be decomposed using a filter bank system. The filter bank contains two stages: the

analysis stage and the synthesis stage. The analysis stage applies analysis filters to decompose the
signal into multiple channels. The signal from each channel is downsampled and coded. At
the synthesis stage, the recovered signal from each channel is upsampled and processed using
its synthesis filter. Then the outputs from all the synthesis filters are combined to produce the
recovered signal.

2. Perfect reconstruction conditions for the two-band case are derived to design the analysis and
synthesis filters. The conditions consist of a half-band filter requirement and normalization.
Once the lowpass analysis filter coefficients are obtained, the coefficients for other filters can
be achieved from the derived relationships.

3. In a binary tree structure, a filter bank divides an input signal into two equal subbands, resulting in
the low and high bands. Each band again splits into low and high bands to produce quarter bands.
The process continues in this form.

4. The dyadic structure implementation of the filter bank first splits the input signal to low and high
bands and then continues to split the low band only each time.

5. By quantizing each subband channel using the assigned number bits based on the signal
significance (more bits assigned to code the samples for channels with large signal energy
while less bits assigned to code the samples for channels with small signal energy), the
subband coding method demonstrates efficiency for data compression.

6. The wavelet transform can identify the frequencies in a signal and the times when the signal
elements occur and end.

7. The wavelet transform provides either good frequency resolution or good time resolution, but not
both.

672 CHAPTER 13 Subband- and Wavelet-Based Coding



8. The wavelet has two important properties: scaling and translation. The scaling process is related
to changes of wavelet frequency (oscillation) while translation is related to the time localization.

9. A family of wavelets contains a father wavelet and a mother wavelet, and their scaling and
translation versions. The father wavelet and its scaling and translation are called the scaling
function while the mother wavelet and its scaling and translation are called the wavelet
function. Each scaling function and wavelet function can be presented using the scaling
functions in the next finer scale.

10. A signal can be approximated from a sum of weighted scaling functions and wavelet functions.
The weights are essentially the DWT coefficients. A signal can also be coded at any desired level
using smaller-scale wavelets.

11. Implementation of DWT and IDWT consists of the analysis and synthesis stages, which are
similar to the subband coding scheme. The implementation uses the dyadic structure but with
analysis filter coefficients in a reversed format.

12. The DWT and IDWT are very effective for data compression or signal denoising by eliminating
smaller DWT coefficients, which correspond to higher frequency components.

13.10 PROBLEMS

13.1. Given the downsampling systems in Figure 13.47(a) and (b) and input spectrum Wðf Þ,
sketch the downsampled spectrum Xðf Þ.

13.2. Given the upsampling systems in Figure 13.48(a) and (b) and input spectrum Xðf Þ, sketch
the upsampled spectrum Wðf Þ. Note that the sampling rate for input xðmÞ fsM ¼ fs=4 and
the output sampling rate wðnÞ is fs.

13.3. Given the down- and upsampling systems in Figure 13.49(a) and (b) and the input spectrum
Wðf Þ, sketch the output spectrum Yðf Þ and express Yðf Þ in terms of Wðf Þ.
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FIGURE 13.47

Downsampling systems in Problem 13.1.
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13.4. Given the down- and upsampling systems in Figure 13.50(a) and (b) and the input spectrum
Wðf Þ, sketch the output spectrum Yðf Þ and express Yðf Þ in terms of Wðf Þ.

13.5. Given H0ðzÞ ¼ 1ffiffiffi
2

p þ 1ffiffiffi
2

p z�1, determine H1ðzÞ, G0ðzÞ, and G1ðzÞ.

13.6. Given H0ðzÞ ¼ 1ffiffiffi
2

p þ 1ffiffiffi
2

p z�1, verify the following conditions:

rð2nÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ 2nÞ ¼ dðnÞ

RðzÞ þ Rð�zÞ ¼ 2

Also, plot the magnitude frequency responses of the analysis and synthesis filters.
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FIGURE 13.48

Upsampling systems in Problem 13.2.
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FIGURE 13.49

Down- and upsampling systems in Problem 13.3.
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13.7. Given

H0ðzÞ ¼ 0:483þ 0:837z�1 þ 0:224z�2 � 0:129z�3

determine H1ðzÞ, G0ðzÞ, and G1ðzÞ.
13.8. Given

H0ðzÞ ¼ 0:483þ 0:837z�1 þ 0:224z�2 � 0:129z�3

verify the following conditions:

rð2nÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ 2nÞ ¼ dðnÞ

RðzÞ þ Rð�zÞ ¼ 2

13.9. Draw a four-band dyadic tree structure of a subband system including the analyzer and
synthesizer.

13.10. Draw an eight-band dyadic tree structure of a subband system including the analyzer and
synthesizer.

13.11. Consider the function in Figure 13.51.

Sketch

a. f ð4tÞ
b. f ðt � 2Þ
c. f ð2t � 3Þ
d. f ðt=2Þ
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FIGURE 13.50

Down- and upsampling systems in Problem 13.4.
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e. f ðt=4� 0:5Þ
13.12. Given a father wavelet (base scaling function) in base scale plotted in Figure 13.52(a),

determine a and b for each of the wavelets plotted in Figure 13.52(b) and (c).

13.13. Consider the signal in Figure 13.53.

Sketch

a. f ð4tÞ
b. f ðt � 2Þ
c. f ð2t � 3Þ
d. f ðt=2Þ
e. f ðt=4� 0:5Þ

13.14. Consider the signal in Figure 13.54.

Sketch

a. f ð4tÞ
b. f ðt � 2Þ
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A sine function in Problem 13.11.
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c. f ð2t � 3Þ
d. f ðt=2Þ
e. f ðt=4� 1Þ

13.15. Sketch the Haar father wavelet families for three different scales, j ¼ 0; 1; 2 for a period of
2 seconds.
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FIGURE 13.53

The function in Problem 13.13.
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Wavelets in Problem 13.12.
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13.16. Sketch the Haar mother wavelet families for three different scales, j ¼ 0; 1; 2 for a period
of 2 seconds.

13.17. Use the Haar wavelet family to expand the signal depicted in Figure 13.55.

a. Use only scaling functions fð2t � kÞ.
b. Use scaling functions and wavelets fðtÞ and jðt � kÞ

13.18. Use the Haar wavelet family to expand the signal depicted in Figure 13.56.

a. Use only scaling functions fð4t � kÞ.
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FIGURE 13.54

A trapezoidal function in Problem 13.14.
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A gate function in Problem 13.17.
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A piecewise function in Problem 13.18.

b. Use scaling functions and wavelets fð2t � kÞ and jð2t � kÞ.
c. Use scaling functions and wavelets fðtÞ, jð2t � kÞ, and jðt � kÞ.

13.19. Use the Haar wavelet family to expand the signal

xðtÞ ¼ sinð2ptÞ for 0 � t � 1

a. Use only scaling functions fð2t � kÞ.
b. Use scaling functions and wavelets fðtÞ and jðt � kÞ.

13.20. Use the Haar wavelet family to expand the signal

x
�
t

 ¼ e�5t for 0 � t � 1

a. Use only scaling functions fð2t � kÞ.
b. Use scaling functions and wavelets fðtÞ and jðt � kÞ.

13.21. Verify the following equations using the Haar wavelet families:

a. fð2tÞ ¼ PN
k¼�N

ffiffiffi
2

p
h0ðkÞfð4t � kÞ

b. jð2tÞ ¼ PN
k¼�N

ffiffiffi
2

p
h1ðkÞfð4t � kÞ
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13.22. Given the 4-tap Daubechies wavelet coefficients
h0(k) ¼ [0.483 0.837 0.224 �0.129]

determine h1ðkÞ and plot magnitude frequency responses for both h0ðkÞ and h1ðkÞ.
13.23. Given the sample values [8 �2 4 1], use the Haar wavelet to determine the level-2 wavelet

coefficients.

13.24. Given the sample values [8�2 4 3 0�1�2 0], use the Haar wavelet to determine the level-
3 wavelet coefficients.

13.25. Given the level-2 wavelet coefficients [4 2 �1 2], use the Haar wavelet to determine the
sampled signal vector f ðkÞ.

13.26. Given the level-3 wavelet coefficients [4 2�1 2 0 0 0 0], use the Haar wavelet to determine
the sampled signal vector f ðkÞ.

13.27. Given the level-1 wavelet coefficients [4 2 �1 2], use the Haar wavelet to determine the
sampled signal vector f ðkÞ.

13.28. The four-level DWT coefficients are given as follows:
W ¼ [100 20 16 �5 �3 4 2 �6 4 6 1 2 �3 0 2 �1]

List the wavelet coefficients to achieve each of the following compression ratios:

a. 2:1

b. 4:1

c. 8:1

d. 16:1

13.10.1 MATLAB Problems

Use MATLAB to solve Problems 13.29 to 13.31.

13.29. Use the 16-tap PR-CQF coefficients and MATLAB to verify the following conditions:

rð2nÞ ¼
XN�1

k¼ 0

h0ðkÞh0ðk þ 2nÞ ¼ dðnÞ

RðzÞ þ Rð�zÞ ¼ 2

Plot the frequency responses for h0ðkÞ and h1ðkÞ.
13.30. Use the MATLAB functions provided in Section 13.8 [dwt(), idwt()] to verify Problems

13.23–13.27.
13.31. Consider a 20-Hz sinusoidal signal plus random noise sampled at 8,000 Hz with 1,024 samples:

xðnÞ ¼ 100 cos ð2p� 20nTÞ þ 50� randn

where T ¼ 1=8;000 seconds and randn is a random noise generator with a unit power and
Gaussian distribution.
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a. Use a 16-bit code for each wavelet coefficient and write a MATLAB program to perform
data compression with the following ratios: 2:1, 4:1, 8:1, 16:1, and 32:1.

b. Measure the SNR in dB for each case.
c. Plot the reconstructed waveform for each case.

13.10.2 MATLAB Projects
13.32. Data compression using subband coding:

Given 16-bit speech data (“speech.dat”) and using the four-band subband coding method,
write a MATLAB program to compress a speech signal with the following specifications:
a. 16 bits for each of the subband coefficients, code the LL, LH, HL, HH subbands, and

measure the SNR in dB.
b. 16 bits for each of the subband coefficients, code the LL band, discard the LH, HL, and HH

subbands.
c. 16 bits for each of the subband coefficients, code the LL and LH bands, discard the HL and

HH subbands.
d. 16 bits for each of subband coefficients, code the LL, LH, and HL bands, discard the HH

subband.
e. Measure SNR in dB for (a), (b), (c), and (d).
f. Determine the achieved compression ratios for (a), (b), (c), and (d).
g. Repeat (a) to (f) for seismic data (“seismic.dat”) in which each sample is encoded using 32

bits instead of 16 bits.

13.33. Wavelet-based data compression:
Given 16-bit speech data (“speech.dat”) and using the wavelet coding method with 16-tap
Daubechies wavelet filters, write a MATLAB program to compress a speech signal with
the following specifications:
a. 16 bits for each of the wavelet coefficients, compression 2:1.
b. 16 bits for each of the wavelet coefficients, compression 4:1.
c. 16 bits for each of the wavelet coefficients, compression 8:1.
d. 16 bits for each of the wavelet coefficients, compression 16:1.
e. 16 bits for each of the wavelet coefficients, compression 32:1.
f. Measure SNR in dB for (a), (b), (c), (d) and (e).
g. Repeat (a) to (f) for seismic data (“seismic.dat”) in which each sample is encoded using 32

bits instead of 16 bits.
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OBJECTIVES:

In today’s modern computers, media information such as audio, images, and video have become necessary
for daily business operations and entertainment. In this chapter, we will study the digital image and its
processing techniques. This chapter introduces the basics of image processing, including image
enhancement using histogram equalization and filtering methods, and proceeds to study pseudo-color
generation for object detection and recognition. Finally, the chapter investigates image compression
techniques and the basics of video signals.

14.1 IMAGE PROCESSING NOTATION AND DATA FORMATS
The digital image is picture information in a digital form. The image can be filtered to remove noise to
enhance it. It can also be transformed to extract features for pattern recognition. The image can be
compressed for storage and retrieval, as well as transmitted via a computer network or a communi-
cation system.

The digital image consists of pixels. The position of each pixel is specified in terms of an index
for the number of columns and another for the number of rows. Figure 14.1 shows that a pixel pð2; 8Þ
has a level of 86 and is located in the second row, eighth column. We express it in notation as

pð2; 8Þ ¼ 86 (14.1)

The number of pixels in the presentation of a digital image is its spatial resolution, which relates to the
image quality. The higher the spatial resolution, the better quality the image has. The resolution can be
fairly high, for instance, as high as 1,600 � 1,200 (1,920,000 pixels ¼ 1.92 megapixels), or as low as
320 � 200 (64,000 pixels ¼ 64 kilopixels). In notation, the number to the left of the multiplication
symbol represents the width, and that to the right of the symbol represents the height. Image quality
also depends on the numbers of bits used in encoding each pixel level, which will be discussed in next
section.

14.1.1 8-Bit Gray Level Images

If a pixel is encoded on a gray scale from 0 to 255, where 0 ¼ black and 255 ¼ white, the numbers
in between represent levels of gray forming a grayscale image. For a 640 � 480 8-bit image, 307.2
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kilobytes are required for storage. Figure 14.2 shows a grayscale image format. As shown in the figure,
the pixel indicated in the box has an 8-bit value of 25.

The image of a cruise ship with a spatial resolution of 320� 240 using an 8-bit grayscale format is
shown in Figure 14.3.
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m
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0

FIGURE 14.2

Grayscale image format.
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FIGURE 14.1

Image pixel notation.

FIGURE 14.3

Grayscale image (8-bit 320 � 240).
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14.1.2 24-bit Color Images

In a 24-bit color image representation, each pixel is recoded with red, green, and blue (RGB)
components. With each component value encoded in 8 bits, resulting in 24 bits in total, we achieve
a full color RGB image. With such an image, we can have 224 ¼ 16:777216� 106 different colors. A
640� 480 24-bit color image requires 921.6 kilobytes for storage. Figure 14.4 shows the format for the
24-bit color image where the indicated pixel has 8-bit RGB components.

Figure 14.5 shows a 24-bit color image of the Grand Canyon, along with grayscale displays for the
8-bit RGB component images. The full color picture at the upper left is included in the color insert.

0
0 n

m

R=66
G=132
B=34

Pixel value

FIGURE 14.4

The 24-bit color image format.

 RGB(a) (b)  Red

(c) Green (d) Blue

FIGURE 14.5

The 24-bit color image and its respective RGB components.
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14.1.3 8-Bit Color Images

The 8-bit color image is also a popular image format. Its pixel value is a color index that points to
a color lookup table containing RGB components. We call this a color indexed image, and its format
is shown in Figure 14.6. As an example in the figure, the color indexed image has a pixel index
value of 5, which is the index for the entry of the color table, called the color map. At location 5 in
the color table, there are three color components with RGB values of 66, 132, and 34, respectively.
Each color component is encoded in 8 bits. There are only 256 different colors in the image. A
640 � 480 8-bit color image requires 307.2 kilobytes for data storage and 3 � 256 ¼ 768 bytes for
color map storage. The 8-bit color image for the cruise ship shown in Figure 14.3 is displayed in
Figure 14.7.

0
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n

m
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m

0 n

R G B

01000010

5

Index value

0

5

255

10000100 00100010

R=66
G=132
B=34

Pixel value

Index

FIGURE 14.6

The 8-bit color indexed image format.

FIGURE 14.7

The 8-bit color indexed image.
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14.1.4 Intensity Images

As we noted in the first section, the grayscale image uses a pixel value ranging from 0 to 255 to present
luminance, or the light intensity. A pixel value of 0 designates black, and a value of 255 represents white.

In some processing environments such as MATLAB (matrix laboratory), floating-point operations
are used. The grayscale image has an intensity value that is normalized to the range from 0 to 1.0,
where 0 represents black and 1 represents white. We often change the pixel value to the normalized
range to get the grayscale intensity image before processing it, then scale it back to the standard 8-bit
range after processing for display. With the intensity image in floating point format, the digital filter
implementation can be easily applied. Figure 14.8 shows the format of the grayscale intensity image,
where the indicated pixel shows the intensity value of 0.5988.

14.1.5 Red, Green, and Blue Components and Grayscale Conversion

In some applications, we need to convert a color image to a grayscale image so that storage space can be
saved. As an example, fingerprint images are stored in grayscale format in a database system. As another
example, in color image compression, the transformation converts the RGB color space to the YIQ color
space (Li and Drew, 2004; Rabbani and Jones, 1991), where Y is the luminance (Y) channel representing
light intensity while the I (in-space) and Q (quadrature) chrominance channels represent color details.

The luminance Yðm; nÞ carries grayscale information with most of the signal energy (as much as
93%), and the chrominance channels Iðm; nÞ and Qðm; nÞ carry color information with much less
energy (as little as 7%). The transformation in terms of the standard matrix notion is given by2

64
Yðm; nÞ
Iðm; nÞ
Qðm; nÞ

3
75 ¼

2
64
0:299 0:587 0:114

0:596 �0:274 �0:322

0:212 �0:523 0:311

3
75
2
64
Rðm; nÞ
Gðm; nÞ
Bðm; nÞ

3
75 (14.2)

As an example of data compression, after transformation, we can encode Yðm; nÞ with a higher
resolution using a larger number of bits, since it contains most of the signal energy, while we encode
chrominance channels Iðm; nÞ and Qðm; nÞ with less resolution using a smaller number of bits. Inverse
transformation can be solved as2

64
Rðm; nÞ
Gðm; nÞ
Bðm; nÞ

3
75 ¼

2
64
1:000 0:956 0:621

1:000 �0:272 �0:647

1:000 �1:106 1:703

3
75
2
64
Yðm; nÞ
Iðm; nÞ
Qðm; nÞ

3
75 (14.3)
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0.5988

Pixel value
Floating

point
operation

FIGURE 14.8

The grayscale intensity image format.
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To obtain the grayscale image, we simply convert each RGB pixel to the YIQ pixel, and then keep its
luminance channel and discard IQ channel chrominance. The conversion formula is hence given by

Yðm; nÞ ¼ 0:299$Rðm; nÞ þ 0:587$Gðm; nÞ þ 0:114$Bðm; nÞ (14.4)

Note that Yðm; nÞ, Iðm; nÞ, and Qðm; nÞ can be matrices that represent the luminance image and two
color component images, respectively. Similarly, Rðm; nÞ, Gðm; nÞ, and Bðm; nÞ can be matrices for the
RGB component images.

EXAMPLE 14.1
Given a pixel in an RGB image

R ¼ 200; G ¼ 10; B ¼ 100

convert the pixel values to the YIQ values.

Solution:
Applying Equation (14.2), it follows that

2
64
Y

I

Q

3
75 ¼

2
64
0:299 0:587 0:114

0:596 �0:274 �0:322

0:212 �0:523 0:311

3
75
2
64
200

10

100

3
75

Carrying out the matrix operations leads to

2
64
Y

I

Q

3
75 ¼

2
64
0:299� 200 0:587� 10 0:114� 100

0:596� 200 �0:274� 10 �0:322� 100

0:212� 200 �0:523� 10 0:311� 100

3
75 ¼

2
64
77:07

84:26

68:27

3
75

Rounding the values to integers, we have2
64
Y

I

Q

3
75 ¼ round

2
64
77:07

84:26

68:27

3
75 ¼

2
64
77

84

68

3
75

Now let us study the following example to convert the YIQ values back to the RGB values.

EXAMPLE 14.2
Given a pixel of an image in the YIQ color format

Y ¼ 77; I ¼ 84; Q ¼ 68

convert the pixel values back to the RGB values.

Solution:
Applying Equation (14.3) yields

2
64
R

G

B

3
75 ¼

2
64
1:000 0:956 0:621

1:000 �0:272 �0:647

1:000 �1:106 1:703

3
75
2
64
77

84

68

3
75 ¼

2
64
199:53

10:16

99:90

3
75
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After rounding, it follows that 2
64
R

G

B

3
75 ¼ round

2
64
199:53

10:16

99:9

3
75 ¼

2
64
200

10

100

3
75

EXAMPLE 14.3
Given the 2 � 2 RGB image

R ¼
"
100 50

200 150

#
G ¼

"
10 25

20 50

#
B ¼

"
10 5

20 15

#

convert the RGB color image into a grayscale image.

Solution:
Since only Y components are kept in the grayscale image, we apply Equation (14.4) to each pixel in the 2 x 2 image
and round the results to integers as follows:

Y ¼ 0:299�
"
100 50

200 150

#
þ 0:587�

"
10 25

20 50

#
þ 0:114�

"
10 5

20 15

#
¼
"
37 30

74 76

#

Figure 14.9 shows the grayscale image converted from the 24-bit color image in Figure 14.5 using
the RGB-to-YIQ transformation, where only the luminance information is retained.

14.1.6 MATLAB Functions for Format Conversion

The following list summarizes MATLAB functions for image format conversion:

imread¼ read image data file with the specified format
X¼ 8-bit grayscale image, 8-bit indexed image, or 24-bit RGB color image

FIGURE 14.9

Grayscale image converted from the 24-bit color image in Figure 14.5 using RGB-to-YIQ transformation.
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map¼ color map table for the indexed image (256 entries)
imshow(X,map)¼ 8-bit image display
imshow(X)¼ 24-bit RGB color image display if image X is in a 24-bit RGB color format;
grayscale image display if image X is in an 8-bit grayscale format
ind2gray¼ 8-bit indexed color image to 8-bit grayscale image conversion
ind2rgb¼ 8-bit indexed color image to 24-bit RGB color image conversion
rgb2ind¼ 24-bit RGB color image to 8-bit indexed color image conversion
rgb2gray¼ 24-bit RGB color image to 8-bit grayscale image conversion
im2double¼ 8-bit image to intensity image conversion
mat2gray¼ image data to intensity image conversion
im2uint8¼ intensity image to 8-bit grayscale image conversion

Indexed color image
1) Pixel value is an index; there are
256 indices.
2) Each index points to a color map
entry with three values: Red, Green
and Blue.

R G B0
1

255

1

RGB color image
1) Each pixel has three values:
Red, Green, and Blue.
2) There are red image, blue
image, and green image
components.

BGR

Grayscale image
1) Each pixel has a value with
a range of 0 to 255.

Grayscale intensity image
1) Pixel value is normalized to
a range from 0 to 1.0.
2) The filter could be applied in
the float format.[X, map]=imread('file name','format')

X=imread('file name','format');

X=ind2rgb(X,map) [X,map]=rgb2ind(X,256)
X=ind2gray(X,map)

X=rgb2gray(X)

I=im2double(X) X=mat2gray(I)
X=im2uint8(X)

Image format and conversion

imshow(X, map)

imshow(X)

imshow(X)

FIGURE 14.10

Outlines the applications of image format conversions.
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14.2 IMAGE HISTOGRAM AND EQUALIZATION
An image histogram is a graph to show how many pixels are at each scale level, or at each index for the
indexed color image. The histogram contains information needed for image equalization, where the
image pixels are stretched to give a reasonable contrast.

14.2.1 Grayscale Histogram and Equalization

We can obtain a histogram by plotting pixel value distribution over the full grayscale range.

EXAMPLE 14.4
Produce a histogram given the following image (a matrix filled with integers) with the grayscale value ranging from
0 to 7, that is, with each pixel encoded into 3 bits:

2
6666664

0 1 2 2 6

2 1 1 2 1

1 3 4 3 3

0 2 5 1 1

3
7777775

Solution:
Since the image is encoded using 3 bits for each pixel, the pixel value ranges from 0 to 7. The count for each
grayscale is listed in Table 14.1.

Table 14.1 Pixel Count Distribution

Pixel pðm;nÞ Level Number of Pixels

0 2

1 7

2 5

3 3

4 1

5 1

6 1

7 0
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FIGURE 14.11

Histogram in Example 14.4.

Based on the grayscale distribution counts, the histogram is created as shown in Figure 14.11.
As we can see, the image has pixels whose levels are more concentrated in the dark scale in this example.

With the histogram, the equalization technique can be developed. Equalization stretches the scale
range of the pixel levels to the full range to improve the contrast of the given image. To utilize this
technique, the equalized new pixel value is redefined as

peq
�
m; n

� ¼ Number of pixels with scale level � pðm; nÞ
Total number of pixels

� ðmaximum scale levelÞ (14.5)

The new pixel value is reassigned using the value obtained by multiplying the maximum scale level by
the scaled ratio of the accumulative counts up to the current image pixel value over the total number of
pixels. Clearly, since the accumulative counts can range from 0 up to the total number of pixels, the
equalized pixel value can vary from 0 to the maximum scale level. It is due to this accumulation
procedure that the pixel values are spread over the whole range from 0 to the maximum scale level
(255). Let us look at a simplified equalization example.

EXAMPLE 14.5
Consider the following image (matrix filled with integers) with a grayscale value ranging from 0 to 7, that is, with
each pixel encoded using 3 bits: 2

66664
0 1 2 2 6

2 1 1 2 1

1 3 4 3 3

0 2 5 1 1

3
77775
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Perform equalization using the histogram in Example 14.4, and plot the histogram for the equalized image.

Solution:
Using the histogram result in Table 14.1, we can compute an accumulative count for each grayscale level as shown
in Table 14.2. The equalized pixel level using Equation (14.5) is given in the last column.

To see how the old pixel level pðm;nÞ ¼ 4 is equalized to the new pixel level peqðm;nÞ ¼ 6, we apply
Equation (14.5):

peq
�
m;n

� ¼ round

�
18

20
� 7

�
¼ 6

The equalized image using Table 14.2 is finally obtained by replacing each old pixel value in the old image with its
corresponding equalized new pixel value: 2

66664
1 3 5 5 7

5 3 3 5 3

3 6 6 6 6

1 5 7 3 3

3
77775

To see how the histogram is changed, we compute the pixel level counts according to the equalized image. The
result is given in Table 14.3, and Figure 14.12 shows the new histogram for the equalized image.

Table 14.2 Image Equalization in Example 14.5.

Pixel pðm;nÞ
Level

Number of
Pixels

Number of Pixels
£pðm;nÞ

Equalized
Pixel Level

0 2 2 1

1 7 9 3

2 5 14 5

3 3 17 6

4 1 18 6

5 1 19 7

6 1 20 7

7 0 20 7

Table 14.3 Pixel Level Distribution Counts of the Equalized Image in Example 14.5

Pixel pðm;nÞ Level Number of Pixels

0 0

1 2

2 0

3 6

4 0

5 5

6 4

7 2
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As we can see, the pixel levels in the equalized image are stretched to the larger scale levels. This technique
works for underexposed images.

Next, we apply image histogram equalization to enhance a biomedical image of a human neck in
Figure 14.13A, while Figure 14.13B shows the original image histogram. (The purpose of the arrow
in Figure 14.13Awill be explained later.) We see that there are many pixel counts residing at the lower
scales in the histogram. Hence, the image looks rather dark, and may be underexposed.

Figure 14.14A and Figure 14.14B show the equalized grayscale image using the histogram method
and its histogram, respectively. As shown in the histogram, the equalized pixels reside on a larger
scale, and hence the equalized image has improved contrast.

14.2.2 24-Bit Color Image Equalization

For equalizing the RGB image, we first transform RGB values to YIQ values since the Y channel
contains most of the signal energy, about 93%. Then Y channel is equalized just like the grayscale
equalization to enhance the luminance. We leave the I and Q channels as they are, since these contain
color information only and we do not equalize them. Next, we can repack the equalized Y channel
back to the YIQ format. Finally, the YIQ values are transformed back to the RGB values for display.
Figure 14.15 shows the procedure.
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FIGURE 14.12

Histogram for the equalized image in Example 14.5.
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FIGURE 14.13A

Original grayscale image.
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FIGURE 14.13B

Histogram for the original grayscale image.
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FIGURE 14.14A

Grayscale equalized image.
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FIGURE 14.14B

Histogram for the grayscale equalized image.
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Figure 14.16A shows an original RGB color outdoors scene that is underexposed. Figure 14.16B
shows the equalized RGB image using the method of equalizing the Y channel only. We can verify
significant improvement with the equalized image showing much detailed information. The color print
of the image is included in the color insert.

We can also use the histogram equalization method to equalize each of the R, G , and B channels, or
their possible combinations. Figure 14.17 illustrates such a procedure.

Some color effects can be observed. Equalization of the R channel only would make the
image look redder since the red pixel values are stretched out to the full range. Similar

RGB YIQ Grayscale
equalization

Yeq

Pack YIQ
Equalized

RGB

FIGURE 14.15

Color image equalization.

FIGURE 14.16A

Original RGB color image. See color image on book’s companion site.
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observations can be made for equalizing the G channel, or the B channel only. The equalized
images for the R, G, and B channels, respectively, are shown in Figure 14.18. The image from
equalizing the R, G, and B channels simultaneously is shown in the upper left corner, which
offers improved image contrast.

FIGURE 14.16B

Equalized RGB color image.

RGB

Equalizing R channel

Equalized
RGBEqualizing G channel

Equalizing B channel

FIGURE 14.17

Equalizing RGB channels.
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14.2.3 8-Bit Indexed Color Image Equalization

Equalization of the 8-bit color indexed image is more complicated. This is due to the fact that the pixel
value is the index for color map entries, and there are three RGB color components for each entry. We
expect that after equalization, the index for each pixel will not change from its location on the color
map table. Instead, the RGB components in the color map are equalized and changed. The procedure is
described in the following is shown in Figure 14.19.

Step 1. The RGB color map is converted to the YIQ color map. Note that there are only 256 color
table entries. Since the image contains the index values, which point to locations on the color
table containing RGB components, it is natural to convert the RGB color table to the YIQ
color table.
Step 2. The grayscale image is generated using the Y channel value, so that grayscale equalization
can be performed.
Step 3. Grayscale equalization is executed.
Step 4. The equalized 256 Y values are divided by their corresponding old Y values to obtain the
relative luminance scale factors.

FIGURE 14.18

Equalization effects for RGB channels.
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Step 5. Finally, the R, G, B values are each scaled in the old RGB color table with the corresponding
relative luminance scale factor and are normalized as new RGB channels in the color table in the
correct range. Then the new RGB color map is the output.

Note that original index values are not changed; only the color map content is.
Using the previous outdoors picture for the condition of underexposure, Figure 14.20 shows the

equalized indexed color image. We see that the equalized image displays much more detail. Its color
version is reprinted in the color insert.
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FIGURE 14.19

Equalization of 8-bit indexed color image.
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14.2.4 MATLAB Functions for Equalization

Figure 14.21 lists MATLAB functions for performing equalization for the different image formats. The
MATLAB functions are explained as follows:

histeq¼ grayscale histogram equalization, or 8-bit indexed color histogram equalization
imhist¼ histogram display
rgb2ntsc¼ 24-bit RGB color image to 24-bit YIQ color image conversion
ntsc2rgb¼ 24-bit YIQ color image to 24-bit RGB color image conversion

Examples using the MATLAB functions for image format conversion and equalization are given in
Program 14.1.
Program 14.1. Examples of image format conversion and equalization.

disp(’Read the RGB image’);
XX¼imread(’trees’,’JPEG’); % Provided by the instructor
figure, imshow(XX); title(’24-bit color’);

disp(’The grayscale image and histogram’);
Y¼rgb2gray(XX); % RGB to grayscale conversion
figure, subplot(1,2,1);imshow(Y);
title(’original’);subplot(1,2,2);imhist(Y, 256);

disp(’Equalization in grayscale domain’);
Y¼histeq(Y);
figure, subplot(1,2,1); imshow(Y);
title(’EQ in grayscale domain’); subplot(1,2,2); imhist(Y, 256);

disp(’Equalization of Y channel for RGB color image’);
figure
subplot(1,2,1); imshow(XX);
title(’EQ in RGB color’);
subplot(1,2,2); imhist(rgb2gray(XX),256);

Z1¼rgb2ntsc(XX); % Conversion from RGB to YIQ

FIGURE 14.20

Equalized indexed 8-bit color image.

702 CHAPTER 14 Image Processing Basics



Indexed color image
1) Pixel value is an index; there are
256 indices.
2) Each index points to a color map
entry with three values: Red, Green
and Blue.

R G B0
1

255

1

RGB color image
1) Each pixel has three values:
Red, Green, and Blue.
2) There are red image, green
image, and blue image
components.

BGR

Grayscale image
1) Each pixel has a value with
a range of 0 to 255.

Equalization
1) In grayscale domain.
Y=histeq(X)
imhist(Y,256)
2) In 8-bit color domain, find new
colormap.
newmap=histeq(X,map)
imhist(ind2gray(X,newmap),256)
3) RGB color domain.
  (a) Transfrom RGB domain to
YIQ domain; equalize Y, and
transform YIQ domain back to
RGB domain.
           Z=rgb2ntsc(X);
           Z(:,:,1)=histeq(Z(:,:,1));
           X=ntsc2rgb(Z);
  (b) Equalize R, G, B, respectively.
          X(:,:,1)=histeq(X(:,:,1));
          X(:,:,2)=histeq(X(:,:,2));
          X(:,:,3)=histeq(X(:,:,3));

[X, map]=imread('file name','format');

X=imread('file name','format');

X=ind2rgb(X,map)
[X,map]=rgb2ind(X,256)

X=ind2gray(X,map)

X=rgb2gray(X)

Image Histogram
Equalization

FIGURE 14.21

MATLAB functions for image equalization.
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Z1(:,:,1)¼histeq(Z1(:,:,1)); % Equalizing Y channel
ZZ¼ntsc2rgb(Z1); % Conversion from YIQ to RGB

figure
subplot(1,2,1); imshow(ZZ);
title(’EQ for Y channel for RGB color image’);
subplot(1,2,2); imhist(im2uint8(rgb2gray(ZZ)),256);

ZZZ¼XX;
ZZZ(:,:,1)¼histeq(ZZZ(:,:,1)); %Equalizing R channel
ZZZ(:,:,2)¼histeq(ZZZ(:,:,2)); %Equalizing G channel
ZZZ(:,:,3)¼histeq(ZZZ(:,:,3)); %Equalizing B channel
figure
subplot(1,2,1); imshow(ZZZ);
title(’EQ for RGB channels’);
subplot(1,2,2); imhist(im2uint8(rgb2gray(ZZZ)),256);

disp(’Equalization in 8-bit indexed color’);
[Xind, map]¼rgb2ind(XX, 256); % RGB to 8-bit index image conversion
newmap¼histeq(Xind,map);
figure
subplot(1,2,1); imshow(Xind,newmap);
title(’EQ in 8-bit indexed color’);
subplot(1,2,2); imhist(ind2gray(Xind,newmap),256);

14.3 IMAGE LEVEL ADJUSTMENT AND CONTRAST
Image level adjustment can be used to linearly stretch the pixel level in an image to increase contrast
and shift the pixel level to change viewing effects. Image level adjustment is also a requirement for
modifying results from image filtering or other operations to an appropriate range for display. We will
study this technique in the following subsections.

14.3.1 Linear Level Adjustment

Sometimes, if the pixel range in an image is small, we can adjust the image pixel level to make use of
a full pixel range. Hence, contrast of the image is enhanced. Figure 14.22 illustrates linear level
adjustment.

The linear level adjustment is given by the following formula:

padjust
�
m; n

� ¼ Bottomþ pðm; nÞ � L

H� L
� ðTop-BottomÞ (14.6)

where pðm; nÞ ¼ original image pixel
padjustðm; nÞ ¼ desired image pixel
H¼maximum pixel level in the original image
L¼minimum pixel level in the original image
Top¼maximum pixel level in the desired image
Bottom¼minimum pixel level in the desired image
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Besides adjusting the image level to a full range, we can also apply the method to shift the image pixel
levels up or down.

EXAMPLE 14.6
Consider the following image (matrix filled with integers) with a grayscale value ranging from 0 to 7, that is, with
each pixel encoded in 3 bits: 2

66664
3 4 4 5

5 3 3 3

4 4 4 5

3 5 3 4

3
77775

a. Perform level adjustment to the full range.
b. Shift the level to the range from 3 to 7.
c. Shift the level to the range from 0 to 3.

Solution:

a. From the given image, we set the following for level adjustment to the full range:

H ¼ 5; L ¼ 3; Top ¼ 23 � 1 ¼ 7; Bottom ¼ 0

Applying Equation (14.6) yields the second column in Table 14.4.

b. For the shift-up operation, it follows that

H ¼ 5; L ¼ 3; Top ¼ 7; Bottom ¼ 3

L

H

Bottom

Top

p m n( , )

p m nadjust ( , )

FIGURE 14.22

Linear level adjustment.

Table 14.4 Image Adjustment Results in Example 14.6.

Pixel pðm;nÞ Level Full Range Range [3e7] Range [0e3]

3 0 3 0

4 4 5 2

5 7 7 3
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c. For the shift-down operation, we set

H ¼ 5; L ¼ 3; Top ¼ 3; Bottom ¼ 0

The results for (b) and (c) are listed in the third and fourth column, respectively, of Table 14.4.

According to Table 14.4, we have three images:2
66664
0 4 4 7

7 0 0 0

4 4 4 7

0 7 0 4

3
77775

2
66664
3 5 5 7

7 3 3 3

5 5 5 7

3 7 3 5

3
77775

2
66664
0 2 2 3

3 0 0 0

2 2 2 3

0 3 0 2

3
77775

Next, applying the level adjustment for the neck image of Figure 14.13A, we get the results
shown in Figure 14.23: the original image, the full range stretched image, the level shift-up
image, and the level shift-down image. As we can see, the stretching operation increases image
contrast while the shift-up operation lightens the image and the shift-down operation darkens the
image.

FIGURE 14.23

Image level adjustment.
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14.3.2 Adjusting the Level for Display

When two 8-bit images are added together or undergo other mathematical operations, the sum of two
pixel values could be as low as 0 and as high as 510. We can apply the linear adjustment to scale the
range back to 0 to 255 for display. The following addition of two 8-bit images yields a sum that is out
of the 8-bit range:2

66664
30 25 5 170

70 210 250 30

225 125 50 70

28 100 30 50

3
77775þ

2
66664
30 255 50 70

70 3 30 30

50 200 50 70

30 70 30 50

3
77775 ¼

2
66664

60 280 55 240

140 213 280 60

275 325 100 140

58 179 60 100

3
77775

To scale the combined image, modify Equation (14.6) as follows:

pscaled
�
m; n

� ¼ pðm; nÞ �Minimum

Maximum�Minimum
� ðMaximum scale levelÞ (14.7)

Note that in the image to be scaled,

Maximum ¼ 325
Minimum ¼ 55
Maximum scale level ¼ 255
After scaling we have 2

66664
5 213 0 175

80 149 213 5

208 255 43 80

3 109 5 43

3
77775

14.3.3 MATLAB Functions for Image Level Adjustment

Figure 14.24 lists applications of the MATLAB level adjustment function, which is defined as
follows:

J[ imajust(I, [bottom level, top level],[adjusted bottom, adjusted top], gamma)
I¼ input intensity image
J¼ output intensity image
gamma¼ 1 (linear interpolation function as we discussed in Section 14.3.1)
0 < gamma < 1 lightens image; gamma > 1 darkens image

14.4 IMAGE FILTERING ENHANCEMENT
As with one-dimensional digital signal processing, we can design a digital image filter such as low-
pass, highpass, bandpass, and notch to process the image to obtain the desired effect. In this section, we
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Indexed color image
1) Pixel value is an index; there are
256 indices.
2) Each index points to a color map
entry with three values: Red, Green
and Blue.

R G B0
1

255

1

RGB color image
1) Each pixel has three
values: Red, Green, and Blue.
2) There are red image, blue
image, and green image
components.

BGR

Grayscale image
1) Each pixel has a value with
a range of 0 to 255.

Level adjustment
1) Stretch the pixel range.
2) Shift and contract the pixel range.
3) Darken or lighten the pixel.

[X, map]=imread('file name','format');

X=imread('file name','format');

X=ind2rgb(X,map) [X,map]=rgb2ind(X,256)
X=ind2gray(X,map)

X=rgb2gray(X)

I=im2double(X)

X=im2uint8(X)

to display

%J=imadjust(I,[low,high],[bot,top],gamma);
% gamma=1.5 darker, gamm=0.5 lighter
J1=imadjust(I,[0,.5],[0,1],1);
J2=imadjust(I,[0,1],[.5,1],1);
J3=imadjust(I,[0,1],[0,0.5],1);

 Image Level Adjustment

FIGURE 14.24

MATLAB functions for image level adjustment.
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discuss the most common ones: lowpass filters to remove noise, median filters to remove impulse
noise, and edge detection filters to discover the boundaries of objects in images. More advanced
treatment of this subject can be explored in the well-known text by Gonzalez and Wintz (1987).

14.4.1 Lowpass Noise Filtering

One of the simplest lowpass filters is the average filter. The noisy image is filtered using the average
convolution kernel with a size 3� 3 block, 4� 4 block, 8� 8 block, and so on, in which the elements
in the block have the same filter coefficients. The 3 � 3, 4 � 4, and 8 � 8 average kernels are as
follows:

3 � 3 average kernel:

1

9

2
664
1 1 1

1 1 1

1 1 1

3
775 (14.8)

4 � 4 average kernel:

1

16

2
666664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3
777775 (14.9)

8 � 8 average kernel:

1

64

2
666666666666666664

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

3
777777777777777775

(14.10)

Each of the elements in the average kernel is 1 and the scale factor is the reciprocal of the total number
of elements in the kernel. The convolution operates to modify each pixel in the image as follows. By
passing the center of a convolution kernel through each pixel in the noisy image, we can sum each
product of the kernel element and the corresponding image pixel value and multiply the sum by the
scale factor to get the processed pixel. To understand the filter operation with the convolution kernel,
let us study the following example.
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EXAMPLE 14.7
Perform digital filtering on the noisy image using a 2� 2 convolutional average kernel, and compare the enhanced
image with the original one given the following 8-bit grayscale original and corrupted (noisy) images:

4� 4 original image :

2
66664
100 100 100 100

100 100 100 100

100 100 100 100

100 100 100 100

3
77775

4� 4 corrupted image :

2
66664

99 107 113 96

92 116 84 107

103 93 86 108

87 109 106 107

3
77775

2� 2 average kernel :
1

4

"
1 1

1 1

#

Solution:
In the following diagram, we pad edges with zeros in the last row and column before processing at the point where
the first kernel and the last kernel are shown in the dotted-line boxes, respectively:

99 107 113 96

92 10784116

103 93 86 108

10787 109 106

0 0 0 0 0

0

0

0

0

To process the first element, we know that the first kernel covers the image elements as

�
99 107
92 116

�
. Summing

each product of the kernel element and the corresponding image pixel value, multiplying by a scale factor of ¼,
and rounding the result, it follows that

1

4
ð99� 1þ 107� 1þ 92� 1þ 116� 1Þ ¼ 103:5

roundð103:5Þ ¼ 104

In the processing of the second element, the kernel covers

�
107 113
116 84

�
. Similarly, we have

1

4
ð107� 1þ 113� 1þ 116� 1þ 84� 1Þ ¼ 105

roundð105Þ ¼ 105

The process continues for the rest of image pixels. To process the last element of the first row, 96, since the kernel

covers only

�
96 0
107 0

�
, we assume that the last two elements are zeros. Then

1

4
ð96� 1þ 107� 1þ 0� 1þ 0� 1Þ ¼ 50:75

roundð50:75Þ ¼ 51
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Finally, we yield the following filtered image:2
66664
104 105 100 51

101 95 96 54

98 98 102 54

49 54 53 27

3
77775

As we know, due to zero padding for boundaries, the last-row and last-column values are in error. However, for
a large image, these errors at the boundaries can be neglected without affecting image quality. The first 3 � 3
elements in the processed image have values that are close to those of the original image. Hence, the image is
enhanced.

Figure 14.25 shows the noisy image and enhanced images using the 3 � 3, 4 � 4, 8 � 8 average
lowpass filter kernels, respectively. The average kernel removes noise. However, it also blurs the
image. When using a large-sized kernel, the quality of the processed image becomes unacceptable.

The sophisticated large-size kernels are used for noise filtering. Although it is beyond the scope of
the text, the Gaussian filter kernel with a standard deviation s ¼ 0:9, for instance, is given by the
following:

FIGURE 14.25

Noise filtering using the lowpass average kernels.
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1

25

2
6666664

0 2 4 2 0

2 15 27 15 2

4 27 50 27 4

2 15 27 15 2

0 2 4 2 0

3
7777775

(14.11)

In this kernel the center pixel is weighted the most and the weights become lower and lower as we
move away from the center. In this way, the blurring effect can be reduced when filtering the noise. The
plot of kernel values in the special domain looks like the bell shape. The steepness of shape is
controlled by the standard deviation of the Gaussian distribution function. The larger the standard
deviation, the flatter the kernel; with a flatter kernel, the blurring effect will be more pronounced.

Figure 14.26A shows the noisy image, while Figure 14.26B shows the enhanced image using a 5� 5
Gaussian filter kernel. Clearly, the majority of the noise has been filtered, while the blurring effect is
significantly reduced.

14.4.2 Median Filtering

The median filter is one type of nonlinear filter. It is very effective at removing impulse noise, the
“pepper and salt” noise, in an image. The principle of the median filter is to replace the gray level of
each pixel by the median of the gray levels in a neighborhood of the pixels, instead of using the average
operation. For median filtering, we specify the kernel size, list the pixel values covered by the kernel,
and determine the median level. If the kernel covers an even number of pixels, the average of two
median values is used. Before beginning median filtering, zeros must be padded around the row edge

FIGURE 14.26A

Noisy image for a human neck.
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and the column edge. Hence, edge distortion is introduced at image boundary. Let us look at
Example 14.8.

EXAMPLE 14.8
Consider a 3 � 3 median filter kernel and the following 8-bit grayscale original and corrupted (noisy) images:

4� 4 original image :

2
66664
100 100 100 100

100 100 100 100

100 100 100 100

100 100 100 100

3
77775

4� 4 corrupted image by impulse noise :

2
66664
100 255 100 100

100 255 100 100

255 100 100 0

100 100 100 100

3
77775

3� 3 median filter kernel :

2
64

3
75
3�3

Perform digital filtering, and compare the filtered image with the original one.

FIGURE 14.26B

Enhanced image using a Gaussian lowpass filter.
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Solution:

Step 1: The 3� 3 kernel requires zero padding 3/2¼ 1 column of zeros at the left and right edges and 3/2¼ 1 row
of zeros at the upper and bottom edges:

100 255 100 100

100 100100255

255 100 100 0

100100 100 100

0 00 0 0 0

0 00 0 0 0

0 0

0

0

0

0

0

0

Step 2: To process the first element, we cover the 3 � 3 kernel with the center pointing to the first element to be
processed. The sorted data within the kernel are listed in terms of thier value as

0; 0; 0; 0; 0; 100; 100; 255; 255

The median value ¼ median(0, 0, 0, 0, 0, 100, 100, 255, 255) ¼ 0. Zero will replace 100.
Step 3: Continue for each element until the last is replaced. Let us review the element at location (1,1):

100 255 100 100

100 100100255

255 100 100 0

100100 100 100

0 00 0 0 0

0 00 0 0 0

0 0

0

0

0

0

0

0

The values covered by the kernel are

100; 100; 100; 100; 100; 100; 255; 255; 255

The median value ¼ median(100, 100, 100, 100, 100, 100, 255, 255, 255) ¼ 100. The final processed
image is 2

66664
0 100 100 0

100 100 100 100

0 100 100 0

100 100 100 100

3
77775

Some boundary pixels are distorted due to the zero padding effect. However, for a large image, the portion of the
boundary pixels (outmost image edges) is significant small so that their distortion can be omitted versus the overall
quality of the image. The 2� 2middle portion matches the original image exactly. The effectiveness of the median
filter is verified via this example.

The image in Figure 14.27A is corrupted by “pepper and salt” noise. The median filter with a 3� 3
kernel is used to filter the impulse noise. The enhanced image shown in Figure 14.27B has a significant
quality improvement. Note that a larger size kernel is not appropriate for median filtering, because for
a larger set of pixels the median value deviates from the pixel value.
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14.4.3 Edge Detection

In many applications, such as pattern recognition and fingerprint and iris biometric identification,
image edge information is required. To obtain the edge information, a differential convolution kernel is

FIGURE 14.27A

Noisy image (corrupted by “pepper and salt” noise).

FIGURE 14.27B

The enhanced image using a 3 � 3 median filter.
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used. Of these kernels, Sobel convolution kernels are used for horizontal and vertical edge detection.
They are listed in the following:

Horizontal Sobel edge detector: 2
64
�1 �2 �1

0 0 0

1 2 1

3
75 (14.12)

The kernel subtracts the first row in the kernel from the third row to detect the horizontal difference.
Vertical Sobel edge detector: 2

64
�1 0 1

�2 0 2

�1 0 1

3
75 (14.13)

The kernel subtracts the first column in the kernel from the third column to detect the vertical
difference.

A Laplacian edge detector is devised to tackle both vertical and horizontal edges. It is described in
the following:

Laplacian edge detector: 2
64
0 1 0

1 �4 1

0 1 0

3
75 (14.14)

EXAMPLE 14.9
Given the following 8-bit grayscale image, use the Sobel horizontal edge detector to detect horizontal edges:

5� 4 original image :

2
6666664

100 100 100 100

110 110 110 110

100 100 100 100

100 100 100 100

100 100 100 100

3
7777775

Solution:
We pad the image with zeros before processing as follows:

100 100 100 100

110 110110110

100 100 100 100

100100 100 100

0 00 0 0 0

0 0

0

0 0 0

0 0

0

0

0

0

0

0

0

0100100 100 100
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After processing using the Sobel horizontal edge detector, we have2
666666664

330 440 440 330

0 0 0 0

�30 �40 �40 �30

0 0 0 0

�300 �400 �400 �300

3
777777775

Adjusting the scale level leads to 2
666666664

222 255 255 222

121 121 121 121

112 109 109 112

121 121 121 121

30 0 0 30

3
777777775

Disregarding the first row and column and the last row and column, since they are at image boundaries, we identify
a horizontal line of 109 in the third row.

Figure 14.28 shows the results from edge detection.
Figure 14.29 shows the edge detection for the grayscale image of the cruise ship in Figure 14.3.

Sobel edge detection can tackle only the horizontal edge or the vertical edge, as shown in Figure 14.29,
where the edges of the image have both horizontal and vertical features. We can simply combine the
two horizontal and vertical edge-detected images and then rescale the resultant image in the full range.
Figure 14.29(c) shows that the edge detection result is equivalent to that of the Laplacian edge detector.

Next, we apply a more sophisticated Laplacian of Gaussian filter for edge detection, which is
a combined Gaussian lowpass filter and Laplacian derivative operator (highpass filter). The filter
smoothes the image to suppress noise using the lowpass Gaussian filter, then uses the Laplacian
derivative operation for edge detection, since the noisy image is very sensitive to the Laplacian
derivative operation. As we discussed for the Gaussian lowpass filter, the standard deviation in the
Gaussian distribution function controls the degree of noise filtering before the Laplacian derivative
operation. A larger value of the standard deviation may blur the image; hence, some edge boundaries
could be lost. Its selection should be based on the particular noisy image. The filter kernel with
a standard deviation of s ¼ 0:8 is given by

2
66666664

4 13 16 13 4

13 9 �25 9 13

16 �25 �124 �25 16

13 9 �25 9 13

4 13 16 13 4

3
77777775

(14.15)

The processed edge detection using the Laplacian of Gaussian filter in Equation (14.15) is shown in
Figure 14.30. We can further use a threshold value to convert the processed image to a black and white
image, where the contours of objects can be clearly displayed.
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14.4.4 MATLAB Functions for Image Filtering

MATLAB image filter design and implementation functions are summarized in Figure 14.31. The
MATLAB functions are explained in the following:

X¼ image to be processed
fspecial(‘filter type’, kernel size, parameter)¼ convolution kernel generation
H[ FSPECIAL(‘gaussian’,HSIZE,SIGMA)¼ returns a rotationally symmetric Gaussian
lowpass filter of size HSIZE with standard deviation SIGMA (positive)
H[ FSPECIAL(‘log’,HSIZE,SIGMA)¼ returns a rotationally symmetric Laplacian of
Gaussian filter of size HSIZE with standard deviation SIGMA (positive)

FIGURE 14.28

Image edge detection. (Upper left) original image; (upper right) result from Sobel horizontal edge detector; (lower

left) result from Sobel vertical edge detector; (lower right) result from Laplacian edge detector.
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Y[ filter2([convolution kernel], X)¼ two-dimensional filter using the convolution kernel
Y[medfilt2(X, [row size, column size])¼ two-dimensional median filter

Program 14.2 lists the sample MATLAB codes for filtering applications. Figure 14.31 outlines the
applications of the MATLAB functions.

FIGURE 14.29

Edge detection (H, horizontal; V, vertical; H&V, horizontal and vertical).

FIGURE 14.30

Image edge detection using a Laplacian of Gaussian filter.
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Indexed color image
1) Pixel value is an index; there are
256 indices.
2) Each index points to a color map
entry with three values: Red, Green
and Blue.

R G B0
1

255

1

RGB color image
1) Each pixel has three
values: Red, Green, and Blue.
2) There are red, green, and
blue image components.

BGR

Grayscale image
1) Each pixel has a value with
a range of 0 to 255.

Filter operations:
1) Gaussian lowpass filters:
remove noise, but the image
is blurred.
2) Median filters:
effectively remove "salt and
pepper" type noise.
3) Laplacian of Gaussian
filters (log filters):
find the segments or
boundaries of image.

[X, map]=imread('file name','format');

X=imread('file name','format');

X=ind2rgb(X,map) [X,map]=rgb2ind(X,256)
X=ind2gray(X,map)

X=rgb2gray(X)

I=im2double(X) X=mat2gray(I)
X=im2uint8(X)

h=fspecial('log',5,0.9);
image1_out=filter2(h,image1);

h=fspecial('gaussian',5,0.8);
image1_out=filter2(h,image1_g);

image1_m=medfilt2(image1_s,[3 3]);

Image filtering

FIGURE 14.31

MATLAB functions for filter design and implementation.
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Program 14.2. Examples of Gaussian filtering, media filtering, and Laplacian of Gaussian filtering.

close all;clear all; clc;
X¼imread(’cruise’,’jpeg’); % Provided by the instructor
Y¼rgb2gray(X); % Convert the RGB image to the grayscale image
I¼im2double(Y); % Get the intensity image
image1_g¼imnoise(I,’gaussian’); % Add random noise to the intensity image
ng¼mat2gray(image1_g); % Adjust the range
ng¼im2uint8(ng); % 8-bit corrupted image

% Linear filtering
K_size¼ 5; % Kernel size ¼ 5�5
sigma ¼0.8; % sigma (the bigger, the smoother the image)
h¼fspecial(’gaussian’,K_size,sigma); % Determine Gaussian filter coefficients
% This command will construct a Gaussian filter
% of size 5�5 with a main lobe width of 0.8.
image1_out¼filter2(h,image1_g); % Perform filtering
image1_out¼mat2gray(image1_out); % Adjust the range
image1_out¼im2uint8(image1_out); % Get the 8-bit image
subplot(1,2,1); imshow(ng),title(’Noisy image’);
subplot(1,2,2); imshow(image1_out);

title(’5�5 Gaussian kernel’);
% Median filtering
image1_s¼imnoise(I,’salt & pepper’); % Add “salt and pepper” noise to the image
mn¼mat2gray(image1_s); % Adjust the range
mn¼im2uint8(mn); % Get the 8-bit image

K_size¼3; % Kernel size
image1_m¼medfilt2(image1_s,[K_size, K_size]); % Perform median filtering
image1_m¼mat2gray(image1_m); % Adjust the range
image1_m¼im2uint8(image1_m); % Get the 8-bit image
figure, subplot(1,2,1);imshow(mn)
title(’Median noisy’);
subplot(1,2,2);imshow(image1_m);
title(’3�3 median kernel’);

% Laplacian of Gaussian filtering
K_size ¼5; % Kernel size
sigma ¼0.9; % Sigma parameter
h¼fspecial(’log’,K_size,alpha); % Determine the Laplacian of Gaussian %filter
kernel
image1_out¼filter2(h,I); % Perform filtering
image1_out¼mat2gray(image1_out); % Adjust the range
image1_out¼im2uint8(image1_out); % Get the 8-bit image
figure,subplot(1,2,1); imshow(Y)
title(’Original’);
subplot(1,2,2); imshow(image1_out);

title(’Laplacian filter 5�5 kernel’);
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14.5 IMAGE PSEUDO-COLOR GENERATION AND DETECTION
We can apply certain transformations to the grayscale image so that it becomes a color image, and
a wider range of pseudo-color enhancement can be obtained. In object detection, pseudo-color
generation can produce the specific color for the object that is to be detected, say, red. This would
significantly increase the accuracy of the identification. To do so, we choose three transformations of
the grayscale level to the RGB components, as shown in Figure 14.32.

As a simple choice, we choose three sine functions for RGB transformations, as shown in
Figure 14.33A. The phase and period of one sine function can be easily changed so that the

grayscale pixel level of the object to be detected is aligned to the desired color with its component
value as large as possible, while the other two functions transform the same grayscale level such
that their color component values are as small as possible. Hence, the single specified color object
can be displayed in the image for identification. By carefully choosing the phase and period of each
sine function, certain object(s) can be transformed to the red, green, or blue with a favorable
choice.

EXAMPLE 14.10
In the grayscale image in Figure 14.13A, the area pointed to by the arrow has a grayscale value approximately
equal to 60. The background has a pixel value approximately equal to 10. Make the background to as close to blue
as possible, and make the area pointed to by the arrow as close to red as possible.

Solution:
The transformation functions are chosen as shown in Figure 14.33A, where the red value is largest at 60 and the
blue and green values approach zero. At the grayscale of 10, the blue value is dominant. Figure 14.33B shows the
processed pseudo-color image; it is included in the color insert.

8-bit grayscale
pixel p(m,n)

8-bit red pixel

8-bit green pixel

8-bit green pixel

Red
transformation

Green
transformation

Blue
transformation

FIGURE 14.32

Block diagram for transforming a grayscale pixel to a pseudo-color pixel.
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FIGURE 14.33A

Three sine functions for grayscale transformation.

FIGURE 14.33B

The pseudo-color image.
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Indexed color image
1) Pixel value is an index; there are
256 indices.
2) Each index points to a color map
entry with three values: Red, Green
and Blue.

R G B0
1

255

1

RGB color image
1) Each pixel has three values:
Red, Green, and Blue.
2) There are red image, blue
image, and green image
components.

BGR

Grayscale image
1) Each pixel has a value with
a range of 0 to 255.

Pseudo-color generation

1) Gray to Red transformation
using a sine function.
2) Gray to Green transformation
using a sine function.
3) Gray to Blue transformation
using a sine function.

Note the phases are different

[X, map]=imread('file name','format');

X=imread('file name','format');

X=ind2rgb(X,map) [X,map]=rgb2ind(X,256)
X=ind2gray(X,map)

X=rgb2gray(X)

 Image pseudo-color
generation for detection

R

G

B

0

0

5520

255

255100 110

Pixel value
between 100 and
110 will look like

green

FIGURE 14.34

Illustrative procedure for pseudo-color generation.
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Program 14.3 lists the sample MATLAB codes for pseudo-color generation for a grayscale image.
Program 14.3. Program examples for pseudo-color generation.

close all; clear all;clc
disp(’Convert the grayscale image to the pseudo-color image’);
[X, map]¼imread(’clipim2’,’gif’); % Read 8-bit index image, provided by the

% instructor
Y¼ind2gray(X,map); % 8-bit color image to the grayscale conversion

% Apply pseudo-color functions using sinusoids
C_r ¼304; % Cycle change for the red channel

P_r¼0; % Phase change for the red channel
C_b¼804; % Cycle change for the blue channel
P_b¼60; % Phase change for the blue channel
C_g¼304; % Cycle change for the green channel
P_g¼60; % Phase change for the green channel
r¼abs(sin(2*pi*[-P_r:255-P_r]/C_r));
g¼abs(sin(2*pi*[-P_b:255-P_b]/C_b));
b¼abs(sin(2*pi*[-P_g:255-P_g]/C_g));
figure, subplot(3,1,1);plot(r,’r’);grid;ylabel(’R value’)
subplot(3,1,2);plot(g,’g’);grid;ylabel(’G value’);
subplot(3,1,3);plot(b,’b’);grid;ylabel(’B value’);
figure, imshow(Y);
map¼[r;g;b;]’; % Construct the color map
figure, imshow(Y,map); % Display the pseudo-color image

14.6 IMAGE SPECTRA
In one-dimensional signal processing such as for speech and audio, we need to examine the frequency
contents, check filtering effects, and perform feature extraction. Image processing is similar. However,
we need apply a two-dimensional discrete Fourier transform (2D-DFT) instead of a one-dimensional
(1D) DFT. The spectrum including the magnitude and phase is also in two dimensions. The equations
of the 2D-DFT are given by

X
�
u; v
� ¼

XM�1

m¼ 0

XN�1

n¼ 0

p
�
m; n

�
Wum

M Wvn
N (14.16)

where WM ¼ e�j2p
M and WN ¼ e�j2p

N

m and n ¼ pixel locations
u and v ¼ frequency indices

Taking the absolute value of the 2D-DFT coefficients Xðu; vÞ and dividing the absolute value by
ðM � NÞ, we get the magnitude spectrum as

A
�
u; v
� ¼ 1

ðN �MÞ jXðu; vÞj (14.17)

Instead of going through the details of the 2D-DFT, we focus on application results via
examples.
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EXAMPLE 14.11
Determine the 2D-DFT coefficients and magnitude spectrum for the following 2 � 2 image:"

100 50

100 �10

#

Solution:
Since M ¼ N ¼ 2, applying Equation (14.16) leads to

X
�
u; v

	
¼ p

�
0;0

	
e�j2pu�0

2 � e�j2pv�0
2 þ p

�
0;1

	
e�j2pu�0

2 � e�j2pv�1
2

þp
�
1;0

	
e�j2pu�1

2 � e�j2pv�0
2 þ p

�
1;1

	
e�j2pu�1

2 � e�j2pv�1
2

For u ¼ 0 and v ¼ 0, we have

X
�
0;0

� ¼ 100e�j0 � e�j0 þ 50e�j0 � e�j0 þ 100e�j0 � e�j0 � 10e�j0 � e�j0

¼ 100þ 50þ 100� 10 ¼ 240

For u ¼ 0 and v ¼ 1, we have

X
�
0;1

� ¼ 100e�j0 � e�j0 þ 50e�j0 � e�jp þ 100e�j0 � e�j0 � 10e�j0 � e�jp

¼ 100þ 50� ð � 1Þ þ 100� 10� ð � 1Þ ¼ 160

Following similar operations,

X ð1;0Þ ¼ 60; and X ð1;1Þ ¼ �60

Thus, we have the following DFT coefficients:

X
�
u; v

� ¼
"
240 160

60 �60

#

Using Equation (14.17), we can calculate the magnitude spectrum as

A
�
u; v

� ¼
"
60 40

15 15

#

We can use the MABLAB function fft2() to verify the calculated DFT coefficients:

>> X¼fft2([100 50;100 -10])
X ¼

240 160
60 �60

EXAMPLE 14.12
Given the 200 � 200 grayscale image shown in Figure 14.35A with a white rectangle (11 � 3 pixels) at its center
and a black background, we can compute its magnitude spectrum (which ranges from 0 to 255). We can display
the spectrum in terms of the grayscale. Figure 14.35B shows the spectrum image.

The displayed spectrum has four quarters. The left upper quarter corresponds to the frequency components,
and the other three quarters are the image counterparts. In the spectrum image, the upper left corner area in the
left upper quarter is white and hence has a highest scale value. Therefore, the image signal has low-frequency
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dominant components. The spectrum exhibits horizontal and vertical null lines (dark lines). The first vertical null
line location can be estimated as 200/11¼18 pixels from the left side, while the first horizontal null line happens
at 200/3 ¼ 67 pixels from the top. Next, let us apply the 2D spectrum to understand image filtering effects in
image enhancement.

EXAMPLE 14.13
Figure 14.36(a) is a biomedical image corrupted by random noise. Before we apply lowpass filtering, its 2D-DFT
coefficients are calculated. We then compute its magnitude spectrum and scale it to the range from 0 to 255. To

FIGURE 14.35A

A square image.

FIGURE 14.35B

Magnitude spectrum for the square image.
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see noise spectral components, the spectral magnitude is further multiplied by a factor of 100. Once the spectral
value is larger than 255, it is clipped to 255. The resultant spectrum is displayed in Figure 14.36(b), where we can
see that noise occupies the entirety of the image.

To enhance the image, we apply a Gaussian lowpass filter. The enhanced image is shown in Figure 14.36(c), in
which the enhancement is easily observed. Figure 14.36(d) displays the spectra for the enhanced image with the
same scaling process described just above. As we can see, the noise is significantly reduced compared with
Figure 14.36(b).

14.7 IMAGE COMPRESSION BY DISCRETE COSINE TRANSFORM
Image compression is a must in our modern media systems, such as digital still and video cameras and
computer systems. The purpose of compression is to reduce information storage or transmission
bandwidth without losing image quality or at least without losing it significantly. Image compression
can be classified as lossless compression or lossy compression. Here we focus on lossy compression
using the discrete cosine transform (DCT).

The DCT is a core compression technology used in the industry standards JPEG (Joint Photo-
graphic Experts Group) for still-image compression and MPEG (Motion Picture Experts Group) for

(a) (b)

(c) (d)

Frequency
content

Frequency
content

FIGURE 14.36

Magnitude spectrum plots for the noisy image and the noise-filtered image: (a) the noisy image; (b) magnitude

spectrum of the noisy image; (c) noise-filtered image; (d) magnitude spectrum of the noise-filtered image.
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video compression, achieving a compression ratio of 20:1 without noticeable quality degradation.
JPEG standard image compression is used everyday in real life.

The principle of the DCT is to transform the original image pixels to an identical number of DCT
coefficients, where the DCT coefficients have a nonuniform distribution of direct-current (DC) terms
representing the average values, and alternate-current (AC) terms representing fluctuations. The
compression is achieved by applying the advantages of encoding DC terms (with a large dynamic
range) with a large number of bits and low-frequency AC terms (a few, with a reduced dynamic range)
with a reduced number of bits, and neglecting some high-frequency AC terms that have small dynamic
ranges (most of them do not affect the visual quality of the picture).

14.7.1 Two-Dimensional Discrete Cosine Transform

Image compression uses 2D-DCT, whose transform pairs are defined as follows:
Forward DCT:

F
�
u; v
� ¼ 2CðuÞCðvÞffiffiffiffiffiffiffiffi

MN
p

XM�1

i¼ 0

XN�1

j¼ 0

pði; j� cos�ð2iþ 1Þup
2M

�
cos

�ð2jþ 1Þvp
2N

�
(14.18)

Inverse DCT:

p
�
i; j
� ¼

XM�1

u¼ 0

XN�1

v¼ 0

2CðuÞCðvÞffiffiffiffiffiffiffiffi
MN

p F
�
u; v
�
cos

�ð2iþ 1Þup
2M

�
cos

�ð2jþ 1Þvp
2N

�
(14.19)

where

C
�
m
� ¼

8><
>:

ffiffiffi
2

p

2
if m ¼ 0

1 otherwise

(14.20)

pði; jÞ ¼ pixel level at the location ði; jÞ
Fðu; vÞ ¼DCT coefficient at the frequency indices ðu; vÞ

JPEG divides an image into 8 � 8 image subblocks and applies DCT for each subblock individually.
Hence, we simplify the general 2D-DCT in terms of 8 � 8 size. The equation for 2D 8 � 8 DCT is
modified as

F
�
u; v
� ¼ CðuÞCðvÞ

4

X7
i¼ 0

X7
j¼ 0

pði; j� cos�ð2iþ 1Þup
16

�
cos

�ð2jþ 1Þvp
16

�
(14.21)

The inverse of 2D 8 � 8 DCT is expressed as

p
�
i; j
� ¼

X7
u¼ 0

X7
v¼ 0

CðuÞCðvÞ
4

F
�
u; v
�
cos

�ð2iþ 1Þup
16

�
cos

�ð2jþ 1Þvp
16

�
(14.22)
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To become familiar with the 2D-DCT formulas, we study Example 14.14.

EXAMPLE 14.14
Determine the 2D-DCT coefficients for the following image:"

100 50

100 �10

#

Solution:
Applying N ¼ 2 and M ¼ 2 to Equation (14.18) yields

F
�
u; v

� ¼ 2CðuÞCðvÞffiffiffiffiffiffiffiffiffiffiffiffi
2� 2

p
X1
i¼0

X1
j ¼0

pði; j� cos�ð2i þ 1Þup
4

�
cos

�ð2j þ 1Þvp
4

�

For u ¼ 0 and v ¼ 0, we achieve

F
�
0;0

� ¼ c
�
0
�
c
�
0
� P1
i¼0

P1
j ¼0

pði; j� cos ð0Þ cos ð0Þ
¼
 ffiffiffi

2
p

2

!2

½pð0;0Þ þ pð0;1Þ þ pð1;0Þ þ pð1;1Þ�

¼ 1

2
ð100þ 50þ 100� 10Þ ¼ 120

For u ¼ 0 and v ¼ 1, we achieve

F
�
0;1

� ¼ c
�
0
�
c
�
1
� P1
i¼0

P1
j ¼0

pði; j� cos ð0Þ cos�ð2j þ 1Þp
4

�

¼
 ffiffiffi

2
p

2

!
� 1�

�
p
�
0;0

�
cos

p

4
þ p

�
0;1

�
cos

3p

4
þ p

�
1;0

�
cos

p

4
þ p

�
1;1

�
cos

3p

4

�

¼
ffiffiffi
2

p

2

 
100�

ffiffiffi
2

p

2
þ 50

 
�

ffiffiffi
2

p

2

!
þ 100�

ffiffiffi
2

p

2
� 10

 
�

ffiffiffi
2

p

2

!!
¼ 80

Similarly,

F ð1;0Þ ¼ 30; and F ð1;1Þ ¼ �30

Finally, we get

F
�
u; v

� ¼
"
120 80

30 �30

#

Applying the MATLAB function dct2() verifies the DCT coefficients as follows:

>> F ¼ dct2([100 50;100 -10])
F¼

120.0000 �80.0000
30.0000 �30.0000
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EXAMPLE 14.15
Given the following DCT coefficients from a 2� 2 image, determine the pixel pð0;0Þ:

F

 
u; v

!
¼
"
120 80

30 �30

#

Solution:
Applying Equation (14.19) of the inverse 2D-DCT with N ¼ M ¼ 2, i ¼ 0, and j ¼ 0, it follows that

p
�
0;0

� ¼ P1
u¼0

P1
v ¼0

cðuÞcðvÞF ðu; v� cos�up
4

	
cos

�vp
4

	

¼
 ffiffiffi

2
p

2

!
�
 ffiffiffi

2
p

2

!
� F

�
0;0

�þ
 ffiffiffi

2
p

2

!
� F

�
0;1

��
 ffiffiffi

2
p

2

!

þ
 ffiffiffi

2
p

2

!
� F

�
1;0

��
 ffiffiffi

2
p

2

!
þ F

�
0;1

� ffiffiffi
2

p

2

!
�
 ffiffiffi

2
p

2

!

¼ 1

2
� 120þ 1

2
� 80þ 1

2
� 30þ 1

2

�� 30
� ¼ 100

We apply the MATLAB function idct2() to verify the inverse DCT and get the following pixel values:

>> p ¼ idct2([120 80; 30 �30])
p ¼

100.0000 50.0000
100.0000 �10.0000

14.7.2 Two-Dimensional JPEG Grayscale Image Compression Example

To understand JPEG image compression, we examine an 8 � 8 grayscale subblock. Table 14.5 shows
a subblock of the grayscale image in Figure 14.37 that is to be compressed. Applying 2D-DCT leads to
Table 14.6.

These DCT coefficients have a big DC component of 1198 but small AC component values. These
coefficients are further normalized (quantized) with a quality factor Q, defined in Table 14.7.

Table 14.5 8 � 8 Subblock

150 148 140 132 150 155 155 151

155 152 143 136 152 155 155 153

154 149 141 135 150 150 150 150

156 150 143 139 154 152 152 155

156 151 145 140 154 152 152 155

154 152 146 139 151 149 150 151

156 156 151 142 154 154 154 154

151 154 149 139 151 153 154 153
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After normalization, as shown in Table 14.8, the DC coefficient is reduced to 75, and a few small
AC coefficients exist, while most are zero. We can encode and transmit only nonzero DCT coefficients
and omit transmitting zeros, since they do not carry any information. They can be easily recovered by
resetting coefficients to zero during decoding. By this principle we achieve data compression.

As shown in Table 14.8, most nonzero coefficients reside in the upper left corner. Hence, the order
of encoding for each value is based on the zigzag path in which the order is numbered, as in Table 14.9.

According to the order, we record the nonzero DCT coefficients as a JPEG vector, shown as

JPEG vector : ½75 L1 L1 0 L1 3 2 EOB�
where “EOB” ¼ end of block coding. The JPEG vector can further be compressed by encoding the
difference of DC values between subblocks, in differential pulse code modulation (DPCM), as dis-
cussed in Chapter 11, as well as by run-length coding of AC values and Huffman coding, which both
belong to lossless compression techniques. We will pursue this in the next section.

FIGURE 14.37

Original image.

Table 14.6 DCT Coefficients for the Subblock Image in Table 14.5

1198 �10 26 24 �5 �16 0 12

�8 �6 3 8 0 0 0 0

0 �3 0 0 �8 0 0 0

0 0 0 0 0 0 0 0

0 �4 0 0 0 0 0 0

0 0 �1 0 0 0 0 0

�10 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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During the decoding stage, the JPEG vector is recovered first. Then the quantized DCT coefficients are
recovered according to the zigzag path. Next, the recovered DCT coefficients are multiplied by
a quality factor to obtain the estimate of the original DCT coefficients. Finally, we apply the inverse
DCT to achieve the recovered image subblock, which is shown in Table 14.10.

For comparison, the errors between the recovered image and original image are calculated and
listed in Table 14.11.

The original and compressed images are displayed in Figures 14.37 and 14.38, respectively. We do
not see any noticeable difference between these two grayscale images.

Table 14.7 The Quality Factor

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 14.8 Normalized DCT Coefficients

75 �1 3 2 0 0 0 0

�1 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 14.9 DCT Coefficient Scan Order

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63
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Table 14.10 The Recovered Image Subblock

153 145 138 139 147 154 155 153

153 145 138 139 147 154 155 153

155 147 139 140 148 154 155 153

157 148 141 141 148 155 155 152

159 150 142 142 149 155 155 152

161 152 143 143 149 155 155 152

162 153 144 144 150 155 154 151

163 154 145 144 150 155 154 151

Table 14.11 The Coding Error of the Image Subblock

3 �3 �2 7 �3 �1 0 2

�2 �7 �5 3 �5 �1 0 0

1 �2 �2 5 �2 4 5 3

1 �2 �2 2 �6 3 3 �3

3 �1 �3 2 �5 3 3 �3

7 0 �3 4 �2 6 5 1

6 �3 �7 2 �4 1 0 �3

12 0 �4 5 �1 2 0 �2

FIGURE 14.38

JPEG compressed image.
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14.7.3 JPEG Color Image Compression

This section is devoted to reviewing JPEG standard compression and examines the steps briefly. We
focus on the encoder, since the decoder is just the reverse process of the encoding. The block diagram
for the JPEG encoder is in Figure 14.39.

The JPEG encoder has the following main steps:

1. Transform RGB to YIQ or YUV (U and V ¼ chrominance components).
2. Perform DCT on blocks.
3. Perform quantization.
4. Perform zigzag ordering, DPCM, and run-length encoding.
5. Perform entropy encoding (Huffman coding).

RGB to YIQ Transformation
The first transformation is of the RGB image to a YIQ or YUV image. Transformation from RGB to
YIQ has previously been discussed. The principle is that in YIQ format, the luminance channel carries
more signal energy, up to 93%, while the chrominance channels carry up to only 7% of signal energy.
After transformation, more effort can be spent on coding the luminance channel.

DCT on Image Blocks
Each image is divided into 8 � 8 blocks. 2D-DCT is applied to each block to obtain the 8 � 8 DCT
coefficient block. Note that there are three blocks, Y, I, and Q.

Quantization
The quantization is operated using the 8 � 8 quantization matrix. Each DCT coefficient is quantized,
that is, divided by the corresponding value given in the quantization matrix. In this way, a smaller

RGB YIQ or YUV

DCT Quantization

Quantization
tables

8x8

p i j( , )

8x8

F u v( , )

8x8

Zigzag

DC

AC

DPCM

RLC

Coding
Tables

Entropy
coding

Header

Tables

Data

FIGURE 14.39

Block diagram for JPEG encoder.
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number of bits can be used for encoding the DCT coefficients. There are two different quantization
tables, one for luminance (which is the same as the one in the last section and listed here again for
comparison) and the other for chrominance (Tables 14.12 and 14.13).

We can see that the chrominance table has numbers with larger values, so that small values of DCT
coefficients will result and hence fewer bits are required for encoding each DCT coefficient. Zigzag
ordering to produce the JPEG vector is similar to the grayscale case, except that there are three JPEG
vectors.

Differential Pulse Code Modulation on Direct-Current Coefficients
Since each 8 � 8 image block has only one DC coefficient, which can be a very large number and
varies slowly, we make use of DPCM for coding DC coefficients. As an example for the first five image
blocks, the DC coefficients are 200, 190, 180, 160, and 170. DPCM with a coding rule of
dðnÞ ¼ DCðnÞ � DCðn� 1Þ with initial condition dð0Þ ¼ DCð0Þ produces a DPCM sequence of

200; �10; �10; �20; 10

Hence, the reduced signal range of these values is feasible for entropy coding.

Run-Length Coding on Alternating-Current Coefficients
The run-length method encodes the pair of

• the number of zeros to skip and
• the next nonzero value.

Table 14.12 The Quality Factor for Luminance

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Table 14.13 The Quality Factor for Chrominance

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99
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The zigzag scan of the 8 � 8 matrix makes up a vector of 64 values with a long runs of zeros. For
example, the quantized DCT coefficients are scanned as

½75; �1; 0; �1; 0; 0; �1; 3; 0; 0; 0; 2; 0; 0; .; 0�
with one run, two runs, and three runs of zeros in the middle and 52 extra zeros towards the end. The
run-length method encodes AC coefficients by producing a pair (run length, value), where the run
length is the number of zeros in the run, while the value is the next nonzero coefficient. A special pair
(0, 0) indicates EOB. Here is the result from a run-length encoding of AC coefficients:

ð0;�1Þ; ð1;�1Þ; ð2;�1Þ; ð0; 3Þ; ð3; 2Þ; ð0; 0Þ

Lossless Entropy Coding
The DC and AC coefficients are further compressed using entropy coding. JPEG allows Huffman
coding and arithmetic coding. We focus on the Huffman coding here.

Coding DC Coefficients
Each DPCM-coded DC coefficient is encoded by a pair of symbols (size, amplitude) with the size
(4-bit code) designating the number of bits for the coefficient as shown in Table 14.14, while the
amplitude is encoded by the actual bits. For the negative number of the amplitude, 1’s complement is
used.

For example, we can code the DPCM-coded DC coefficients 200, �10, �10, �20, 10 as

ð8; 11001000Þ; ð4; 0101Þ; ð4; 0101Þ; ð5; 01011Þ; ð4; 1010Þ
Since there needs to be 4 bits for encoding each size, we can use 45 bits in total for encoding the DC
coefficients for these five subblocks.

Coding AC Coefficients
The run-length AC coefficients have the format (run length, value). The value can be further
compressed using the Huffman coding method, similar to coding the DPCM-coded DC coefficients.
The run length and the size are each encoded by 4 bits and packed into a byte.

Table 14.14 Huffman Coding Table

Size Amplitude

1
2
3
4
5
.
.
.
10

�1,1
�3,�2,2,3
�7,..,�4,4,.,7
�15,.,�8,8,.,15
�31,.,�16,16,.,31
.
.
.
�1023,.,�512,512,.,1023
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Symbol 1: (run length, size)
Symbol 2: (amplitude)

The 4-bit run length can only tackle runs for zeros from 1 to 15. If the run length of zeros is larger than
15, then a special code (15, 0) is used for Symbol 1. Symbol 2 is the amplitude in Huffman coding as
shown in Table 14.14, while the encoded Symbol 1 is kept in its format:

(run length, size, amplitude)
Let us code the following run-length code of AC coefficients:

ð0; �1Þ; ð1; �1Þ; ð2; �1Þ; ð0; 3Þ; ð3; 2Þ; ð0; 0Þ
We can produce a bit stream for AC coefficients:

ð0000; 0001; 0Þ; ð0001; 0001; 0Þ; ð0010; 0001; 0Þ;

ð0000; 0010; 11Þ; ð0011; 0010; 10Þ; ð0000; 0000Þ
There are 55 bits in total. Figure 14.40 shows a JPEG compressed color image (included in the color
insert). The decompressed image is indistinguishable from the original image after comparison.

14.7.4 Image Compression Using Wavelet Transform Coding

We can extend the one-dimensional discrete wavelet transform (DWT) discussed in Chapter 13 to the
two-dimensional DWT. The procedure is described as follows. Given an N � N image, the 1D-DWT
using level 1 is applied to each row of the image; and after all the rows are transformed, the level-1 1D-
DWT is applied again to each column. After the rows and columns are transformed, we achieve four
first-level subbands labeled LL, HL, LH, and HH as shown in Figure 14.41(a). The same procedure
repeats for the LL band only and results in the second-level subbands: LL2, HL2, LH2, and HH2

FIGURE 14.40

JPEG compressed color image.
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(Figure 14.41(b)). The process proceeds to higher levels as desired. With the obtained wavelet
transform, we can quantize coefficients to achieve the compression requirement. For example, for the
second-level coefficients, we can omit HL1, LH1, HH1 to simply achieve a 4:1 compression ratio.
Decompression reverses the process, that is, we inversely transform columns and then rows of the
wavelet coefficients. We can apply the IDWT to the recovered LL band with the column and row
inverse transform processes, and continue until the inverse transform at level 1 is completed. Let us
look at an illustrative example.

EXAMPLE 14.16
Consider the following 4 � 4 image:

a. Perform 2D-DWT using the 2-tap Haar wavelet.
b. Using the result in (a), perform 2D-IDWT using the 2-tap Haar wavelet.

Solution:

a. The MATLAB function dwt() is applied to each row. The result for the first row is displayed below:
>> dwt([1 1]/sqrt(2), [114 135 122 109],1)’ % Row vector coefficients
ans ¼176.0696 163.3417 �14.8492 9.1924

The completed row transform is listed below:

LL HL

LH HH LH1 HH1

HL1
LL2 HL2

HH2LH2

(a) Level-one transformation (b) Level-two transformation

FIGURE 14.41

The two-dimensional DWT for level 1 and level 2.

114 135 122 109

102 116 119 124

105 148 138 122

141 102 140 132

176.0696 163.3417 �14.8492 9 9.1924

154.1493 171.8269 �9.8995 3.5355

178.8980 183.8478 �30.4056 11.3137

171.8269 192.3330 27.5772 5.6569
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Next, the result for the first column is presented:
>> dwt([1 1]/sqrt(2),[ 176.0696 154.1493 178.8980 171.8269 ],1)’
ans ¼ 233.5000 248.0000 15.5000 5.0000

Applying the transform to each column completes the level-1 transformation:

Now, we perform the level-2 transformation. Applying the transform to the first row for the LL1 band yields

>> dwt([1 1]/sqrt(2),[ 233.5000 237.0000],1)’
ans ¼ 332.6937 �2.4749

After completing the row transformation, the result is given by

Similarly, the first-column MATLAB result is listed below:

>> dwt([1 1]/sqrt(2),[ 332.6937 363.4529 ],1)’
ans ¼ 492.2500 �21.7500

Finally, we achieve the completed level-2 DWT as

b. Recovering the LL2 band first, the first column reconstruction is given as
>> idwt([1 1]/sqrt(2),[ 492.2500 �21.7500],1)’
ans ¼ 332.6937 363.4529

Completing the inverse of the second column in the LL2 band gives

233.5000 237.0000 �17.5000 4.0000

248.0000 266.0000 �2.0000 12.0000

15.5000 �6.0000 �3.5000 9.0000

5.0000 �6.0000 �41.0000 4.0000

332.6937 �2.4749 �17.5000 4.0000

363.4529 �12.7279 �2.0000 12.0000

15.5000 �6.0000 �3.5000 9.0000

5.0000 �6.0000 �41.0000 4.0000

492.2500 �10.7500 �17.5000 4.0000

�21.7500 7.2500 �2.0000 12.0000

15.5000 �6.0000 �3.5000 9.0000

5.0000 �6.0000 �41.0000 4.0000

332.6937 �2.4749 �17.5000 4.0000

363.4529 �12.7279 �2.0000 12.0000

15.5000 �6.0000 �3.5000 9.0000

5.0000 �6.0000 �41.0000 4.0000
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Now, we show the first row result for the LL2 band in MATLAB as follows:

>> idwt([1 1]/sqrt(2),[ 332.6937 �2.4749 ],1)’
ans ¼ 233.5000 237.0000

The recovered LL1 band is shown in the following:

Now we are at the level-1 inverse process. For simplicity, the first column result in MATLAB and the completed
results are listed below, respectively.

>> idwt([1 1]/sqrt(2),[ 233.5000 248.0000 15.5000 5.0000],1)’
ans ¼ 176.0696 154.1493 178.8980 171.8269

Finally, we perform the inverse of the row transform at level 1. The first row result in MATLAB is listed below:

>> idwt([1 1]/sqrt(2),[ 176.0696 163.3417 �14.8492 9.1924],1)’
ans ¼ 114.0000 135.0000 122.0000 109.0000

The final inverse DWT is obtained as

Since there is no quantization for each coefficient, we obtain a perfect reconstruction.

Figure 14.42 shows 8-bit grayscale image compression by applying the one-level wavelet trans-
form, in which a 16-tap Daubechies wavelet is used. The wavelet coefficients (each is coded using 8
bits) are shown in Figure 14.42(b). By discarding the HL, LH, and HH band coefficients, we can
achieve 4:1 compression. The decoded image is displayed in Figure 14.42(c). The MATLAB program
is listed in Program 14.4.

Figure 14.43 illustrates two-level wavelet transform and compression results. By discarding the
HL2, LH2, HH2, HL1, LH1, and HH1 subbands, we achieve 16:1 compression. However, as shown in

233.5000 237.0000 �17.5000 4.0000

248.0000 266.0000 �2.0000 12.0000

15.5000 �6.0000 �3.5000 9.0000

5.0000 �6.0000 �41.0000 4.0000

176.0696 163.3417 �14.8492 9.1924

154.1493 171.8269 �9.8995 �3.5355

178.8980 183.8478 �30.4056 11.3137

171.8269 192.3330 27.5772 5.6569

114.0000 135.0000 122.0000 109.0000

102.0000 116.0000 119.0000 124.0000

105.0000 148.0000 138.0000 122.0000

141.0000 102.0000 140.0000 132.0000
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Figure 14.43(c), we can observe a noticeable degradation of image quality. Since the high-frequency
details are discarded, the compressed image shows a significant smoothing effect. In addition, there are
many advanced methods to quantize and compress the wavelet coefficients. Of these compression
techniques, the embedded zerotree wavelet (EZW) method is the most efficient one; it can be found in
Li and Drew (2004).
Program 14.4. One-level wavelet transform and compression.

close all; clear all; clc
X¼imread(’cruise’,’JPEG’);
Y¼rgb2gray(X); % Convert the image into grayscale
h0 ¼[0.054415842243144 0.312871590914520 0.675630736297712 .

0.585354683654425 -0.015829105256675 -0.284015542962009 .

0.000472484573805 0.128747426620538 -0.017369301001845 .

-0.044088253930837 0.013981027917411 0.008746094047413 .

-0.004870352993456 -0.000391740373377 0.000675449406451 .

-0.000117476784125];
M¼ length(h0);
h1(1:2:M-1) ¼ h0(M:-2:2);h1(2:2:M) ¼ -h0(M-1:-2:1);% Obtain QMF highpass filter
[m n]¼size(Y);
% Level-1 transform
[m n]¼size(Y);

FIGURE 14.42

(a) Wavelet coefficients; (b) original image; (c) 4:1 compression.
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for i¼1:m
W1(i,:)¼dwt(h0,double(Y(i,:)),1)’;

end
for i¼1:n

W1(:,i)¼dwt(h0,W1(:,i),1); % Wavelet coefficients at level 1
end
% Quantization using 8 bits
wmax¼double(max(max(abs(W1)))); % Scale factor
W1¼round(double(W1)*2^7/wmax); % Get 8-bit data
W1¼double(W1)*wmax/2^7;% Recover the wavelet
figure (1); imshow(uint8(W1));xlabel(’Wavelet coefficients’);
% 8-bit quantization
[m, n]¼size(W1);
WW¼zeros(m,n);
WW(1:m/2,1:n/2)¼W1(1:m/2,1:n/2);
W1¼WW;
% Decoding from level 1 using W1
[m, n]¼size(W1);
for i¼1:n

Yd1(:,i)¼idwt(h0,double(W1(:,i)),1);
end

FIGURE 14.43

(a) Wavelet coefficients; (b) original image; (c) 16:1 compression.
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for i¼1:m
Yd1(i,:)¼idwt(h0,double(Yd1(i,:)),1)’;

end
YY1¼uint8(Yd1);
figure (2),imshow(Y);xlabel(’Original image’);
figure (3),imshow(YY1);xlabel(’4:1 Compression’);

Program 14.5. Two-level wavelet compression.

close all; clear all; clc
X¼imread(’cruise’,’JPEG’);
Y¼rgb2gray(X);
h0 ¼[0.054415842243144 0.312871590914520 0.675630736297712 .

0.585354683654425 -0.015829105256675 -0.284015542962009 .

0.000472484573805 0.128747426620538 -0.017369301001845 .

-0.044088253930837 0.013981027917411 0.008746094047413 .

-0.004870352993456 -0.000391740373377 0.000675449406451 .

-0.000117476784125];
M¼ length(h0);
h1(1:2:M-1) ¼ h0(M:-2:2);h1(2:2:M) ¼ -h0(M-1:-2:1);% Obtain QMF highpass filter
[m n]¼size(Y);
% Level-1 transform
[m n]¼size(Y);
for i¼1:m

W1(i,:)¼dwt(h0,double(Y(i,:)),1)’;
end
for i¼1:n

W1(:,i)¼dwt(h0,W1(:,i),1); % Wavelet coefficients at level-1 transform
end
% Level-2 transform
Y1¼W1(1:m/2,1:n/2); % Obtain LL subband
[m n]¼size(Y1);
for i¼1:m

W2(i,:)¼dwt(h0,Y1(i,:),1)’;
end
for i¼1:n

W2(:,i)¼dwt(h0,W2(:,i),1);
end
W22¼W1; W22(1:m,1:n)¼W2; % Wavelet coefficients at level-2 transform
wmax¼max(max(abs(W22)));
% 8-bit quantization
W22¼round(W22*2^7/wmax);
W22¼double(W22)*wmax/2^7;
figure(1), imshow(uint8(W22));xlabel(’Wavelet coefficients’);
[m, n]¼size(W22); WW¼zeros(m,n);
WW(1:m/4,1:n/4)¼W22(1:m/4,1:n/4);
W22¼WW; % Discard HL2,LH2, HH2, HL1, LH1, HH1 subbands
% Decoding from level-2 transform
[m,n]¼size(W22); Wd2¼W22(1:m/2,1:n/2);
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% Level 2
[m n]¼size(Wd2);
for i¼1:n

Wd1(:,i)¼idwt(h0,double(Wd2(:,i)),1);
end
for i¼1:m

Wd1(i,:)¼idwt(h0,double(Wd1(i,:))’,1);
end
% Level 1
[m, n]¼size(W22);Yd11¼W22;
Yd11(1:m/2,1:n/2)¼Wd1;
for i¼1:n

Yd(:,i)¼idwt(h0,Yd11(:,i),1);
end
for i¼1:m

Yd(i,:)¼idwt(h0,double(Yd(i,:)),1)’;
end
figure (2),imshow(Y),xlabel(’Original image’);
Y11¼uint8(Yd); figure (3),imshow(Y11);xlabel(’16:1 compression’);

14.8 CREATING A VIDEO SEQUENCE BY MIXING TWO IMAGES
In this section, we introduce a method to mix two images to generate an image (video) sequence.
Applications of mixing the two images may include fading in and fading out images, blending two
images, or overlaying text on an image.

In mixing two images in a video sequence, a smooth transition is required from fading out one
image of interest to fading in another image of interest. We want to fade out the first image and
gradually fade in the second. This cross-fade scheme is implemented using the following
operation:

Mixed image ¼ ð1� aÞ � image1 þ a� image2 (14.23)

where a ¼ fading in proportionally to the weight of the second image (value between 0 and 1), and
ð1� aÞ ¼ fade out proportionally to the weight of the second image.
The video sequence in Figure 14.44A consisting of six frames is generated using a ¼ 0, a ¼ 0:2,
a ¼ 0:4, a ¼ 0:6, a ¼ 0:8, and a ¼ 1:0, respectively, for two images. The equations for generating
these frames are listed as follows:

Mixed image1 ¼ 1:0� image1 þ 0:0� image2
Mixed image2 ¼ 0:8� image1 þ 0:2� image2
Mixed image3 ¼ 0:6� image1 þ 0:4� image2
Mixed image4 ¼ 0:4� image1 þ 0:6� image2
Mixed image5 ¼ 0:2� image1 þ 0:8� image2
Mixed image6 ¼ 0:0� image1 þ 1:0� image2

The sequence begins with the Grand Canyon image and fades in with the cruise ship image. At frame
4, 60% of the cruise ship is faded in, and the image begins to be discernible as such. The sequence ends
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with the cruise ship in 100% fade-in. Figure 14.44A displays the generated grayscale sequence.
Figure 14.44B shows the RGB color video sequence (also given in the color insert).

14.9 VIDEO SIGNAL BASICS
Video signals generally can be classified as component video, composite video, and S-video. In
component video, three video signalsdsuch as the red, green, and blue channels or the Y, I, and Q
channelsdare used. Three wires are required for connection to a camera or TV. Most computer
systems use component video signals. Composite video has intensity (luminance) and two-color
(chrominance) components that modulate the carrier wave. This signal is used in broadcast color TV.
The standard by the US-based National Television System Committee (NTSC) combines channel
signals into a chroma signal, which is modulated to a higher frequency for transmission. Connecting
TVs or VCRs requires only one wire, since both video and audio are mixed into the same signal.
S-video sends luminance and chrominance separately, since the luminance presenting black-and-white
intensity contains most of the signal information for visual perception.

FIGURE 14.44A

Grayscale video sequence.
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14.9.1 Analog Video

In computer systems, progressive scanning traces a whole picture, called frame via row-wise. A higher-
resolution computer uses 72 frames per second (fps). The video is usually played at a frame rate
varying from 15 frames to 30 frames.

In TV reception and some monitors, interlaced scanning is used in a cathode-ray tube display, or
raster. The odd-numbered lines are traced first, and the even-numbered lines are traced next. We then
get the odd-field and even-field scans per frame. The interlaced scheme is illustrated in Figure 14.45,
where the odd lines are traced, such as A to B, then C to D, and so on, ending in the middle at E. The
even field begins at F in the middle of the first line of the even field and ends at G. The purpose of using
interlaced scanning is to transmit a full frame quickly to reduce flicker. Trace jumping from B to C is
called horizontal retrace, while trace jumping from E to F or G to A is called vertical retrace.

The video signal is amplitude modulated. The modulation levels for NTSC video are shown in
Figure 14.46. In the United States, negative modulation is used, meaning that the bright and dark
intensities are inverted before modulation. In the negative modulated video signal, less amplitude
comes from a brighter scene while more amplitude comes from a darker one. Since most pictures
contain more white than black levels, the video signal level is reduced. Hence, with negative modu-
lation, possible power efficiency can be achieved for transmission. The reverse process will apply for
display at the receiver.

FIGURE 14.44B

The RGB color video sequence.
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The horizontal synchronizing pulse controls the timing for the horizontal retrace. The blanking
levels are used for synchronizing as well. The “back porch” (Figure 14.46) of the blanking also
contains the color subcarrier burst for color demodulation.

The demodulated electrical signal can be seen in Figure 14.47, where a typical electronic signal for
one scan line is depicted. The white intensity has a peak value of 0.714 volt, and the black has a voltage
level of 0.055 volt, which is close to zero. The blank corresponds to zero voltage, and the synchro-
nizing pulse is at the level of -0.286 volt. Synchronizing takes 10.9 microseconds, while video
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Video signal
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"Back porch"
blanking level
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FIGURE 14.46

Video-modulated waveform.
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FIGURE 14.45

Interlaced raster scanning.
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FIGURE 14.47

The demodulated signal level for one NTSC scan line.
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Vertical synchronization for each field and the color subcarrier burst.
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occupies 52.7 microseconds, and one entire scan line occupies 63.6 microseconds. Hence, the line scan
rate can be determined as 15.75 kHz.

Figure 14.48 describes vertical synchronization. A pulse train is generated at the end of each field.
The pulse train contains 6 equalizing pulses, 6 vertical synchronizing pulses, and another 6 equalizing
pulses at the rate of twice the size of the line scan rate (31.5 kHz), so that the timing for sweeping half
the width of the field is feasible. In NTSC, the vertical retrace takes the time interval of 20 horizontal
lines designated for control information at the beginning of each field. The 18 pulses of the vertical
blanking occupy a time interval that is equivalent to 9 lines. This leaves lines 10 to 20 for other uses.

A color subcarrier resides on the back porch, as shown in Figure 14.48. The eight cycles of the
color subcarrier are recovered via a delayed gating circuit trigged by the horizontal sync pulse.
Synchronization includes the color burst frequency and phase information. The color subcarrier is then
applied to demodulate the color (chrominance).

Let us summarize NTSC video signals. The NTSC TV standard uses an aspect ratio of 4:3 (ratio of
picture width to height), and 525 scan lines per frame at 30 fps. Each frame has an odd field and an
even field. So there are 525/2¼262.5 lines per field. NTSC actually uses 29.97 fps. The horizontal
sweep frequency is 525� 29.97¼15,734 lines per second, and each line takes 1/15,734¼63.6 m sec.
Horizontal retrace takes 10.9 m sec, while the line signal takes 52.7 m sec. for one line of image display.
Vertical retrace and sync are also needed so that the first 20 lines for each field are reserved. The active
video lines per frame are 485. The layout of the video data, retrace, and sync data is shown in
Figure 14.49.

Blanking regions can be used for V-chip information, stereo audio channel data, and subtitles in
various languages. The active line is then sampled for display. A pixel clock divides each horizontal
line of video into samples. For example, vertical helical scan (VHS) uses 240 samples per line, while
Super VHS uses 400–425 samples per line.

Figure 14.50 shows the NTSC video signal spectra. The NTSC standard assigns a bandwidth of 4.2
MHz for luminance Y, 1.5 MHz for I, and 0.5 MHz for Q, due to the human perception of color
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Video data, retrace, and sync layout.
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information. There is a wider bandwidth for I because the human eye has higher resolution to the I
color component than the Q color component.

As shown in Figure 14.50, vestigial sideband modulation (VSB) is employed for the luminance,
with a picture carrier of 1.25 MHz relative to the VSB left edge. The space between the picture carrier
and the audio carrier is 4.5 MHz.

The audio signal containing the frequency range from 50 Hz to 15 kHz is stereo frequency
modulated (FM), using a peak frequency deviation of 25 kHz. Therefore, stereo FM audio requires
a transmission bandwidth of 80 kHz, with an audio carrier located at 4.5 MHz relative to the picture
carrier.

The color burst carrier is centered at 3.58 MHz above the picture carrier. The two color components
I and Q undergo quadrature amplitude modulation (QAM) with modulated component I output, which
is VSB filtered to remove two-thirds of the upper sideband, so that all chroma signals fall within a 4.2
MHz video bandwidth. The color burst carrier of 3.58 MHz is chosen such that the chroma signal and
luminance are interleaved in the frequency domain to reduce interference between them.
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NTSC Y, I, and Q spectra.
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Generating a chroma signal with QAM gives

C ¼ I cos ð2pfsctÞ þ Q sin ð2pfsctÞ (14.24)

where C ¼ chroma component and fsc ¼ color subcarrier ¼ 3.58 MHz. The NTSC signal is further
combined into a composite signal:

Composite ¼ Y þ C ¼ Y þ I cos ð2pfsctÞ þ Q sin ð2pfsctÞ (14.25)

At decoding, the chroma signal is obtained by separating Y and C first. Generally, the lowpass filters
located at the lower end of the channel can be used to extract Y. Comb filters may be employed to
cancel interferences between the modulated luminance signal and the chroma signal (Li and Drew,
2004). Then we perform demodulation for I and Q as follows:

C � 2 cos ð2pfsctÞ ¼ I2 cos2 ð2pfsctÞ þ Q� 2 sin ð2pfsctÞ cos ð2pfsctÞ
¼ I þ I � cos ð2� 2pfsctÞ þ Q sin ð2� 2pfsctÞ

(14.26)

Applying a lowpass filter yields the I component. Similar operation applying a carrier signal of
2sinð2pfsctÞ for demodulation recovers the Q component.

PAL Video
The phase alternative line (PAL) system uses 625 scan lines per frame at 25 fps, with an aspect ratio
of 4:3. It is widely used in Western Europe, China, and India. PAL uses the YUV color model, with an
8-MHz channel in which Y has 5.5 MHz and U and V each have 1.8 MHz with the color subcarrier
frequency of 4.43 MHz relative to the picture carrier. U and Vare the color difference signals (chroma
signals) of the B-Y signal and R-Y signal, respectively. The chroma signals have alternate signs
(e.g.,þVand –V) in successive scan lines. Hence, in consecutive lines, the signal and its sign-reversed
counterpart are averaged to cancel out phase errors that could be displayed as color errors.

SECAM Video
The SECAM (Séquentiel Couleur à Mémoire) system uses 625 scan lines per frame at 25 fps, with an
aspect ratio of 4:3 and interlaced fields. The YUV color model is employed, and U and V signals are
modulated using separate color subcarriers of 4.25 and 4.41 MHz, respectively. The U and V signals
are sent on each line alternatively. In this way, quadrature multiplexing and the possible cross-coupling
of color signals can be avoided by halving the color resolution in the vertical dimension. Table 14.15
includes a summary of analog broadband TV systems.

Table 14.15 Analog Broadband TV Systems

TV System

Frame
Rate
(fps)

Number of
Scan
Lines

Total
Bandwidth
(MHz)

Y
Bandwidth
(MHz)

U or I
Bandwidth
(MHz)

V or Q
Bandwidth
(MHz)

NTSC 29.97 525 6.0 4.2 1.6 0.6

PAL 25 625 8.0 5.5 1.8 1.8

SECAM 25 625 8.0 6.0 2.0 2.0

Source: Li and Drew, 2004.
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14.9.2 Digital Video

Digital video has become dominant over the long-standing analogmethod inmodern systems and devices
because it offers: high image quality; flexibility of storage, retrieval, and editing capabilities; digital
enhancement of video images; encryption; channel noise tolerance; and multimedia system applications.

Digital video formats are developed by the Consultative Committee for International Radio
(CCIR). One of the most important standards is CCIR-601, which became ITU-R-601, an international
standard for professional video applications.

In CCIR-601, chroma subsampling is carried for digital video. Each pixel is in the YCbCr color
space, where Y is the luminance, and Cb and Cr are the chrominance. Subsampling schemes include
4:4:4 (no chroma subsampling), 4:2:2, 4:1:1, and 4:2:0 as illustrated in Figure 14.51.
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FIGURE 14.51

Chroma subsampling.
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In each frame in a 4:4:4 video format, the number of values for each chrominance component, Cb or
Cr, is the same as that for luminance, Y, both horizontally and vertically. This format finds applications in
the computer graphics, in which the chrominance resolution is required for both horizontal and vertical
dimension. The format is not widely used in video applications due to a huge storage requirement.

As shown in Figure 14.51, for each frame in the 4:2:2 video format, the number of chrominance
components for Cr or Cb is half the number of luminance components for Y. The resolution is full
vertically, and the horizontal resolution is downsampled by a factor of 2. Considering the first line of
six pixels, transmission occurs in the following form: (Y0, Cb0), (Y1, Cr0), (Y2,Cb2), (Y3,Cr2),
(Y4,Cb4), (Y5, Cr4), and so on. Six Y values are sent for every two Cb and Cr values that are sent.

In the 4:2:0 video format, the number of values for each chrominance Cb and Cr is half the number
of luminance Y values for both the horizontal and vertical directions. That is, the chroma is down-
sampled horizontally and vertically by a factor of 2. The location for both Cb and Cr is shown in
Figure 14.51. Digital video specifications are given in Table 14.16.

CIF was specified by the Comité Consultatif International Téléphonique et Télégraphique
(CCITT), which is now the International Telecommunications Union (ITU). CIF produces low bit rate
video and supports progressive scan. QCIF produces video with an even lower bit rate. Neither format
supports interlaced scan mode.

Table 14.17 outlines the high-definition TV (HDTV) formats supported by the Advanced Televi-
sion System Committee (ATSC), where “I” means interlaced scan and “P” indicates progressive scan.
MPEG compressions of video and audio are employed.

Table 14.16 Digital Video Specifications

CCIR 601
525/60
NTSC

CCR 601
625/50
PAL/SECAM CIF QCIF

Luminance resolution
Chrominance resolution
Color subsampling
Aspect ratio
Fields/sec
Interlaced

720 � 480
360 � 480
4:2:2
4:3
60
Yes

720 � 576
360 � 576
4:2:2
4:3
50
Yes

352 � 288
176 � 144
4:2:0
4:3
30
No

176 � 144
88 � 72
4:2:0
4:3
30
No

CCR, comparison category rating; CIF, common intermediate format; QCIF, quarter-CIF.

Source: Li and Drew, 2004.

Table 14.17 High-Definition TV (HDTV) Formats

Number of Active
Pixels per Line

Number of Active
Lines Aspect Ratio Picture Rate

1920
1280
704
640

1080
720
480
480

16:9
16:9
16:9 and 4:3
4:3

60I 30P 24P
60P 30P 24 P
60I 60P 30P 24P
60I 60P 30P 24P

Source: Li and Drew, 2004.
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14.10 MOTION ESTIMATION IN VIDEO
In this section, we study motion estimation since this technique is widely used in MPEG video
compression. A video contains a time-ordered sequence of frames. Each frame consists of image data.
When the objects in an image are still, the pixel values do not change under constant lighting
conditions. Hence, there is no motion between the frames. However, if the objects are moving, then the
pixels are moved. If we can find the motions, which are the pixel displacements, with motion vectors,
the frame data can be recovered from the reference frame by copying and pasting at locations specified
by the motion vector. To explore such an idea, let us look at Figure 14.52.

As shown in Figure 14.52, the reference frame is displayed first, and the next frame is the target
frame containing a moving object. The image in the target frame is divided into N � N macroblocks
(20 macroblocks). A macroblock match is searched within the search window in the reference frame to
find the closest match between a macroblock under consideration in the target frame and the mac-
roblock in the reference frame. The differences between two locations (motion vectors) for the
matched macroblocks are encoded.

The criteria for finding the best match can be chosen using the mean absolute difference (MAD)
between the reference frame and the target frame:

MADði; jÞ ¼ 1

N2

XN�1

k¼ 0

XN�1

l¼ 0

jTðmþ k; nþ lÞ � Rðmþ k þ i; nþ lþ jÞj (14.27)

u ¼ i; v ¼ j for MADði; jÞ ¼ minimum; and� p � i; j � p (14.28)

There are many search methods for finding the motion vectors, including optimal, sequential, or brute
force searches, and suboptimal searches such as 2D-logarithmic and hierarchical searches. Here we
examine sequential search to understand the basic idea.
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FIGURE 14.52

Macroblocks and motion vectors in the reference frame and target frame.
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The sequential search for finding the motion vectors employs methodical “brute force” to search the
entire (2pþ1) � (2pþ1) search window in the reference frame. The macroblock in the target frame
compares each macroblock centered at each pixel in the search window in the reference frame.
Comparison using Equation (14.27) proceeds pixel by pixel to find the best match in which the vector
(i, j) produces the smallest MAD. Then the motion vector (MV(u, v)) is found to be u ¼ i, and v ¼ j.
The algorithm is described as follows:

min_MAD¼large value
for i¼-p, ., p

for j¼-p,.,p
cur_MAD¼MDA(i,j);
if cur_MAD < min_MAD

min_MAD¼ cur_MAD;
u¼i;
v¼j;

end
end

end

Sequential search provides the best match with the least MAD. However, it requires a huge
amount of computations. Other suboptimal search methods can be employed to reduce the
computational requirement, but with sacrifices of image quality. These topics are beyond our
scope.

EXAMPLE 14.17
An 80 � 80 reference frame, target frame, and their difference are displayed in Figure 14.53. A macroblock with
a size of 16� 16 is used, and the search window has a size of 32� 32. The target frame is obtained by moving the
reference frame to the right by 6 pixels and to the bottom by 4 pixels. The sequential search method is applied to
find all the motion vectors. The reconstructed target frame using the motion vectors and reference image is given in
Figure 14.53.

Since 80� 80=ð16� 16Þ ¼ 25, there are 25macroblocks in the target frame and 25motion vectors in total.
The motion vectors are

Horizontal direction ¼
�6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6

�6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6 � 6
(14.29)

Vertical direction ¼
�4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4

�4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4 � 4
(14.30)

The motion vector comprises the pixel displacements from the target frame to the reference
frame. Hence, given the reference frame, directions specified in the motion vector should be
switched to indicate the motion towards the target frame. As indicated by the obtained motion
vectors, the target image is a version of the reference image moving to the right by 6 pixels and down
by 4 pixels.

756 CHAPTER 14 Image Processing Basics



14.11 SUMMARY
1. A digital image consists of pixels. For a grayscale image, each pixel is assigned a grayscale level

that presents the luminance of the pixel. For an RGB color image, each pixel is assigned a red
component, a green component, and a blue component. For an indexed color image, each pixel
is assigned an address that is the location of the color table (map) made up of the red, green,
and blue components.

2. Common image data formats are 8-bit grayscale image, 24-bit color, and 8-bit indexed color.
3. The larger the number of pixels in an image, or the larger the numbers of the RGB components,

the finer is the spatial resolution in the image. Similarly, the more scale levels used for each pixel,
the better the scale-level image resolution. The more pixels and more bits used for the scale levels
in the image, the more storage is required.

4. RGB color pixels can be converted to YIQ color pixels. The Y component is the luminance
occupying 93% of the signal energy, while the I and Q components represent the color
information of the image, occupying the remainder of the energy.

5. The histogram for a grayscale image shows the number of pixels at each grayscale level. The
histogram can be modified to enhance the image. Image equalization using the histogram can

FIGURE 14.53

Reference frame, target frame, their difference, and the reconstructed frame by the motion vectors.
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improve the image contrast and effectively enhances contrast for image underexposure. Color
image equalization can be done only in the luminance channel or RGB channels.

6. Image enhancement techniques such as average lowpass filtering can filter out random noise in
the image; however, it also blurs the image. The degree of blurring depends on the kernel size.
The bigger the kernel size, the more blurring occurs.

7. Median filtering effectively removes the “pepper and salt” noise in an image.
8. The edge detection filter with Sobel convolution, Laplacian, and Laplacian of Gaussian kernels

can detect image boundaries.
9. The grayscale image can be made into a facsimile of the color image by pseudo-color image

generation, using the red, green, and blue transformation functions.
10. RGB-to-YIQ transformation is used to obtain the color image in YIQ space, or vice versa. It can

also be used for color-to-grayscale conversion, that is, keeping only the luminance channel after
the transformation.

11. 2D spectra can be calculated and are used to examine filtering effects.
12. JPEG compression uses the 2D-DCT transform for both grayscale and color images in the YIQ

color space. JPEG uses different quality factors to normalize DCT coefficients for the luminance
(Y) channel and the chrominance (IQ) channels.

13. The mixing of two images, in which two pixels are linearly interpolated using the weights 1� a

and a, can produce video sequences that have effects such as fading in and fading out of images,
blending of two images, and overlaying of text on an image.

14. Analog video uses interlaced scanning. Avideo frame contains odd and even fields. Analog video
standards include NTSC, PAL, SECAM.

15. Digital video carries the modulated information for each pixel in the YCbCr color space, where Y
is the luminance and Cb and Cr are the chrominance. Chroma subsampling creates various digital
video formats. The industry standards include CCIR601, CCR601, CIF, and QCIF.

16. Motion compensation of a video sequence produces motion vectors for all the image blocks in the
target video frame, which contain displacements of these image blocks relative to the reference
video frame. Recovering the target frame involves simply copying each image block of the
reference frame to the target frame at the location specified in the motion vector. Motion
compensation is a key element in MPEG video.

14.12 PROBLEMS

14.1. Determine the memory storage requirement for each of the following images:

a. 320 � 240 8-bit grayscale

b. 640 � 480 24-bit color image

c. 1600 � 1200 8-bit indexed image

14.2. Determine the number of colors for each of the following images:

a. 320 � 240 16-bit indexed image

b. 200 � 100 24-bit color image
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14.3. Given a pixel in an RGB image

R ¼ 200; G ¼ 120; B ¼ 100

convert the RGB values to YIQ values.

14.4. Given a pixel of an image in YIQ color format

Y ¼ 141; I ¼ 46; Q ¼ 5

convert the YIQ values back to RGB values.

14.5. Given the 2 � 2 RGB image,

R ¼
"
100 50

100 50

#
G ¼

"
20 40

10 30

#
B ¼

"
100 50

200 150

#

convert the image into grayscale.

14.6. Produce a histogram of the following image, which has a grayscale value ranging from 0 to
7, that is, each pixel is encoded in 3 bits.

2
66664
0 1 2 2 0

2 1 1 2 1

1 1 4 2 3

0 2 5 6 1

3
77775

14.7. Consider the following image with a grayscale value ranging from 0 to 7, that is, each pixel
is encoded in 3 bits: 2

66664
0 1 2 2 0

2 1 1 2 1

1 1 4 2 3

0 2 5 6 1

3
77775

Perform equalization using the histogram in Problem 14.6, and plot the histogram for the
equalized image.

14.8. Consider the following image with a grayscale value ranging from 0 to 7, that is, each pixel
is encoded in 3 bits: 2

66664
2 4 4 2

2 3 3 3

4 4 4 2

3 2 3 4

3
77775

Perform level adjustment to the full range, shift the level to the range from 3 to 7, and shift the
level to the range from 0 to 3.
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14.9. Consider the following 8-bit grayscale original and noisy images and 2 � 2 convolution
average kernel:

4� 4 original image :

2
66664
100 100 100 100

100 100 100 100

100 100 100 100

100 100 100 100

3
77775

4� 4 corrupted image :

2
66664
93 116 109 96

92 107 103 108

84 107 86 107

87 113 106 99

3
77775

2� 2 average kernel :
1

4

"
1 1

1 1

#

Perform digital filtering on the noisy image, and compare the enhanced image with the original
image.

14.10. Consider the following 8-bit grayscale original and noisy image, and 3 � 3 median filter
kernel:

4� 4 original image :

2
66664
100 100 100 100

100 100 100 100

100 100 100 100

100 100 100 100

3
77775

4� 4 corrupted image by impulse noise :

2
66664
100 255 100 100

0 255 255 100

100 0 100 0

100 255 100 100

3
77775

3� 3 average kernel :

2
64

3
75

Perform digital filtering, and compare the filtered image with the original image.
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14.11. Given the 8-bit 5 � 4 original grayscale image2
6666664

110 110 110 110

110 100 100 110

110 100 100 110

110 110 110 110

110 110 110 110

3
7777775

apply the following edge detectors to the image:

a. Sobel vertical edge detector

b. Laplacian edge detector

Scale the resultant image pixel value to the range of 0 to 255.

14.12. In Example 14.10, if we switch the transformation functions between the red function and
the green function, what is the expected color for the area pointed to by the arrow, and what
is the expected background color?

14.13. In Example 14.10, if we switch the transformation functions between the red function and
the blue function, what is the expected color for the area pointed to by the arrow, and what is
the expected background color?

14.14. Consider the following grayscale image pði; jÞ:2
64
100 �50 10

100 80 100

50 50 40

3
75

Determine the 2D-DFT coefficient Xð1; 2Þ and the magnitude spectrum Að1; 2Þ.
14.15. Consider the following grayscale image pði; jÞ:"

10 100

200 150

#

Determine the 2D-DFT coefficients Xðu; vÞ and magnitude Aðu; vÞ.
14.16. Consider the following grayscale image pði; jÞ:"

10 100

200 150

#

Apply the 2D-DCT to determine the DCT coefficients.

14.17. Consider the following DCT coefficients Fðu; vÞ:"
200 10

10 0

#
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Apply the inverse 2D-DCT to determine the 2D data.

14.18. In JPEG compression, DCT DC coefficients from several blocks are 400, 390, 350, 360, and
370. Use DPCM to produce the DPCM sequence, and use the Huffman table to encode the
DPCM sequence.

14.19. In JPEG compression, DCT coefficients from the an image subblock are

½175; �2; 0; 0; 0; 4; 0; 0 ; �3 7; 0; 0; 0; 0; �2; 0; 0; .; 0�

a. Generate the run-length codes for AC coefficients.

b. Perform entropy coding for the run-length codes using the Huffman table.

14.20. Consider the following grayscale image pði; jÞ:"
10 100

200 150

#

Apply the 2D-DWT using the Haar wavelet to determine the level-1 DWT coefficients.

14.21. Consider the following level-1 IDWT coefficientsWðu; vÞ obtained using the Haar wavelet:"
200 10

10 0

#

Apply the IDWT to determine the 2D data.

14.22. Consider the following grayscale image pði; jÞ:2
66664
100 150 60 80

80 90 50 70

110 120 100 80

90 50 40 90

3
77775

Apply the 2D-DWT using the Haar wavelet to determine the level-1 DWT coefficients.

14.23. Consider the following level-1 IDWT coefficientsWðu; vÞ obtained using the Haar wavelet:2
66664
250 50 �30 �20

30 20 10 �20

10 20 0 0

20 15 0 0

3
77775

Apply the IDWT to determine the 2D data.

14.24. Explain the difference between horizontal retrace and vertical retrace. Which one would
take more time?
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14.25. What is the purpose of using interlaced scanning in a traditional NTSC TV system?

14.26. What is the bandwidth in the traditional NTSC TV broadcast system? What is the band-
width to transmit luminance Y, and what are the required bandwidths to transmit Q and I
channels, respectively?

14.27. What type of modulation is used for transmitting audio signals in the NTSC TV system?

14.28. Given the composite NTSC signal

Composite ¼ Y þ C ¼ Y þ I cos ð2pfsctÞ þ Q sin ð2pfsctÞ
show demodulation for the Q channel.

14.29. Where does the color subcarrier burst reside? What is the frequency of the color subcarrier,
and how many cycles does the color burst have?

14.30. Compare differences of the NTSC, PAL and SECAM video systems in terms of the number
of scan lines, frame rates, and total bandwidths required for transmission.

14.31. In the NTSC TV system, what is the horizontal line scan rate? What is the vertical
synchronizing pulse rate?

14.32. Explain which of the following digital video formats achieves the most data transmission
efficiency:

a. 4:4:4

b. 4:2:2

c. 4:2:0

14.33. What is the difference between interlaced scan and progressive scan? Which of the
following video systems use progressive scan?

a. CCIR-601

b. CIF

14.34. In motion compensation, which of the following would require more computation? Explain.

a. Finding the motion vector using sequential search

b. Recovering the target frame with the motion vectors and reference frame

14.35. Given a reference frame and target frame of size 80� 80, a macroblock size of 16� 16, and
a search window size of 32 � 32, estimate the number of subtractions, absolute value
calculations, and additions for searching all the motion vectors using the sequential search
method.

14.12.1 MATLAB Problems
Use MATLAB to solve Problems 14.36 to 14.42.

14.36. Given the image data “trees.jpg”, use MATLAB functions to perform each of the following
processes:

a. Use MATLAB to read and display the image.

b. Convert the image to grayscale.
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c. Perform histogram equalization for the grayscale image in (b) and display the histogram
plots for both the original grayscale image and equalized grayscale image.

d. Perform histogram equalization for the color image in (a) and display the histogram plots
of the Y channel for both the original color image and equalized color image.

14.37. Given the image data “cruise.jpg”, perform the following linear filtering:

a. Convert the image to grayscale and then create an 8-bit noisy image by adding Gaussian
noise using the following code:

noise_image [ imnoise(I,’gaussian’);

where I is the intensity image obtained from normalizing the grayscale image.

b. Process the noisy image using a Gaussian filter with the following parameters:
convolution kernel size ¼ 4, SIGMA ¼ 0.8. Compare the filtered image with the noisy
image.

14.38. Given the image data “cruise.jpg”, perform the following filtering process:

a. Convert the image to grayscale and then create an 8-bit noisy image by adding “pepper
and salt” noise using the following code:

noise_image [ imnoise(I,’salt & pepper’);

where I is the intensity image obtained from normalizing the grayscale image.

b. Process the noisy image using median filtering with a convolution kernel size of 4 � 4.

14.39. Given the image data “cruise.jpg”, convert the image to the grayscale and detect the image
boundaries using Laplacian of Gaussian filtering with the following parameters:

a. Kernel size¼ 4 and SIGMA¼ 0.9

b. Kernel size¼ 10 and SIGMA ¼ 10

Compare the results.

14.40. Given the image data “clipim2.gif’, perform the following process:

a. Convert the indexed image to grayscale.

b. Adjust the color transformation functions (sine functions) to make the object indicated
by the arrow in the image red and the background color green.

14.41. Given the image data “cruiseorg.tiff”, perform JPEG compression by completing the
following steps:

a. Convert the image to grayscale.

b. Write a MATLAB program for encoding with the following features: (1) divide the
image into 8 � 8 blocks; (2) transform each block using the discrete-cosine transform;
(3) scale and round DCT coefficients with the standard quality factor. Note that using
lossless compression with the quantized DCT coefficients is omitted here for a simple
simulation.
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c. Continue and write a MATLAB program for decoding with the following features: (1)
invert the scaling process for quantized DCT coefficients; (2) perform the inverse DCT
for each 8 � 8 image block; (3) recover the image.

d. Run the developed MATLAB program to examine the image quality using

I. The quality factor

II. The quality factor � 5

III. The quality factor � 10

14.42. Given the image data “cruiseorg.tiff”, perform wavelet-based compression by completing
the following steps:

a. Convert the image to grayscale.

b. Write a MATLAB program for encoding with the following features: (1) use an 8-tap
Daubechies filter; (2) apply the two-level DWT; (3) perform 8-bit quantization for
subbands LL2, LH2, HL2, HH2, LH1, HL1, and HH1 for simulation.

c. Write the MATLAB program for the decoding process.

d. Run the developed MATLAB program to examine the image quality using the following
methods:

I. Reconstruct the image using all subband coefficients.

II. Reconstruct the image using LL2 subband coefficients.

III. Reconstruct the image using LL2, HL2, LH2, and HH2 subband coefficients.

IV. Reconstruct the image using LL2, HL2, and LH2 subband coefficients.

V. Reconstruct the image using LL2, HL2, LH2, HH2, LH1, and HL1 subband
coefficients.
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Appendix A: Introduction to the MATLAB
Environment

Matrix Laboratory (MATLAB) is used extensively in this book for simulations. The goal here is to help
students acquire familiarity with MATLAB and build basic skills in the MATLAB environment.
Hence, Appendix A serves the following objectives:

1. Learn to use the help system to study basic MATLAB commands and syntax.
2. Learn array indexing.
3. Learn basic plotting utilities.
4. Learn to write script m-files.
5. Learn to write functions in MATLAB.

A.1 BASIC COMMANDS AND SYNTAX
MATLAB has an accessible help system through the help command. By issuing the MATLAB help
command following the topic or function (routine), MATLAB will return information on the topic and
show how to use the function. For example, by entering help sum at the MATLAB prompt, we see
information (listed partially here) on how to use the function sum().

» help sum
SUM Sum of the elements.

For vectors, SUM(X) is the sum of the elements of X.
For matrices, SUM(X) is a row vector with the sum over
each column.

»

The following examples are given to demonstrate the usage of sum():

» x¼[ 1 2 3 1.5 -1.5 -2]; % Initialize an array
» sum(x) % Call MATLAB function sum
ans ¼

4 % Display the result
»

» x¼[1 2 3; -1.5 1.5 2.5; 4 5 6] % Initialize 3 � 3 matrix
x ¼ % Display the contents of 3 � 3 matrix

1.0000 2.0000 3.0000
-1.5000 1.5000 2.5000
4.0000 5.0000 6.0000
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» sum(x) % Call MATLAB function sum
ans ¼
3.5000 8.5000 11.5000 % Display the results

»

MATLAB can be used like a calculator to work with numbers, variables, and expressions in the
command window. The following are basic syntax examples:

» sin(pi/4)
ans ¼
0.7071

» pi*4
ans ¼
12.5664

In MATLAB, variable names can store values, vectors and matrices. See the following
examples.

» x¼cos(pi/8)
x ¼
0.9239

» y¼sqrt(x)-2^2
y ¼
-3.0388

» z¼[1 -2 1 2]
z ¼
1 -2 1 2

» zz¼[1 2 3; 4 5 6]
zz ¼
1 2 3
4 5 6

Complex numbers are natural in MATLAB. See the following examples.

» z¼3+4i % Complex number
z ¼
3.0000 + 4.0000i

» conj(z) % Complex conjugate of z
ans ¼
3.0000 - 4.0000i

» abs(z) % Magnitude of z
ans ¼
5

» angle(z) % Angle of z (radians)
ans ¼
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0.9273

» real(z) % Real part of a complex number z
ans ¼

3

» imag(z) % Imaginary part of a complex number z
ans ¼

4

» exp(j*pi/4) % Polar form of a complex number
ans ¼

0.7071 + 0.7071i

The following shows examples of array operations. Krauss, Shure, and Little (1994) and Stearns
(2003) give detailed explanation for each operation.

» x¼[1 2; 3 4] % Initialize 2 � 2 matrixes
x ¼

1 2
3 4

» y¼[-4 3; -2 1]
y ¼

-4 3
-2 1

» x+y % Add two matrixes
ans ¼

-3 5
1 5

» x*y % Matrix product
ans ¼

-8 5
-20 13

» x.*y % Array element product
ans ¼

-4 6
-6 4

» x' % Matrix transpose
ans ¼

1 3
2 4

» 2.^x % Exponentiation: matrix x contains each exponent
ans ¼

2 4
8 16
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» x.^3 % Exponentiation: power of 3 for each element in matrix x
ans ¼
1 8
27 64

» y.^x % Exponentiation: each element in y has a power
% specified by a corresponding element in matrix x

ans ¼
-4 9
-8 1

» x¼[0 1 2 3 4 5 6] % Initialize a row vector
x ¼
0 1 2 3 4 5 6

» y¼x.*x-2*x % Use array element product to compute a quadratic function
y ¼
0 -1 0 3 8 15 24

» z¼[1 3]' % Initialize a column vector
z ¼
1
3

» w¼x\z % Invert matrix x, then multiply it by the column vector z
w ¼
1
0

A.2 MATLAB ARRAYS AND INDEXING
Let us look at the syntax to create an array as follows:

Basic syntax: x[begin: step: end
An array x is created with the first element value of begin. The value increases by a value of step

for the next element in the array and stops when the next stepped value is beyond the specified end
value of end. In simulation, we may use this operation to create the sample indexes or array of time
instants for digital signals. The begin, step, and end can be assigned to integers or floating-point
numbers.

The following examples are given for illustrations:

» n¼1:3:8 % Create a vector n¼[1 4 7]
n ¼
1 4 7

» m¼9:-1:2 % Create a vector m¼[9 8 7 6 5 4 3 2 ]
m ¼
9 8 7 6 5 4 3 2
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» x¼2:(1/4):4 % Create x¼[2 2.25 2.5 2.75 3 3.25 3.5 3.75 4]
x ¼

Columns 1 through 7
2.0000 2.2500 2.5000 2.7500 3.0000 3.2500 3.5000
Columns 8 through 9
3.7500 4.0000

» y¼2:-0.5:-1 % Create y¼[2 1.5 1 0.5 0 -0.5 -1]
y ¼

2.0000 1.5000 1.0000 0.5000 0 -0.5000 -1.0000

Next, we examine creating a vector and extracting numbers in a vetcor:

» xx¼ [ 1 2 3 4 5 [5:-1:1] ] % Create xx¼[ 1 2 3 4 5 5 4 3 2 1]
xx ¼

1 2 3 4 5 5 4 3 2 1
» xx(3:7) % Show elements to 7, that is, [3 4 5 5 4]
ans ¼

3 4 5 5 4
» length(xx) % Return of the number of elements in vetcor xx
ans ¼

10
» yy¼xx(2:2:length(xx)) % Display even indexed numbers in array xx
yy ¼

2 4 5 3 1

A.3 PLOT UTILITIES: SUBPLOT, PLOT, STEM, AND STAIR
The following are common MATLAB plot functions for digital signal processing (DSP)
simulation:

subplot opens subplot windows for plotting.
plot produces an x–y plot. It can also create multiple plots.
stem produces discrete-time signals.
stair produces staircase (sample-and-hold) signals.

The following program contains different MATLAB plot functions:

t¼0:0.01:0.4; % Create time vector for time instants from 0 to 0.4 second
xx¼4.5*sin(2*pi*10*t+pi/4); % Calculate a sine function with a frequency of 10 Hz
yy¼4.5*cos(2*pi*5*t-pi/3); % Calculate cos function with a frequency of 5 Hz
subplot(4,1,1), plot(t,xx);grid % Plot a sine function in window 1
subplot(4,1,2), plot(t,xx, t,yy, ’ -. ’ ) ;grid; % Plot sine and cos functions in window 2
subplot(4,1,3), stem(t,xx);grid % Plot a sine function in the discrete-time form
subplot(4,1,4), stairs(t,yy);grid % Plot a cos function in the sample-and-hold form
xlabel( ‘ Time (sec.) ’ );

Each plot is shown in Figure A.1. Notice that dropping the semicolon at the end of the MATLAB
syntax will display values on the MATLAB prompt.
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A.4 MATLAB SCRIPT FILES
We can create a MATLAB script file using the built-in MATLAB editor (or Windows Notepad) to write
MATLAB source code. The script file is named “filename.m” and can be run by typing the file name at
the MATLAB prompt and hitting the return key. The script file test.m is described here for illustration.
Figure A.2 illustrates the plot produced by test.m.

At MATLAB prompt, run the program
>>which test % show the folder where test.m resides
Go to the folder that contains test.m, and run your script from MATLAB.
>>test % run the test.m
>>type test % display the contents of test.m
test.m

t¼0:0.01:1;
x¼sin(2*pi*2*t);
y¼0.5*cos(2*pi*5*t-pi/4);
plot(t,x), grid on
title( ‘ Test plots of sinusoids ’ )
ylabel( ‘ Signal amplitudes ’ );

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

Time (sec.)

FIGURE A.1

Illustration for the MATLAB plot functions.
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xlabel( ‘ Time (sec.) ’ ); hold on
plot(t,y, ’ -. ’ );

A.5 MATLAB FUNCTIONS
A MATLAB function is often used to replace the repetitive portions of MATLAB code. It is
created using a MATLAB script file. However, the code begins with the keyword function,
followed by the function declaration, comments for the help system, and program code.
A function sumsub.m that computes the addition and subtraction of two numbers is listed here
for illustration.

sumsub.m

function [sum, sub]¼sumsub(x1,x2)
%sumsub: Function to add and subtract two numbers
% Usage:
% [sum, sub] ¼ sumsub(x1,x2)
% x1 ¼ the first number
% x2¼ the second number
% sum ¼ x1+x2;
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1

S
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m
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Time (sec.)

Test plots of sinusoids

FIGURE A.2

Illustration of MATLAB script file test.m.
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% sub ¼ x1-x2
sum ¼ x1+x2; % Add two numbers
sub¼ x1-x2; % Subtract x2 from x1

To use the MATLAB function, go to the folder that contains sumsub.m. At the MATLAB prompt,
try the following:

» help sumsub % Display usage information on MATLAB prompt
sumsub: Function to add and subtract two numbers
usage:
[sum, sub] ¼ sumsub(x1,x2)
x1 ¼ the first number
x2¼ the second number
sum ¼ x1+x2;
sub ¼ x1-x2

Run the function as follows:

» [x1, x2]¼sumsub(3, 4-3i); % Call function sumsub
» x1 % Display the result of sum
x1 ¼
7.0000 - 3.0000i

» x2 % Display the result of subtraction
x2 ¼
-1.0000 + 3.0000i

MATLAB functions can also be used inside an m-file. More MATLAB exercises for introduction to
DSP can be explored in McClellan, Schafer, and Yoder (1998) and Stearns (2003).
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Appendix B: Review of Analog Signal
Processing Basics

B.1 FOURIER SERIES AND FOURIER TRANSFORM
Electronics applications require familiarity with some periodic signals such the square wave, rect-
angular wave, triangular wave, sinusoid, sawtooth wave, and so on. These periodic signals can be
analyzed in the frequency domain with the help of the Fourier series expansion. According to Fourier
theory, a periodic signal can be represented by a Fourier series that contains the sum of a series of sine
and/or cosine functions (harmonics) plus a direct current (DC) term. There are three forms of Fourier
series: (1) sine-cosine, (2) amplitude-phase, and (3) complex exponential. We will review each of them
individually in the following text. Comprehensive treatments can be found in Ambardar (1999),
Soliman and Srinath (1998), and Stanley (2003).

B.1.1 Sine-Cosine Form

The Fourier series expansion of a periodic signal xðtÞ with a period of T via the sine-cosine form is
given by

x
�
t
� ¼ a0 þ

XN
n¼ 1

an cos ðnu0tÞ þ
XN
n¼ 1

bn sin ðnu0tÞ (B.1)

where u0 ¼ 2p=T0 is the fundamental angular frequency in radians per second, while the funda-
mental frequency in terms of Hz is f0 ¼ 1=T0. The Fourier coefficients of a0, an, and bn may be found
according to the following integral equations:

a0 ¼ 1

T0

Z
T0

xðtÞdt (B.2)

an ¼ 2

T0

Z
T0

xðtÞ cos ðnu0tÞdt (B.3)

bn ¼ 2

T0

Z
T0

xðtÞ sin ðnu0tÞdt (B.4)

Notice that the integral is performed over one period of the signal to be expanded. From Equation
(B.1), the signal xðtÞ consists of a DC term and sums of sine and cosine functions with their corre-
sponding harmonic frequencies. Again, note that nu0 is the nth harmonic frequency.
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B.1.2 Amplitude-Phase Form

From the sine-cosine form, we notice that there is a sum of two terms with the same frequency. The
term in the first sum is an cos ðnu0tÞ while the other is bn sin ðnu0tÞ. We can combine these two terms
and modify the sine-cosine form into the amplitude-phase form:

x
�
t
� ¼ A0 þ

XN
n¼ 1

An cos ðnu0t þ fnÞ (B.5)

The DC term is same as before, that is,

A0 ¼ a0 (B.6)

and the amplitude and phase are given by

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q
(B.7)

fn ¼ tan�1

��bn
an

�
(B.8)

respectively. The amplitude-phase form provides very useful information for spectral analysis. With
the calculated amplitude and phase for each harmonic frequency, we can create the spectral plots. One
depicts a plot of the amplitude versus its corresponding harmonic frequency (the amplitude spectrum),
while the other plot shows each phase versus its harmonic frequency (the phase spectrum). Note that
the spectral plots are one-sided, since amplitudes and phases are plotted versus the positive harmonic
frequencies. We will illustrate these in Example B.1.

B.1.3 Complex Exponential Form

The complex exponential form is developed based on expanding sine and cosine functions in the sine-
cosine form into their exponential expressions using Euler’s formula and regrouping these exponential
terms. Euler’s formula is given by

e�jx ¼ cos
�
x
�� j sin

�
x
�

which can be written as two separate forms:

cos
�
x
� ¼ ejx þ e�jx

2

sin
�
x
� ¼ ejx � e�jx

2j

We will focus on interpretation and application rather than the derivation of this form. Thus the
complex exponential form is expressed as

x
�
t
� ¼

XN
n¼�N

cne
jnu0t (B.9)
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where cn represents the complex Fourier coefficients, which may be found from

cn ¼ 1

T0

Z
T0

x
�
t
�
e�jnu0tdt (B.10)

The relationship between the complex Fourier coefficients cn and the coefficients of the sine-cosine
form are

c0 ¼ a0 (B.11)

cn ¼ an � jbn
2

; for n > 0 (B.12)

Considering a real signal x(t) (x(t) is not a complex function) in Equation (B.10), c�n is equal to the
complex conjugate of cn, that is, cn. It follows that

c�n ¼ cn ¼ an þ jbn
2

; for n > 0 (B.13)

Since cn is a complex value that can be written in the magnitude-phase form, we obtain

cn ¼ jcnj:fn (B.14)

where jcnj is the magnitude and fn is the phase of the complex Fourier coefficient. Similar to the
magnitude-phase form, we can create the spectral plots for jcnj and fn. Since the frequency index n
goes from �N to N, the plots of the resultant spectra are two-sided.

EXAMPLE B.1
Consider the square waveform x(t) shown in Figure B.1, where T0 represents a period. Find the Fourier series
expansions in terms of (a) the sine-cosine form, (b) the amplitude-phase form, and (c) the complex exponential form.

Solution:
From Figure B.1, we notice that T0 ¼ 1 second and A ¼ 10. The fundamental frequency is

f0 ¼ 1=T0 ¼ 1 Hz or u0 ¼ 2p� f0 ¼ 2p rad=sec

a. Using Equations (B.1) to (B.3) yields

a0 ¼ 1

T0

ZT0=2

�T0=2

x
�
t
�
dt ¼ 1

1

Z0:25
�0:25

10dt ¼ 5

an ¼ 2

T0

ZT0=2

�T0=2

xðtÞ cos ðnu0tÞdt

¼ 2

1

Z0:25
�0:25

10 cos ðn2ptÞdt

¼ 2

1

10� sin ðn2ptÞ
n2p

����0:25
�0:25

¼ 10
sin ð0:5pnÞ

0:5pn

APPENDIX B Review of Analog Signal Processing Basics 777



FIGURE B.1

Square waveform in Example B.1.

bn ¼ 2

T0

ZT0=2

�T0=2

xðtÞ sin ðnu0tÞdt

¼ 2

1

Z0:25
�0:25

10� sin ðn2ptÞdt

¼ 2

1

�10cos ðn2ptÞ
n2p

����0:25
�0:25

¼ 0

Thus, the Fourier series expansion in terms of the sine-cosine form is written as

x
�
t
� ¼ 5þ

XN
n¼1

10
sin ð0:5pnÞ

0:5pn
cos

�
n2pt

�

¼ 5 þ 20

p
cos

�
2pt

�� 20

3p
cos

�
6pt

�þ 4

p
cos

�
10pt

�� 20

7p
cos

�
14pt

�þ/

b. Making use of the relations between the sine-cosine form and the amplitude-phase form, we obtain

A0 ¼ a0 ¼ 5

An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2

n

q
¼ jan j ¼ 10�

����sin ð0:5pnÞ
0:5pn

����
Again, noting that �cos ðxÞ ¼ cos ðx þ 180

� Þ, the Fourier series expansion in terms of the amplitude-phase form
is

x
�
t
� ¼ 5þ 20

p
cos

�
2pt

�þ 20

3p
cos

�
6pt þ 180

��þ 4

p
cos

�
10pt

�þ 20

7p
cos

�
14pt þ 180

��þ/

c. First let us find the complex Fourier coefficients using the formula, that is,

cn ¼ 1

T0

ZT0=2

�T0=2

x
�
t
�
e�jnu0t dt

¼ 1

1

Z0:25
�0:25

Ae�jn2pt dt

¼ 10� e�jn2pt

�jn2p

����
0:25

�0:25

¼ 10�
�
e�j0:5pn � ej0:5pn

�
�jn2p
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Applying Euler’s formula yields

cn ¼ 10� cos 0:5pn � j sin ð0:5pnÞ � ½cos ð0:5pnÞ þ j sin ð0:5pnÞ�
�jn2p

¼ 5
sin ð0:5pnÞ

0:5pn

Second, using the relationship between the sine-cosine form and the complex exponential form, it follows that

cn ¼ an � jbn
2

¼ an
2

¼ 5
sin ð0:5npÞ
ð0:5npÞ

Certainly, the result is identical to the one obtained directly from the formula. Note that c0 cannot be evaluated

directly by substituting n ¼ 0, since we have the indeterminate term
0

0
. Using L’Hospital’s rule, described in

Appendix G, leads to

c0 ¼ lim
n/0

5
sin ð0:5npÞ
ð0:5npÞ ¼ lim

n/0
5

dðsin ð0:5npÞÞ
dn

dð0:5npÞ
dn

¼ lim
n/0

5
0:5p cos ð0:5npÞ

0:5p
¼ 5

Finally, the Fourier expansion in terms of the complex exponential form is shown as follows:

x
�
t
� ¼ /þ 10

p
e�j2pt þ 5þ 10

p
ej2pt � 10

3p
ej6pt þ 2

p
ej10pt � 10

7p
ej14pt þ/

B.1.4 Spectral Plots

As previously discussed, the magnitude-phase form can provide information to create a one-sided
spectral plot. The amplitude spectrum is obtained by plotting An versus the harmonic frequency nu0,
and the phase spectrum is obtained by plotting fn versus nu0, both for n� 0. Similarly, if the complex
exponential form is used, the two-sided amplitude and phase spectral plots of jcnj and fn versus nu0

for �N < n < N can be achieved, respectively. We illustrate this by the following example.

EXAMPLE B.2
Based on the solution to Example B.1, plot the one-sided amplitude spectrum and two-sided amplitude spectrum,
respectively.

Solution:
Based on the solution for An, the one-sided amplitude spectrum is shown in Figure B.2.

FIGURE B.2

One-sided spectrum of the square waveform in Example B.2.
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According to the solution of the complex exponential form, the two-sided amplitude spectrum is demonstrated
in Figure B.3.

A general pulse train xðtÞ with a period T0 seconds and a pulse width s seconds is shown in Figure B.4.
The Fourier series expansions for sine-cosine and complex exponential forms can be derived

similarly and are given as follows:
Sine-cosine form:

x
�
t
� ¼ sA

T0
þ 2sA

T0

�
sinðu0s=2Þ
ðu0s=2Þ cos

�
u0t

�þ sinð2u0s=2Þ
ð2u0s=2Þ cos

�
2u0t

�

þ sinð3u0s=2Þ
ð3u0s=2Þ cos

�
3u0t

�þ/

� (B.15)

Complex exponential form:

x
�
t
� ¼ /þ sA

T0

sinðu0s=2Þ
ðu0s=2Þ e�ju0t þ sA

T0
þ sA

T0

sinðu0s=2Þ
ðu0s=2Þ eju0t þ sA

T0

sinð2u0s=2Þ
ð2u0s=2Þ ej2u0t þ/

(B.16)

where u0 ¼ 2pf0 ¼ 2p=T0 is the fundamental angle frequency of the periodic waveform. The reader
can derive the one-sided amplitude spectrum An and the two-sided amplitude spectrum jcnj. The
expressions for the one-sided amplitude and two-sided amplitude spectra are given by the following:

A0 ¼ s
T0
A (B.17)

FIGURE B.3

Two-sided spectrum of the square waveform in Example B.2.

FIGURE B.4

Rectangular waveform (pulse train).
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An ¼ 2s
T0

A

����sinðnu0s=2Þ
ðnu0s=2Þ

����; for n ¼ 1; 2; 3. (B.18)

jcnj ¼ s
T0

A

����sinðnu0s=2Þ
ðnu0s=2Þ

����; �N < n < N (B.19)

EXAMPLE B.3
In Figure B.4, if T0 ¼ 1 ms, s ¼ 0:2 ms, and A ¼ 10, use Equations (B.17) to (B.19) to derive the amplitude
one-sided spectrum and two-sided spectrum for each of the first four harmonic frequency components.

Solution:
The fundamental frequency is

u0 ¼ 2pf0 ¼ 2p� ð1=0:001Þ ¼ 2;000p rad=sec

Using Equations (B.17) and (B.18) yields the one-sided spectrum as

A0 ¼ s
T0

A ¼ 0:0002

0:001
� 10 ¼ 2; for n ¼ 0; nu0 ¼ 0

For n ¼ 1, nu0 ¼ 2;000p rad/sec:

A1 ¼ 2� 0:0002

0:001
� 10�

����sin ð1� 2;000p� 0:0002=2Þ
ð1� 2;000p� 0:0002=2Þ

���� ¼ 4
sin ð0:2pÞ
ð0:2pÞ ¼ 3:7420

For n ¼ 2, nu0 ¼ 4;000p rad/sec:

A2 ¼ 2� 0:0002

0:001
� 10�

����sin ð2� 2;000p� 0:0002=2Þ
ð2� 2;000p� 0:0002=2Þ

���� ¼ 4
sin ð0:4pÞ
ð0:4pÞ ¼ 3:0273

For n ¼ 3, nu0 ¼ 6;000p rad/sec:

A3 ¼ 2� 0:0002

0:001
� 10�

����sin ð3� 2;000p� 0:0002=2Þ
ð3� 2;000p� 0:0002=2Þ

���� ¼ 4
sin ð0:6pÞ
ð0:6pÞ ¼ 2:0182

For n ¼ 4, nu0 ¼ 8;000p rad/sec:

A4 ¼ 2� 0:0002

0:001
� 10�

����sin ð4� 2;000p� 0:0002=2Þ
ð4� 2;000p� 0:0002=2Þ

���� ¼ 4
sin ð0:8pÞ
ð0:8pÞ ¼ 0:9355

The one-sided amplitude spectrum is plotted in Figure B.5.

FIGURE B.5

One-sided spectrum in Example B.3.
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Similarly, applying Equation (B.19) leads to

jc0j ¼
0:0002

0:001
� 10�

���� limn/0

sin ðn � 2;000p� 0:0002=2Þ
ðn � 2;000p� 0:0002=2Þ

���� ¼ 2� j1j ¼ 2

Note: We use the fact that lim
x/0

sinðxÞ
x

¼ 1:0 (see L’Hospital’s rule in Appendix G).

jc1j ¼ jc�1j ¼
0:0002

0:001
� 10�

����sin ð1� 2;000p� 0:0002=2Þ
ð1� 2;000p� 0:0002=2Þ

���� ¼ 2�
����sin ð0:2pÞ

0:2p

���� ¼ 1:8710

jc2j ¼ jc�2j ¼
0:0002

0:001
� 10�

����sin ð2� 2;000p� 0:0002=2Þ
ð2� 2;000p� 0:0002=2Þ

���� ¼ 2�
����sin ð0:4pÞ

0:4p

���� ¼ 1:5137

jc3j ¼ jc�3j ¼
0:0002

0:001
� 10�

����sin ð3� 2;000p� 0:0002=2Þ
ð3� 2;000p� 0:0002=2Þ

���� ¼ 2�
����sin ð0:6pÞ

0:6p

���� ¼ 1:0091

jc4j ¼ jc�4j ¼
0:0002

0:001
� 10�

����sin ð4� 2;000p� 0:0002=2Þ
ð4� 2;000p� 0:0002=2Þ

���� ¼ 2�
����sin ð0:8pÞ

0:8p

���� ¼ 0:4677

Figure B.6 shows the two-sided amplitude spectral plot.

The following example illustrates the use of table information to determine the Fourier series
expansion of the periodic waveform. Table B.1 consists of the Fourier series expansions for common
periodic signals in the sine-cosine form while Table B.2 shows the expansions in the complex
exponential form.

FIGURE B.6

Two-sided spectrum in Example B.3.
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Table B.1 Fourier Series Expansions for Some Common Waveform Signals in the
Sine-Cosine Form

Time Domain Signal xðtÞ Fourier Series Expansion

x
�
t
� ¼ A

2
þ 2A

p

�
sin u0t þ 1

3
sin 3u0t þ 1

5
sin 5u0t þ 1

7
sin 7u0t þ/

�

x
�
t
� ¼ 4A

p

�
cos u0t � 1

3
cos 3u0t þ 1

5
cos 5u0t � 1

7
cos 7u0t þ/

�

x
�
t
� ¼ 8A

p2

�
cos u0t þ 1

9
cos 3u0t þ 1

25
cos 5u0t þ 1

49
cos 7u0t þ/

�

x
�
t
� ¼ 2A

p

�
sin u0t � 1

2
sin 2u0t þ 1

3
sin 3u0t � 1

4
sin 4u0t þ/

�

x
�
t
� ¼ Ad þ 2 Ad

�
sin pd

pd

�
cos u0t

þ2Ad

�
sin 2pd

2pd

�
cos 2u0t þ 2Ad

�
sin 3pd

3pd

�
cos 3u0t þ/

x
�
t
� ¼ 1

T0
þ 2

T0
ðcos u0t þ cos 2u0t þ cos 3u0t þ cos 4u0t þ/Þ
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TABLE B.2 Fourier Series Expansions for Some Common Waveform Signals in the Complex
Exponential Form

Time Domain Signal xðtÞ Fourier Series Expansion

x
�
t
� ¼

�
/� A

j3p
e�j3u0t � A

jp
e�ju0t þ A

2
þ A

jp
e ju0t þ A

j3p
e j3u0t

þ A

j5p
e j5u0t þ/

�

x
�
t
� ¼ 2A

p

�
/þ 1

5
e�j5u0t � 1

3
e�j3u0t þ e�ju0t þ e ju0t � 1

3
e j3u0t

þ1

5
e j5u0t �/

�

x
�
t
� ¼ 4A

p2

�
/þ 1

25
e�j5u0t þ 1

9
e�j3u0 t þ e�ju0 t þ e ju0t

þ1

9
e j3u0t þ 1

3
e j5u0t þ/

�

x
�
t
� ¼ A

jp

�
/� 1

3
e�j3u0t þ 1

2
e�j2u0t � e�ju0t þ e ju0t � 1

2
e j2u0t

þ1

3
e j3u0t þ/

�

x
�
t
� ¼ /þ Ad

�
sin pd

pd

�
e�ju0t þ Ad

�
sin pd

pd

�
e ju0t

þAd

�
sin 2pd

2pd

�
e j2u0t þ Ad

�
sin 3pd

3pd

�
e j3u0t þ/

x
�
t
� ¼ 1

T0
ð/þ e�j3u0t þ e�j2u0t þ e�ju0t þ 1þ e ju0t þ e j2u0t

þe j3u0t þ/
�
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EXAMPLE B.4
In the sawtooth waveform shown in Table B.1 and reprinted in Figure B.7, if T0 ¼ 1 ms and A ¼ 10, use the
formula in the table to determine the Fourier series expansion in a magnitude-phase form, and determine the
frequency f3 and amplitude value of A3 for the third harmonic. Write the Fourier series expansion in a complex
exponential form also, and determine jc3j and jc�3j for the third harmonic.

Solution:

a. Based on the information in Table B.1, we have

x
�
t
� ¼ 2A

p

�
sin u0t �

1

2
sin 2u0t þ

1

3
sin 3u0t �

1

4
sin 4u0t þ/

�

Since T0 ¼ 1 ms, the fundamental frequency is

f0 ¼ 1=T0 ¼ 1;000 Hz; and u0 ¼ 2pf0 ¼ 2;000p rad=sec

Then, the expansion is determined as

x
�
t
� ¼ 2� 10

p

�
sin 2;000pt � 1

2
sin 4;000pt þ 1

3
sin 6;000pt � 1

4
sin 8;000pt þ/

�

Using the trigonometric identities

sin x ¼ cos
�
x � 90

��
and � sin x ¼ cos

�
x þ 90

��
and simple algebra, we finally obtain

x
�
t
� ¼ 20

p
cos

�
2;000pt � 90

��þ 10

p
cos

�
4;000pt þ 90

��

þ20

3p
cos

�
6;000pt � 90

��þ 5

p
cos

�
8;000pt þ 90

��þ/

From the magnitude-phase form, we then determine f3 and A3 as follows:

f3 ¼ 3� f0 ¼ 3;000 Hz; and A3 ¼ 20

3p
¼ 2:1221

b. From Table B.2, the complex exponential form is

x
�
t
� ¼ 10

jp

�
/� 1

3
e�j6;000pt þ 1

2
e�j4;000pt � e�j2;000pt þ ej2;000pt � 1

2
ej4;000pt þ 1

3
ej6;000pt þ/

�

From the expression, we have

FIGURE B.7

Sawtooth waveform for Example B.4.
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jc3j ¼
����10jp � 1

3

���� ¼
����1:061j

���� ¼ 1:061 and

jc�3j ¼
����� 10

jp
� 1

3

���� ¼
�����1:061

j

���� ¼ 1:061

B.1.5 FOURIER TRANSFORM
The Fourier transform is a mathematical function that provides frequency spectral analysis for
a nonperiodic signal. The Fourier transform pair is defined as

Fourier transform:

XðuÞ ¼
ZN

�N

x
�
t
�
e�jutdt (B.20)

Inverse Fourier transform:

xðtÞ ¼ 1

2p

ZN
�N

XðuÞejutdu (B.21)

where xðtÞ is a nonperiodic signal and XðuÞ is a two-sided continuous spectrum versus the continuous
frequency variable u, where �N < u < N. Again, the spectrum is a complex function that can be
further written as

XðuÞ ¼ jXðuÞj:fðuÞ (B.22)

where jXðuÞj is the continuous amplitude spectrum, while :fðuÞ designates the continuous phase
spectrum.

EXAMPLE B.5
Let xðtÞ be a single rectangular pulse, shown in Figure B.8, where the pulse width is s ¼ 0:5 second. Find its
Fourier transform and sketch the amplitude spectrum.

FIGURE B.8

Rectangular pulse in Example B.5.
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Solution:
Applying Equation (B.21) and using Euler’s formula, we have

X
�
u
� ¼

ZN
�N

x
�
t
	
e�jut dt ¼

Z0:25
�0:25

10e�judt

¼ 10
e�jut

�ju

����
0:25

�0:25

¼ 10�
�
e�j0:25u � ej0:25u

�
�ju

¼ 10� cos ð0:25uÞ � j sin ð0:25uÞ � ½cos ð0:25uÞ þ j sin ð0:25uÞ�
�ju

¼ 5
sin ð0:25uÞ

0:25u

where the amplitude spectrum is expressed as

jX ðuÞj ¼ 5�
����sin ð0:25uÞ

0:25u

����
Using u ¼ 2pf , we can express the spectrum in terms of Hz as

jX ðf Þj ¼ 5�
����sin ð0:5pf Þ

0:5pf

����
The amplitude spectrum is shown in Figure B.9. Note that the first null point is at u ¼ 2p=0:5 ¼ 4p rad/sec, and
the spectrum is symmetric.

EXAMPLE B.6
Let xðtÞ be an exponential function given by

x
�
t
� ¼ 10e�2t u

�
t
� ¼

(
10e�2t t � 0

0 t < 0

Find its Fourier transform.

FIGURE B.9

Amplitude spectrum for Example B.5.
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Solution:
According to the definition of the Fourier transform,

X
�
u
� ¼

ZN
0

10e�2t u
�
t
�
e�jutdt ¼

ZN
0

10e�ð2þjuÞt dt

¼ 10e�ð2þjuÞt

�ð2þ juÞ
����
N

0

¼ 10

2þ ju

X
�
u
� ¼ 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 þ u2
p :� tan�1

�u
2

	

Using u ¼ 2pf , we get

X
�
f
� ¼ 10

2þ j2pf
¼ 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 þ ð2pf Þ2
q :� tan�1ðpf Þ

The Fourier transforms for some common signals are listed in Table B.3. Some useful properties of
the Fourier transform are summarized in Table B.4.

EXAMPLE B.7
Find the Fourier transforms of the following functions:

a. xðtÞ ¼ dðtÞ, where dðtÞ is an impulse function defined by

d
�
t
� ¼

(
s0 t ¼ 0

0 elsewhere

with a property given as

ZN
�N

f ðtÞdðt � sÞdt ¼ f ðsÞ

b. xðtÞ ¼ dðt � sÞ
Solution:

a. We first use the Fourier transform definition and then apply the delta function property,

X
�
u
� ¼

ZN
�N

d
�
t
�
e�jut dt ¼ e�jut

���
t¼0

¼ 1

b. Similar to (a), we obtain
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X
�
u
� ¼

ZN
�N

d
�
t � s

�
e�jutdt ¼ e�jut

���
t¼s

¼ e�jus

Example B.8 shows how to use the table information to determine the Fourier transform of a nonperiodic signal.

Table B.3 Fourier Transforms for Some Common Signals

Time Domain Signal xðtÞ Fourier Spectrum XðfÞ

X
�
f
� ¼ As

sin pfs
pfs

X
�
f
� ¼ As

�
sin pfs
pfs

�2

X
�
f
� ¼ 2As

p

�
cos pfs
1� 4f2s2

�

X
�
f
� ¼ jA

2pf

�
sin pfs
pfs

e�jpfs � 1

�

X
�
f
� ¼ A

aþ j2pf

XðfÞ ¼ A

APPENDIX B Review of Analog Signal Processing Basics 789



EXAMPLE B.8

Table B.4 Properties of the Fourier Transform

Line Time Function Fourier Transform

1 ax1ðtÞ þ bx2ðtÞ aX1ðfÞ þ bX2ðfÞ
2 dxðtÞ

dt
j2pfXðfÞ

3
Z t

�N

xðtÞdt XðfÞ
j2pf

4 xðt � sÞ e�j2pfsXðfÞ
5 ej2pf0txðtÞ Xðf � f0Þ
6 xðatÞ 1

a
X

�
f

a

�

FIGURE B.10

Cosine pulse in Example B.8.

Use Table B.3 to determine the Fourier transform for the cosine pulse in Figure B.10.

Solution:
According to the graph, we can identify

s
2

¼ 1ms; and A ¼ 1

s is given by

s ¼ 2� 1 ms ¼ 0:002 second

Applying the formula from Table B.3 gives

X
�
f
� ¼ 2� 10� 0:002

p

�
cos pf0:002

1� 4f20:0022

�
¼ 0:04

p

�
cos 0:002pf

1� 4� 0:0022f2

�
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TABLE B.5 Laplace Transform Table

Line Time Function xðtÞ
Laplace Transform
XðsÞ[LðxðtÞÞ

1 dðtÞ 1

2 1 or uðtÞ 1

s

3 tuðtÞ 1

s2

4 e�atuðtÞ 1

sþ a

5 sin ðutÞuðtÞ u

s2 þ u2

6 cos ðutÞuðtÞ s

s2 þ u2

7 sin ðut þ qÞuðtÞ s sin ðqÞ þ u cos ðqÞ
s2 þ u2

8 e�at sin ðutÞuðtÞ u

ðsþ aÞ2 þ u2

9 e�at cos ðutÞuðtÞ sþ a

ðsþ aÞ2 þ u2

(continued)

B.2 LAPLACE TRANSFORM
In this section, we will review Laplace transform and its applications.

B.2.1 Laplace Transform and Its Table

The Laplace transform plays an important role in the analysis of continuous signals and systems. We
define the Laplace transform pairs as

X
�
s
� ¼ LfxðtÞg ¼

ZN
0

x
�
t
�
e�stdt (B.23)

x
�
t
� ¼ L�1fXðsÞg ¼ 1

2pj

ZgþjN

g�jN

XðsÞestds (B.24)

Notice that the symbol Lfg denotes the forward Laplace operation, while the symbol L�1fg indicates
the inverse Laplace operation. Some common Laplace transform pairs are listed in Table B.5.
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In Example B.9, we examine the Laplace transform in light of its definition.

EXAMPLE B.9
Derive the Laplace transform of the unit step function.

Solution:
By the definition in Equation (B.23),

X
�
s
� ¼

ZN
0

u
�
t
	
e�stdt

¼
ZN
0

e�stdt ¼ e�st

�s

����
N

0

¼ e�N

�s
� e0

�s
¼ 1

s

The answer is consistent with the result listed in Table B.5. Now we use the results in Table B.5 to find the Laplace
transform of a function.

TABLE B.5 Laplace Transform Table (continued)

Line Time Function xðtÞ
Laplace Transform
XðsÞ[ LðxðtÞÞ

10

�
A cos

�
ut
�þ B� aA

u
sin

�
ut
��

e�atu
�
t
� Asþ B

ðsþ aÞ2 þ u2

11a tnuðtÞ n!

snþ1

11b 1

ðn� 1Þ!t
n�1u

�
t
� 1

sn

12a e�attnuðtÞ n!

ðsþ aÞnþ1

12b 1

ðn� 1Þ!e
�attn�1u

�
t
� 1

ðsþ aÞn

13 ð2RealðAÞ cos ðutÞ � 2ImagðAÞ sin ðutÞÞe�atuðtÞ A

sþ a� ju
þ A�

sþ aþ ju

14 dxðtÞ
dt

sXðsÞ � xð0�Þ

15
Z t

0

xðtÞdt XðsÞ
s

16 xðt � aÞuðt � aÞ e�asXðsÞ
17 e�atxðtÞuðtÞ Xðsþ aÞ
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EXAMPLE B.10
Perform the Laplace transform for each of the following functions.

a. xðtÞ ¼ 5 sin ð2tÞuðtÞ
b. xðtÞ ¼ 5e�3t cos ð2tÞuðtÞ
Solution:

a. Using line 5 in Table B.5 and noting that u ¼ 2, the Laplace transform immediately follows:

X ðsÞ ¼ 5Lf2 sin ð2tÞuðtÞg
¼ 5� 2

s2 þ 22
¼ 10

s2 þ 4

b. Applying line 9 in Table B.5 with u ¼ 2 and a ¼ 3 yields

X
�
s
� ¼ 5L



e�3t cos

�
2t

�
u
�
t
��

¼ 5ðs þ 3Þ
ðs þ 3Þ2þ22

¼ 5ðs þ 3Þ
ðs þ 3Þ2þ4

B.2.2 Solving Differential Equations Using the Laplace Transform

One of the important applications of the Laplace transform is to solve differential equations. Using the
differential property in Table B.5, we can transform a differential equation from the time domain to the
Laplace domain. This will change the differential equation into an algebraic equation, and we then
solve the algebraic equation. Finally, the inverse Laplace operation is processed to yield the time
domain solution.

EXAMPLE B.11
Solve the following differential equation using the Laplace transform:

dyðtÞ
dt

þ 10y
�
t
� ¼ x

�
t
�
with an initial condition y

�
0
� ¼ 0;

where the input xðtÞ ¼ 5uðtÞ.
Solution:
Applying the Laplace transform on both sides of the differential equation and using the differential property (line
14 in Table B.5), we get

sY ðsÞ � yð0Þ þ 10Y ðsÞ ¼ X ðsÞ

Note that

X
�
s
� ¼ Lf5uðtÞg ¼ 5

s

Substituting the initial condition yields

Y
�
s
� ¼ 5

sðs þ 10Þ
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Then we use a partial fraction expansion by writing

Y
�
s
� ¼ A

s
þ B

s þ 10

where

A ¼ sY ðsÞjs¼0 ¼ 5

s þ 10

����
s¼0

¼ 0:5

and

B ¼ ðs þ 10ÞY ðsÞjs¼�10 ¼ 5

s

����
s¼�10

¼ �0:5

Hence,

Y
�
s
� ¼ 0:5

s
� 0:5

s þ 10

y
�
t
� ¼ L�1

�
0:5

s



� L�1

�
0:5

s þ 10




Finally, applying the inverse of the Laplace transform leads to using the results listed in Table B.5, and we obtain
the time domain solution as

y
�
t
� ¼ 0:5u

�
t
�� 0:5e�10t u

�
t
�

B.2.3 Transfer Function

A linear analog system can be described using the Laplace transfer function. The transfer function
relating the input and output of the linear system is depicted as

YðsÞ ¼ HðsÞXðsÞ (B.25)

where XðsÞ and YðsÞ are the system input and response (output), respectively, in the Laplace domain,
and the transfer function is defined as a ratio of the Laplace response of the system to the Laplace input
given by

H
�
s
� ¼ YðsÞ

XðsÞ (B.26)

The transfer function will allow us to study the system behavior. Considering an impulse function
as the input to a linear system, that is, xðtÞ ¼ dðtÞ, whose Laplace transform is XðsÞ ¼ 1, we then find
the system output due to the impulse function to be

YðsÞ ¼ HðsÞXðsÞ ¼ HðsÞ (B.27)
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Therefore, the response in the time domain yðtÞ is called the impulse response of the system and can be
expressed as

h
�
t
� ¼ L�1fHðsÞg (B.28)

The analog impulse response can be sampled and transformed to obtain a digital filter transfer
function. This topic is covered in Chapter 8.

EXAMPLE B.12
Consider a linear system described by the differential equation shown in Example B.11. xðtÞ and yðtÞ designate
the system input and system output, respectively. Derive the transfer function and the impulse response of the
system.

Solution:
Taking the Laplace transform on both sides of the differential equation yields

L

�
dyðtÞ
dt



þ Lf10yðtÞg ¼ LfxðtÞg

Applying the differential property and substituting the initial condition, we have

Y ðsÞðs þ 10Þ ¼ X ðsÞ

Thus, the transfer function is given by

H
�
s
� ¼ Y ðsÞ

X ðsÞ ¼ 1

s þ 10

The impulse response can be found by taking the inverse Laplace transform as

h
�
t
� ¼ L�1

�
1

s þ 10



¼ e�10t u

�
t
�

B.3 POLES, ZEROS, STABILITY, CONVOLUTION, AND SINUSOIDAL
STEADY-STATE RESPONSE
This section is a review of analog system analysis.

B.3.1 Poles, Zeros, and Stability

To study system behavior, the transfer function is written in a general form given by

H
�
s
� ¼ NðsÞ

DðsÞ ¼ bms
m þ bm�1s

m�1 þ/þ b0
ansn þ an�1sn�1 þ/þ a0

(B.29)
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It is a ratio of the numerator polynomial of degree m to the denominator polynomial of degree n. The
numerator polynomial is expressed as

N
�
s
� ¼ bms

m þ bm�1s
m�1 þ/þ b0 (B.30)

while the denominator polynomial is given by

D
�
s
� ¼ ans

n þ an�1s
n�1 þ/þ a0 (B.31)

Again, the roots of NðsÞ are called zeros, while the roots of DðsÞ are called poles of the transfer
function HðsÞ. Notice that zeros and poles could be real numbers or complex numbers.

Given a system transfer function, the poles and zeros can be found. Further, a pole-zero plot could
be created on the s-plane. With the pole-zero plot, the stability of the system is determined by the
following rules:

1. The linear system is stable if the rightmost pole(s) is/are on the left-hand half plane (LHHP) on the
s-plane.

2. The linear system is marginally stable if the rightmost pole(s) is/are simple-order (first-order) on
the ju axis, including the origin on the s-plane.

3. The linear system is unstable if the rightmost pole(s) is/are on the right-hand half plane (RHHP) of
the s-plane or if the rightmost pole(s) is/are multiple-order on the ju axis on the s-plane.

4. Zeros do not affect system stability.

EXAMPLE B.13
Determine whether each of the following transfer functions is stable, marginally stable, and unstable:

a. H
�
s
� ¼ s þ 1

ðs þ 1:5Þðs2 þ 2s þ 5Þ

b. H
�
s
� ¼ ðs þ 1Þ

ðs þ 2Þðs2 þ 4Þ

c. H
�
s
� ¼ s þ 1

ðs � 1Þðs2 þ 2s þ 5Þ

Solution:
a. A zero is found at s ¼ �1. The poles are calculated as s ¼ �1:5, s ¼ �1þ j2, s ¼ �1� j2. The pole-zero

plot is shown in Figure B.11A. Since all the poles are located on the LHHP, the system is stable.
b. A zero is found at s ¼ �1. The poles are calculated as s ¼ �2, s ¼ j2, s ¼ �j2. The pole-zero plot is

shown in Figure B.11B. Since the first-order poles s ¼ �j2 are located on the ju axis, the system is
marginally stable.

c. A zero is found at s ¼ �1. The poles are calculated as s ¼ 1, s ¼ �1þ j2, s ¼ �1� j2. The pole-zero plot
is shown in Figure B.11C. Since there is a pole s ¼ 1 located on the RHHP, the system is unstable.
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FIGURE B.11A

Pole-zero plot for (a).

FIGURE B.11B

Pole-zero plot for (b).

FIGURE B.11C

Pole-zero plot for (c).
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B.3.2 Convolution

As we discussed before, the input and output relationship of a linear system in the Laplace domain is

YðsÞ ¼ HðsÞXðsÞ (B.32)

It is apparent that in the Laplace domain, the system output is the product of the Laplace input and
transfer function. But in the time domain, the system output is given as

yðtÞ ¼ hðtÞ � xðtÞ (B.33)

where � denotes linear convolution of the system impulse response hðtÞ and the system input xðtÞ. The
linear convolution is further expressed as

y
�
t
� ¼

ZN
0

hðsÞx�t � s
�
ds (B.34)

EXAMPLE B.14
As you have seen in Examples B.11 and B.12, for a linear system, the impulse response and the input are given,
respectively, by

h
�
t
� ¼ e�10t u

�
t
�

and x
�
t
� ¼ 5u

�
t
�

Determine the system response yðtÞ using the convolution method.

FIGURE B.12

Convolution illustration for Example B.14.
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Solution:
Two signals hðsÞ and xðsÞ that are involved in the convolution integration are displayed in Figure B.12. To evaluate
the convolution, the time-reversed signal xð�sÞ and the shifted signal xðt � sÞ are also plotted for reference. Figure
B.12 shows an overlap of hðsÞ and xðt � sÞ. According to the overlapped (shaded) area, the lower limit and the
upper limit of the convolution integral are determined to be 0 and t, respectively. Hence,

y
�
t
� ¼

Zt

0

e�10s$5ds ¼ 5

�10
e�10s

����t
0

¼ �0:5e�10t � �� 0:5e�10�0
�

Finally, the system response is found to be

y
�
t
� ¼ 0:5u

�
t
�� 0:5e�10t u

�
t
�

The solution is the same as that obtained using the Laplace transform method described in Example B.11.

B.3.3 Sinusoidal Steady-State Response

For linear analog systems, if the input to a system is a sinusoid of radian frequency u, the steady-state
response of the system will also be a sinusoid of the same frequency. Therefore, the transfer function,
which provides the relationship between a sinusoidal input and a sinusoidal output, is called the
steady-state transfer function. The steady-state transfer function is obtained from the Laplace transfer
function by substituting s ¼ ju, as shown in the following:

H
�
ju
� ¼ HðsÞjs¼ju (B.35)

Thus we have a system relationship in a sinusoidal steady state as

YðjuÞ ¼ HðjuÞXðjuÞ (B.36)

Since HðjuÞ is a complex function, we may write it in the phasor form:

HðjuÞ ¼ AðuÞ:bðuÞ (B.37)

where the quantity AðuÞ is the amplitude response of the system defined as

AðuÞ ¼ jHðjuÞj (B.38)

and the phase angle bðuÞ is the phase response of the system. The following example is presented to
illustrate the application.

EXAMPLE B.15
Consider a linear system described by the differential equation shown in Example B.12, where xðtÞ and yðtÞ
designate the system input and system output, respectively. The transfer function has been derived as

H
�
s
� ¼ 10

s þ 10
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a. Derive the steady-state transfer function.
b. Derive the amplitude response and phase response.
c. If the input is given as a sinusoid, that is, xðtÞ ¼ 5 sin ð10t þ 30

� ÞuðtÞ, find the steady-state response yssðtÞ.
Solution:

a. By substituting s ¼ ju into the transfer function in terms of a suitable form, we get the steady-state transfer
function as

H
�
ju

� ¼ 1
s

10
þ 1

¼ 1

ju

10
þ 1

b. The amplitude response and phase response are found to be

A
�
u
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� u

10

	2þ1

r

b
�
u
� ¼ :� tan�1

� u

10

	

c. When u ¼ 10 rad/sec, the input sinusoid can be written in terms of the phasor form as

X
�
j10

� ¼ 5:30
�

For the amplitude and phase of the steady-state transfer function at u ¼ 10, we have

A
�
10

� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
10

10

�2

þ1

s ¼ 0:7071

b
�
10

� ¼ �tan�1

�
10

10

�
¼ �45

�

Hence, we yield

H
�
j10

� ¼ 0:7071:� 45
�

Using Equation (B.36), the system output in phasor form is obtained as

Y
�
j10

� ¼ H
�
j10

�
X
�
j10

� ¼ �
1:4141:� 45

���
5:30

��

Y
�
j10

� ¼ 3:5355:� 15
�

Converting the output in phasor form back to the time domain results in the steady-state system output:

yss
�
t
� ¼ 3:5355 sin

�
10t � 15

��
u
�
t
�
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B.4 PROBLEMS
B.1. Develop equations for the amplitude spectra, that is, An (one-sided) and jcnj (two-sided), of

the pulse train xðtÞ displayed in Figure B.13, where s ¼ 10 msec.

a. Plot and label the one-sided amplitude spectrum up to 4 harmonic frequencies including
DC.

b. Plot and label the two-sided amplitude spectrum up to 4 harmonic frequencies including
DC.

B.2. In the waveform shown in Figure B.14, T0 ¼ 1 ms and A ¼ 10. Use the formula in Table
B.1 to write a Fourier series expansion in magnitude-phase form. Determine the frequency f3
and amplitude value of A3 for the third harmonic.

B.3. In the waveform shown in Figure B.15, T0 ¼ 1 ms, s ¼ 0:2 ms, and A ¼ 10.

a. Use the formula in Table B.1 to write a Fourier series expansion in magnitude-phase form.

b. Determine the frequency f2 and amplitude value of A2 for the second harmonic.

B.4. Find the Fourier transform XðuÞ and sketch the amplitude spectrum for the rectangular pulse
xðtÞ displayed in Figure B.16.

B.5. Use Table B.3 to determine the Fourier transform for the pulse in Figure B.17.

B.6. Use Table B.3 to determine the Fourier transform for the pulse in Figure B.18.

B.7. Determine the Laplace transform XðsÞ for each of the following time domain functions using
the Laplace transform in Table B.5.

FIGURE B.13

Pulse train in Problem B.1.

FIGURE B.14

Square wave in Problem B.2.
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a. xðtÞ ¼ 10dðtÞ
b. xðtÞ ¼ �100tuðtÞ
c. xðtÞ ¼ 10e�2tuðtÞ
d. xðtÞ ¼ 2uðt � 5Þ
e. xðtÞ ¼ 10 cos ð3tÞuðtÞ
f. xðtÞ ¼ 10 sin ð2t þ 45

� ÞuðtÞ

FIGURE B.15

Rectangular wave in Problem B.3.

FIGURE B.16

Rectangular pulse in Problem B.4.

FIGURE B.17

Triangular pulse in Problem B.5.

FIGURE B.18

Rectangular pulse in Problem B.6.
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g. xðtÞ ¼ 3e�2tcos ð3tÞuðtÞ
h. xðtÞ ¼ 10t5uðtÞ

B.8. Determine the inverse transform of the analog signal xðtÞ for each of the following functions
using Table B.5 and partial fraction expansion.

a. XðsÞ ¼ 10

sþ 2

b. XðsÞ ¼ 100

ðsþ 2Þðsþ 3Þ

c. XðsÞ ¼ 100s

s2 þ 7sþ 10

d. XðsÞ ¼ 25

s2 þ 4sþ 29

B.9. Solve the following differential equation using the Laplace transform method:

2
dxðtÞ
dt

þ 3xðtÞ ¼ 15uðtÞ with xð0Þ ¼ 0

a. Determine XðsÞ.
b. Determine the continuous signal xðtÞ by taking the inverse Laplace transform of XðsÞ.

B.10. Solve the following differential equation using the Laplace transform method:

d2xðtÞ
dt2

þ 3
dxðtÞ
dt

þ 2xðtÞ ¼ 10u
�
t
�
with x0ð0Þ ¼ 0 and xð0Þ ¼ 0

a. Determine XðsÞ.
b. Determine xðtÞ by taking the inverse Laplace transform of XðsÞ.

B.11. Determine the locations of all finite zeros and poles in the following functions. In each case,
make an s-plane plot of the poles and zeros, and determine whether the given transfer
function is stable, unstable, or marginally stable.

a. HðsÞ ¼ ðs� 3Þ
ðs2 þ 4sþ 4Þ

b. HðsÞ ¼ sðs2 þ 5Þ
ðs2 þ 9Þðs2 þ 2sþ 4Þ

c. HðsÞ ¼ ðs2 þ 1Þðsþ 1Þ
sðs2 þ 7s� 8Þðsþ 3Þðsþ 4Þ
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B.12. Given the transfer function of a system

HðsÞ ¼ 5

sþ 5

and the input xðtÞ ¼ uðtÞ,
a. determine the system impulse response hðtÞ;
b. determine the system Laplace output based on YðsÞ ¼ HðsÞXðsÞ;
c. determine the system response yðtÞ in the time domain by taking the inverse Laplace

transform of YðsÞ.
B.13. Given the transfer function of a system

HðsÞ ¼ 5

sþ 5

a. determine the steady-state transfer function;

b. determine the amplitude response and phase response in terms of the frequency u;

c. determine the steady-state response of the system output yssðtÞ in time domain using the
results that you obtained in (b), given an input to the system of xðtÞ ¼ 5 sin ð2tÞuðtÞ.

B.14. Given the transfer function of a system

HðsÞ ¼ 5

sþ 5

and the input xðtÞ ¼ uðtÞ, determine the system output yðtÞ using the convolution method; that
is, yðtÞ ¼ hðtÞ � xðtÞ.
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Appendix C: Normalized Butterworth
and Chebyshev Functions

C.1 NORMALIZED BUTTERWORTH FUNCTION
The normalized Butterworth squared magnitude function is given by

jPnðuÞj2¼ 1

1þ ε
2ðuÞ2n (C.1)

where n is the order and ε is the specified ripple on the filter passband. The specified ripple in dB is
expressed as εdB ¼ 10$log10ð1þ ε

2Þ dB.
To develop the transfer function PnðsÞ, we first let s ¼ ju and then substitute u2 ¼ �s2 into

Equation (C.1) to obtain

PnðsÞPnð�sÞ ¼ 1

1þ ε
2ð�s2Þn (C.2)

Equation (C.2) has 2n poles, and PnðsÞ has n poles on the left-hand half plane (LHHP) on the s-plane,
while Pnð�sÞ has n poles on the right-hand half plane (RHHP) on the s-plane. Solving for poles
leads to

ð�1Þns2n ¼ �1=ε2 (C.3)

If n is an odd number, Equation (C.3) becomes

s2n ¼ 1=ε2

and the corresponding poles are solved as

pk ¼ ε
�1=nej

2pk
2n ¼ ε

�1=n½cos ð2pk=2nÞ þ j sin ð2pk=2nÞ� (C.4)

where k ¼ 0; 1;/; 2n� 1. Thus in phasor form, we have

r ¼ ε
�1=n; and qk ¼ 2pk=ð2nÞ for k ¼ 0; 1;/; 2n� 1 (C.5)

When n is an even number, it follows that

s2n ¼ �1=ε2

pk ¼ ε
�1=nej

2pkþp
2n ¼ ε

�1=n½cos ðð2pk þ pÞ=2nÞ þ j sin ðð2pk þ pÞ=2nÞ� (C.6)
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where k ¼ 0; 1;/; 2n� 1. Similarly, the phasor form is given by

r ¼ ε
�1=n; and qk ¼ ð2pk þ pÞ=ð2nÞ for k ¼ 0; 1;/; 2n� 1 (C.7)

When n is an odd number, we can identify the poles on the LHHP as

pk ¼ �r; k ¼ 0 and

pk ¼ �r cos ðqkÞ þ jr sin ðqkÞ; k ¼ 1;/; ðn� 1Þ=2 (C.8)

Using complex conjugate pairs, we have

p�k ¼ �r cos ðqkÞ � jr sin ðqkÞ
Notice that

ðs� pkÞðs� p�kÞ ¼ s2 þ ð2r cos ðqkÞÞsþ r2

and from a factor from the real pole ðsþ rÞ, it follows that

PnðsÞ ¼ K

ðsþ rÞQðn�1Þ=2
k¼1 ðs2 þ ð2r cos ðqkÞÞsþ r2Þ

(C.9)

and

qk ¼ 2pk=ð2nÞ for k ¼ 1;/; ðn� 1Þ=2
Setting Pnð0Þ ¼ 1 for the unit passband gain leads to

K ¼ rn ¼ 1=ε

When n is an even number, we can identify the poles on the LHHP as

pk ¼ �r cos ðqkÞ þ jr sin ðqkÞ; k ¼ 0; 1;/; n=2� 1 (C.10)

Using complex conjugate pairs, we have

p�k ¼ �r cos ðqkÞ � jr sin ðqkÞ
The transfer function is given by

PnðsÞ ¼ KQn=2
k¼1ðs2 þ ð2r cos ðqkÞÞsþ r2Þ

(C.11)

qk ¼ ð2pk þ pÞ=ð2nÞ for k ¼ 0; 1;/; n=2� 1
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Setting Pnð0Þ ¼ 1 for the unit passband gain, we have

K ¼ rn ¼ 1=ε

Let us examine the following examples.

EXAMPLE C.1
Compute the normalized Butterworth transfer function for the following specifications:

Ripple ¼ 3 dB
n ¼ 2

Solution:

n=2 ¼ 1
qk ¼ ð2p� 0þ pÞ=ð2� 2Þ ¼ 0:25p
ε
2 ¼ 100:1�3 � 1
r ¼ 1 and K ¼ 1

Applying Equation (C.11) leads to

P2ðsÞ ¼ 1

s2 þ 2� 1� cos ð0:25pÞs þ 12
¼ 1

s2 þ 1:4141s þ 1

EXAMPLE C.2
Compute the normalized Butterworth transfer function for the following specifications:

Ripple ¼ 3 dB
n ¼ 3

Solution:

ðn � 1Þ=2 ¼ 1
ε
2 ¼ 100:1�3 � 1
r ¼ 1 and K ¼ 1
qk ¼ ð2p� 1Þ=ð2� 3Þ ¼ p=3

From Equation (C.9), we have

P3ðsÞ ¼ 1

ðs þ 1Þðs2 þ 2� 1� cos ðp=3Þs þ 12Þ

¼ 1

ðs þ 1Þðs2 þ s þ 1Þ

For the unfactored form, we get

P3ðsÞ ¼ 1

s3 þ 2s2 þ 2s þ 1

APPENDIX C: Normalized Butterworth and Chebyshev Functions 807



EXAMPLE C.3
Compute the normalized Butterworth transfer function for the following specifications:

Ripple ¼ 1.5 dB
n ¼ 3

Solution:

ðn � 1Þ=2 ¼ 1
ε
2 ¼ 100:1�1:5 � 1,
r ¼ 1:1590 and K ¼ 1:5569
qk ¼ ð2p� 1Þ=ð2� 3Þ ¼ p=3

Applying Equation (C.9), we achieve the normalized Butterworth transfer function:

P3ðsÞ ¼ 1

ðs þ 1:1590Þðs2 þ 2� 1:1590� cos ðp=3Þs þ 1:15902Þ

¼ 1

ðs þ 1Þðs2 þ 1:1590s þ 1:3433Þ

For the unfactored form, we obtain

P3ðsÞ ¼ 1:5569

s3 þ 2:3180s2 þ 2:6866s þ 1:5569

C.2 NORMALIZED CHEBYSHEV FUNCTION
Similar to analog Butterworth filter design, the transfer function is derived from the normalized
Chebyshev function, and the result is usually listed in a table for design reference. The Chebyshev
magnitude response function with an order of n and the normalized cutoff frequency u ¼ 1 radian per
second is given by

jBnðuÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2C2
nðuÞ

p ; n � 1 (C.12)

where the function CnðuÞ is defined as

CnðuÞ ¼
(

cos ðn cos�1ðuÞÞ u � 1

cos hðn cos h�1ðuÞÞ u > 1
(C.13)

where ε is the ripple specification on the filter passband. Notice that

cos h�1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p
Þ (C.14)
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To develop the transfer function BnðsÞ, we let s ¼ ju and substitute u2 ¼ �s2 into Equation (C.12)
to obtain

BnðsÞBnð�sÞ ¼ 1

1þ ε
2C2

nðs=jÞ
(C.15)

The poles can be found from

1þ ε
2C2

nðs=jÞ ¼ 0

or

Cnðs=jÞ ¼ cos ðn cos�1ðs=jÞÞ ¼ � j1=ε (C.16)

If we introduce a complex variable v ¼ aþ jb such that

v ¼ aþ jb ¼ cos�1ðs=jÞ (C.17)

we can then write

s ¼ j cosðvÞ (C.18)

Substituting Equation (C.17) into Equation (C.16) and using trigonometric identities, it follows that

Cnðs=jÞ ¼ cos ðn cos�1ðs=jÞÞ
¼ cos ðnvÞ ¼ cos ðnaþ jnbÞ
¼ cos ðnaÞcos hðnbÞ � j sin ðnaÞsin hðnbÞ ¼ �j1=ε

(C.19)

To solve Equation (C.19), the following conditions must be satisfied:

cos ðnaÞcos hðnbÞ ¼ 0 (C.20)

� sin ðnaÞsin hðnbÞ ¼ � 1=ε (C.21)

Since cos hðnbÞ � 1 in Equation (C.20), we must let

cos ðnaÞ ¼ 0 (C.22)

which therefore leads to

ak ¼ ð2k þ 1Þp=ð2nÞ; k ¼ 0; 1; 2;/; 2n� 1 (C.23)

With Equation (C.23), we have sin ðnakÞ ¼ � 1. Then Equation (C.21) becomes

sin hðnbÞ ¼ 1=ε (C.24)

Solving Equation (C.24) gives

b ¼ sin h�1ð1=εÞ=n (C.25)

Again from Equation (C.18),

s ¼ j cos ðvÞ ¼ j½cosðakÞ cos hðbÞ � j sinðakÞsin hðbÞ� for k ¼ 0; 1;/; 2n� 1 (C.26)
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The poles can be found from Equation (C.26):

pk ¼ sin ðakÞ sin hðbÞ þ j cos ðakÞ cos hðbÞ for k ¼ 0; 1;/; 2n� 1 (C.27)

Using Equation (C.27), if n is an odd number, the poles on the left side are

pk ¼ �sin ðakÞ sin hðbÞ þ j cos ðakÞ cos hðbÞ; k ¼ 0; 1;/; ðn� 1Þ=2� 1 (C.28)

Using complex conjugate pairs, we have

p�k ¼ �sin ðakÞ sin hðbÞ � j cos ðakÞ cos hðbÞ (C.29)

and a real pole

pk ¼ �sin hðbÞ; k ¼ ðn� 1Þ=2 (C.30)

Notice that

ðs� pkÞðs� p�kÞ ¼ s2 þ bksþ ck (C.31)

and from a factor from the real pole ½sþ sin hðbÞ�, it follows that

BnðsÞ ¼ K

½sþ sin hðbÞ�Qðn�1Þ=2�1
k¼0 ðs2 þ bksþ ckÞ

(C.32)

bk ¼ 2 sin ðakÞsin hðbÞ (C.33)

ck ¼ ½sin ðakÞsin hðbÞ�2 þ ½cos ðakÞcos h ðbÞ�2 (C.34)

where

ak ¼ ð2k þ 1Þp=ð2nÞ for k ¼ 0; 1;/; ðn� 1Þ=2� 1 (C.35)

For the unit passband gain and the filter order as an odd number, we set Bnð0Þ ¼ 1. Then

K ¼ sin hðbÞ
Yðn�1Þ=2�1

k¼ 0

ck (C.36)

b ¼ sin h�1ð1=εÞ=n (C.37)

sin h�1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ (C.38)

Following a similar procedure for when n is even, we have

BnðsÞ ¼ KQn=2�1
k¼0 ðs2 þ bksþ ckÞ

(C.39)

bk ¼ 2 sin ðakÞ sin hðbÞ (C.40)
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ck ¼ ½sin ðakÞ sin hðbÞ�2 þ ½cos ðakÞ cos hðbÞ�2 (C.41)

where

ak ¼ ð2k þ 1Þp=ð2nÞ for k ¼ 0; 1;/; n=2� 1 (C.42)

For the unit passband gain and the filter order as an even number, we require that Bnð0Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2
p

,
so that the maximum magnitude of the ripple on the passband equals 1. Then we have

K ¼
Yn=2�1

k¼ 0

ck=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε

2
p

(C.43)

b ¼ sin h�1ð1=εÞ=n (C.44)

sin h�1ðxÞ ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ (C.45)

Equations (C.32) to (C.45) are applied to compute the normalized Chebyshev transfer function. Now
let us look at the following illustrative examples.

EXAMPLE C.4
Compute the normalized Chebyshev transfer function for the following specifications:

Ripple ¼ 0.5 dB
n ¼ 2

Solution:

n=2 ¼ 1

Applying Equations (C.39) to (C.45), we obtain

a0 ¼ ð2� 0þ 1Þp=ð2� 2Þ ¼ 0:25p

ε
2 ¼ 100:1�0:5 � 1 ¼ 0:1220, 1=ε ¼ 2:8630

b ¼ sin h�1ð2:8630Þ=n ¼ lnð2:8630þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:86302 þ 1

p
Þ=2 ¼ 0:8871

b0 ¼ 2 sin ð0:25pÞ sin hð0:8871Þ ¼ 1:4256

c0 ¼ ½sin ð0:25pÞ sin hð0:8871Þ�2 þ ½cos ð0:25pÞ cos hð0:8871Þ�2 ¼ 1:5162

K ¼ 1:5162=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:1220

p ¼ 1:4314

Finally, the transfer function is derived as

B2ðsÞ ¼ 1:4314

s2 þ 1:4256s þ 1:5162
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EXAMPLE C.5
Compute the normalized Chebyshev transfer function for the following specifications:

Ripple ¼ 1 dB
n ¼ 3

Solution:

ðn � 1Þ=2 ¼ 1

Applying Equations (C.32) to (C.38) leads to

a0 ¼ ð2� 0þ 1Þp=ð2� 3Þ ¼ p=6
ε
2 ¼ 100:1�1 � 1 ¼ 0:2589, 1=ε ¼ 1:9653

b ¼ sin h�1ð1:9653Þ=n ¼ lnð1:9653þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:96532 þ 1

p
Þ=3 ¼ 0:4760

b0 ¼ 2 sin ðp=6Þ sin hð0:4760Þ ¼ 0:4942

c0 ¼ ½sin ðp=6Þ sin hð0:4760Þ�2 þ ½cos ðp=6Þ cos hð0:4760Þ�2 ¼ 0:9942

sin hðbÞ ¼ sin hð0:4760Þ ¼ 0:4942
K ¼ 0:4942� 0:9942 ¼ 0:4913

We can derive the transfer function as

B3ðsÞ ¼ 0:4913

ðs þ 0:4942Þðs2 þ 0:4942s þ 0:9942Þ

Finally, the unfactored form is found to be

B3ðsÞ ¼ 0:4913

s3 þ 0:9883s2 þ 1:2384s þ 0:4913
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Appendix D: Sinusoidal Steady-State
Response of Digital Filters

D.1 SINUSOIDAL STEADY-STATE RESPONSE
Analysis of the sinusoidal steady-state response of digital filters will lead to the development of the
magnitude and phase responses of digital filters. Let us look at the following digital filter with a digital
transfer function HðzÞ and a complex sinusoidal input

xðnÞ ¼ VejðUnþ4xÞ (D.1)

where U ¼ uT is the normalized digital frequency, while T is the sampling period and yðnÞ denotes
the digital output, as shown in Figure D.1.

The z-transform output from the digital filter is then given by

YðzÞ ¼ HðzÞXðzÞ (D.2)

Since XðzÞ ¼ Vej4x z

z� ejU
, we have

YðzÞ ¼ Vej4x z

z� ejU
HðzÞ (D.3)

Based on the partial fraction expansion, YðzÞ=z can be expanded to the following form:

YðzÞ
z

¼ Vej4x

z� ejU
HðzÞ ¼ R

z� ejU
þ sum of the rest of partial fractions (D.4)

Multiplying the factor ðz� ejUÞ on both sides of Equation (D.4) yields

VejfxHðzÞ ¼ Rþ ðz� ejUÞðsum of the rest of partial fractionsÞ (D.5)

FIGURE D.1

Steady-state response of the digital filter.
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Substituting z ¼ ejU, we get the residue as

R ¼ VejfxHðejUÞ
Then substituting R ¼ VejfxHðejUÞ back into Equation (D.4) results in

YðzÞ
z

¼ VejfxHðejUÞ
z� ejU

þ sum of the rest of partial fractions (D.6)

and multiplying z on both sides of Equation (D.6) leads to

YðzÞ ¼ VejfxHðejUÞz
z� ejU

þ z� sum of the rest of partial fractions (D.7)

Taking the inverse z-transform leads to two parts of the solution:

yðnÞ ¼ VejfxHðejUÞejUn þ Z�1ðz� sum of the rest of partial fractionsÞ (D.8)

From Equation (D.8), we have the steady-state response

yssðnÞ ¼ VejfxHðejUÞejUn (D.9)

and the transient response

ytrðnÞ ¼ Z�1ðz� sum of the rest of partial fractionsÞ (D.10)

Note that since the digital filter is a stable system, and the locations of its poles must be inside the unit
circle on the z-plane, the transient response will settle to zero eventually. To develop the filter
magnitude and phase responses, we write the digital steady-state response as

yssðnÞ ¼ V
��HðejUÞ��ejUþjfxþ:HðejUÞ (D.11)

Comparing Equation (D.11) and Equation (D.1), it follows that

Magnitude response ¼ Amplitude of the steady-state output

Amplitude of the sinusoidal input

¼ V
��HðejUÞ��

V
¼ ��HðejUÞ��

(D.12)

Phase response ¼ ejfxþj:HðejUÞ

ejfx
¼ ej:HðejUÞ ¼ :HðejUÞ (D.13)

Thus we conclude that

Frequency response: HðejUÞ ¼ HðzÞjz¼ejU (D.14)

Since HðejUÞ ¼ jHðejUÞj:HðejUÞ
Magnitude response:

��HðejUÞ�� (D.15)

Phase response: :HðejUÞ (D.16)
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D.2 Properties of the Sinusoidal Steady-State Response

From Euler’s identity and trigonometric identity, we know that

ejðUþk2pÞ ¼ cos ðUþ k2pÞ þ j sin ðUþ k2pÞ
¼ cosUþ j sinU ¼ ejU

(D.17)

where k is an integer taking values of k ¼ 0;� 1;� 2;/. Then

Frequency response: HðejUÞ ¼ HðejðUþk2pÞÞ (D.18)

Magnitude frequency response:
��HðejUÞ�� ¼

���HðejðUþk2pÞÞ
��� (D.19)

Phase response: :HðejUÞ ¼ :HðejUþ2kpÞ (D.20)

Clearly, the frequency response is periodic, with a period of 2p. Next, let us develop the symmetric
properties. Since the transfer function is written as

HðzÞ ¼ YðzÞ
XðzÞ ¼ b0 þ b1z

�1 þ/þ bMz
�M

1þ a1z�1 þ/þ aNz�N
(D.21)

substituting z ¼ ejU into Equation (D.21) yields

HðejUÞ ¼ b0 þ b1e
�jU þ/þ bMe

�jMU

1þ a1e�jU þ/þ aNe�jNU
(D.22)

Using Euler’s identity, e�jU ¼ cosU� j sinU, we have

HðejUÞ ¼ ðb0 þ b1 cosUþ/þ bM cosMUÞ � jðb1 sinUþ/þ bM sinMUÞ
ð1þ a1 cosUþ/þ aN cosNUÞ � jða1 sinUþ/þ aN sinNUÞ (D.23)

Similarly,

Hðe�jUÞ ¼ ðb0 þ b1 cosUþ/þ bM cosMUÞ þ jðb1 sinUþ/þ bM sinMUÞ
ð1þ a1 cosUþ/þ aN cosNUÞ þ jða1 sinUþ/þ aN sinNUÞ (D.24)

Then the magnitude response and phase response can be expressed as

��HðejUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0 þ b1 cosUþ/þ bM cosMUÞ2 þ ðb1 sinUþ/þ bM sinMUÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a1 cosUþ/þ aN cosNUÞ2 þ ða1 sinUþ/þ aN sinNUÞ2

q (D.25)

:HðejUÞ ¼ tan�1

� �ðb1 sinUþ/þ bM sinMUÞ
b0 þ b1 cosUþ/þ bM cosMU

�

� tan�1

� �ða1 sinUþ/þ aN sinNUÞ
1þ a1 cosUþ/þ aN cosNU

�
(D.26)
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Based on Equation (D.24), we also obtain the magnitude and phase response for Hðe�jUÞ as

��Hðe�jUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0 þ b1 cosUþ/þ bM cosMUÞ2 þ ðb1 sinUþ/þ bM sinMUÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a1 cosUþ/þ aN cosNUÞ2 þ ða1 sinUþ/þ aN sinNUÞ2

q (D.27)

:Hðe�jUÞ ¼ tan�1

�
b1 sinUþ/þ bM sinMU

b0 þ b1 cosUþ/þ bM cosMU

�

� tan�1

�
a1 sinUþ/þ aN sinNU

1þ a1 cosUþ/þ aN cosNU

�
(D.28)

Comparing Equation (D.25) with (D.27), and Equation (D.26) with (D.28), respectively, we obtain the
symmetric properties as ��Hðe�jUÞ�� ¼ ��HðejUÞ�� (D.29)

:Hðe�jUÞ ¼ �:HðejUÞ (D.30)
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Appendix E: Finite Impulse Response Filter
Design Equations by the Frequency
Sampling Design Method

Recall in Section 7.5 in Chapter 7 on the “Frequency Sampling Design Method” that we obtained

hðnÞ ¼ 1

N

XN�1

k¼ 0

HðkÞW�kn
N (E.1)

where hðnÞ, 0 � n � N � 1, is the causal impulse response that approximates the finite impulse
response (FIR) filter, HðkÞ, 0 � k � N � 1, represents the corresponding coefficients of the discrete
Fourier transform (DFT), and WN ¼ e�j2p

N . We further write the DFT coefficients, HðkÞ, 0 � k �
N � 1, in polar form:

HðkÞ ¼ Hke
j4k ; 0 � k � N � 1 (E.2)

where Hk and 4k are the kth magnitude and the phase angle, respectively. The frequency response of
the FIR filter is expressed as

HðejUÞ ¼
XN�1

n¼ 0

hðnÞe�jnU (E.3)

Substituting (E.1) into (E.3) yields

HðejUÞ ¼
XN�1

n¼ 0

1

N

XN�1

k¼ 0

HðkÞW�kn
N e�jUn (E.4)

Interchanging the order of the summation in Equation (E.4) leads to

HðejUÞ ¼ 1

N

XN�1

k¼ 0

HðkÞ
XN�1

n¼ 0

ðW�k
N e�jUÞn (E.5)

Since W�k
N e�jU ¼ ðe�j2p=NÞ�ke�jU ¼ e�ðjU�2pk=NÞ and using the identity

PN�1
n¼ 0 r

n ¼ 1þ rþ
r2 þ/þ rN�1 ¼ 1� rN

1� r
, we can write the second summation in Equation (E.5) as
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XN�1

n¼ 0

ðW�k
N e�jUÞn ¼ 1� e�jðU�2pk=NÞN

1� e�jðU�2pk=NÞ (E.6)

Using the Euler formula, Equation (E.6) becomes

XN�1

n¼ 0

ðW�k
N e�jUÞn ¼ e�jNðU�2pk=NÞ=2ðejNðU�2pk=NÞ=2 � e�jNðU�2pk=NÞ=2Þ=2j

e�jðU�2pk=NÞ=2ðejðU�2pk=NÞ=2 � e�jðU�2pk=NÞ=2Þ=2j

¼ e�jNðU�2pk=NÞ=2 sin ½NðU� 2pk=NÞ=2�
e�jðU�2pk=NÞ=2 sin ½ðU� 2pk=NÞ=2� (E.7)

Substituting Equation (E.7) into Equation (E.5) leads to

HðejUÞ ¼ 1

N
e�jðN�1ÞU=2XN�1

k¼ 0

HðkÞejðN�1Þkp=N sin ½NðU� 2pk=NÞ=2�
sin ½ðU� 2pk=NÞ=2Þ� (E.8)

Let U ¼ Um ¼ 2pm

N
, and substitute it into Equation (E.8) to get

HðejUmÞ ¼ 1

N
e�jðN�1Þ2pm=ð2NÞXN�1

k¼ 0

HðkÞejðN�1Þkp=N sin ½Nð2pm=N � 2pk=NÞ=2�
sin ½ð2pm=N � 2pk=NÞ=2Þ� (E.9)

Clearly, when msk, the last term of the summation in Equation (E.9) becomes

sin ½Nð2pm=N � 2pk=NÞ=2�
sin ½ð2pm=N � 2pk=NÞ=2Þ� ¼ sin ðpðm� kÞÞ

sin ðpðm� kÞ=NÞ ¼ 0

sin ðpðm� kÞ=NÞ ¼ 0

When m ¼ k, using L’Hospital’s rule we have

sin ½Nð2pm=N � 2pk=NÞ=2�
sin ½ð2pm=N � 2pk=NÞ=2Þ� ¼ sin ðNpðm� kÞ=NÞ

sin ðpðm� kÞ=NÞ ¼ lim
x/0

sin ðNxÞ
sin ðxÞ ¼ N

Then Equation (E.9) is simplified to

HðejUkÞ ¼ 1

N
e�jðN�1Þpk=NHðkÞejðN�1Þkp=NN ¼ HðkÞ

that is,

HðejUkÞ ¼ HðkÞ; 0 � k � N � 1 (E.10)

where Uk ¼ 2pk

N
, corresponding to the kth DFT frequency component. The fact is that if we specify

the desired frequency response, HðUkÞ, 0 � k � N � 1, at the equally spaced sampling frequency

determined by Uk ¼ 2pk

N
, they are actually the DFT coefficients; that is, HðkÞ, 0 � k � N � 1, via

Equation (E.10). Furthermore, the inverse of the DFT calculated using (E.10) will give the desired
impulse response, hðnÞ, 0 � n � N � 1.

818 APPENDIX E: Finite Impulse Response Filter Design Equations



To devise the design procedure, we substitute Equation (E.2) in Equation (E.8) to obtain

HðejUÞ ¼ 1

N
e�jðN�1ÞU=2XN�1

k¼ 0

Hke
j4kþjðN�1Þkp=N sin ½NðU� 2pk=NÞ=2�

sin ½ðU� 2pk=NÞ=2Þ� (E.11)

It is required that the frequency response of the designed FIR filter expressed in Equation (E.11) be
linear phase. This can easily be accomplished by setting

4k þ ðN � 1Þkp=N ¼ 0; 0 � k � N � 1 (E.12)

in Equation (E.11) so that the summation part becomes a real value, thus resulting in the linear phase of
HðejUÞ, since only one complex term, e�jðN�1ÞU=2, is left, which presents the constant time delay of the
transfer function. Second, the sequence hðnÞmust be real. To proceed, let N ¼ 2M þ 1, and due to the
properties of DFT coefficients, we have

HðkÞ ¼ HðN � kÞ; 1 � k � M (E.13)

where the bar indicates complex conjugate. Note the fact that

W
�k
N ¼ W

�ðN�kÞ
N ; 1 � k � M (E.14)

From Equation (E.1), we write

hðnÞ ¼ 1

N

 
Hð0Þ þ

XM
k¼ 1

HðkÞW�kn
N þ

X2M
k¼Mþ1

HðkÞW�kn
N

!
(E.15)

Equation (E.15) is equivalent to

hðnÞ ¼ 1

N

 
Hð0Þ þ

XM
k¼ 1

HðkÞW�kn
N þ

XM
k¼ 1

HðN � kÞW�ðN�kÞn
N

!

Using Equations (E.13) and (E.14) in the last summation term leads to

hðnÞ ¼ 1

N

 
Hð0Þ þ

XM
k¼ 1

HðkÞW�kn
N þ

XM
k¼ 1

HðkÞW�kn
N

!

¼ 1

2M þ 1

 
Hð0Þ þ

XM
k¼ 1

ðHðkÞW�kn
N þ HðkÞW�kn

N Þ
!

Combining the last two summation terms, we achieve

hðnÞ ¼ 1

2M þ 1

(
Hð0Þ þ 2Re

 XM
k¼ 1

HðkÞW�kn
N

!)
; 0 � n � N � 1 (E.16)

Solving Equation (E.12) gives

4k ¼ �ðN � 1Þkp=N; 0 � k � N � 1 (E.17)
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Again, note that Equation (E.13) is equivalent to

Hke
�j4k ¼ HN�ke

j4N�k ; 1 � k � M (E.18)

Substituting (E.17) in (E.18) yields

Hke
jðN�1Þkp=N ¼ HN�ke

�jðN�1ÞðN�kÞp=N ; 1 � k � M (E.19)

Simplification of Equation (E.19) leads to the following result:

Hk ¼ HN�ke
�jðN�1Þp ¼ ð�1ÞN�1HN�k; 1 � k � M (E.20)

Since we constrain the filter length to be N ¼ 2M þ 1, Equation (E.20) can be further reduced to

Hk ¼ ð�1Þ2MH2Mþ1�k ¼ H2Mþ1�k; 1 � k � M (E.21)

Finally, by substituting (E.21) and (E.17) into (E.16), we obtain a very simple design equation:

hðnÞ ¼ 1

2M þ 1

(
H0 þ 2

XM
k¼ 1

Hk cos

�
2pkðn�MÞ
2M þ 1

�)
; 0 � n � 2M (E.22)

Thus the design procedure is simply summarized as follows: Given the filter length, 2M þ 1, and the

specified frequency response, Hk at Uk ¼ 2pk

ð2Mþ1Þ for k ¼ 0; 1;/;M, FIR filter coefficients can be

calculated via Equation (E.22).
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Appendix F: Wavelet Analysis and Synthesis
Equations

F.1 BASIC PROPERTIES
The inner product of two functions is defined as

< x; y >¼
Z

xðtÞyðtÞdt (F.1)

Two functions are orthogonal if

< xðtÞ; xðt � kÞ >¼
(
A for k ¼ 0

0 for k s 0
(F.2)

Two functions are orthonormal if

< xðtÞ; xðt � kÞ >¼
(
1 for k ¼ 0

0 for k s 0
(F.3)

The signal energy is defined as

E ¼
Z

x2ðtÞdt (F.4)

Many wavelet families are designed to be orthonormal:

E ¼
Z

j2ðtÞdt ¼ 1 (F.5)

E ¼
Z

j2
jkðtÞdt ¼

Z
½2j=2jð2jt � kÞ�2dt ¼

Z
2jj2ð2jt � kÞdt (F.6)

Let u ¼ 2jt � k. Then du ¼ 2jdt. Equation (F.6) becomes

E ¼
Z

2jj2ðuÞ2�jdu ¼ 1 (F.7)
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Both father and mother wavelets are orthonormal at scale j:Z
fjkðtÞfjnðtÞdt ¼

(
1 k ¼ n

0 otherwise
(F.8)

Z
jjkðtÞjjnðtÞdt ¼

(
1 k ¼ n

0 otherwise
(F.9)

F.2 ANALYSIS EQUATIONS
When a function f ðtÞ is approximated using the scaling functions only at scale jþ 1, it can be
expressed as

f ðtÞ ¼
XN

k¼�N

cjðkÞ2j=2fð2jt � kÞ

Using the inner product,

cjðkÞ ¼< f ðtÞ;fjkðtÞ >¼
Z

f ðtÞ2j=2fð2jt � kÞdt (F.10)

Note that

fðtÞ ¼
XN

n¼�N

ffiffiffi
2

p
h0ðnÞfð2t � nÞ (F.11)

Substituting Equation (F.11) into Equation (F.10) leads to

cjðkÞ ¼< f ðtÞ;fjkðtÞ >¼
Z

f ðtÞ2j=2
XN

n¼�N

ffiffiffi
2

p
h0ðnÞf½2ð2jt � kÞ � n�dt

cjðkÞ ¼
XN

n¼�N

Z
f ðtÞ2ðjþ1Þ=2h0ðnÞfð2ðjþ1Þt � 2k � nÞdt

Let m ¼ nþ 2k. Interchange of the summation and integral leads to

cjðkÞ ¼
XN

m¼�N

Z
f ðtÞ2ðjþ1Þ=2h0ðm� 2kÞfð2ðjþ1Þt � mÞdt

cjðkÞ ¼
XN

m¼�N

�Z
f ðtÞfðjþ1ÞmðtÞdt

�
h0ðm� 2kÞ (F.12)
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Using the inner product definition for the DWT coefficient again in (F.12), we achieve

cjðkÞ ¼
XN

m¼�N

< f ðtÞ;fðjþ 1ÞmðtÞ > h0ðm� 2kÞ ¼
XN

m¼�N

cjþ 1ðmÞh0ðm� 2kÞ (F.13)

Similarly, notice that

jðtÞ ¼
XN

k¼�N

ffiffiffi
2

p
h1ðkÞfð2t � kÞ

Using the inner product gives

djðkÞ ¼< f ðtÞ;jjkðtÞ >¼
Z

f ðtÞ2j=2
XN

n¼�N

ffiffiffi
2

p
h1ðnÞf½2ð2jt � kÞ � n�dt

djðkÞ ¼
XN

n¼�N

Z
f ðtÞ2ðjþ1Þ=2h1ðnÞfð2ðjþ1Þt � 2k � nÞdt (F.14)

Let m ¼ nþ 2k. Interchange of the summation and integral leads to

djðkÞ ¼
XN

m¼�N

Z
f ðtÞ2ðjþ1Þ=2h1ðm� 2kÞfð2ðjþ1Þt � mÞdt

djðkÞ ¼
XN

m¼�N

�Z
f ðtÞfðjþ1ÞmðtÞdt

�
h1ðm� 2kÞ (F.15)

Finally, applying the inner product definition for the wavelet discrete transform (WDT) coefficient, we
obtain

djðkÞ ¼
XN

m¼�N

< f ðtÞ;fðjþ1ÞmðtÞ > h1ðm� 2kÞ ¼
XN

m¼�N

cjþ1ðmÞh1ðm� 2kÞ (F.16)

F.2 WAVELET SYNTHESIS EQUATIONS
We begin with

f ðtÞ ¼
XN

k¼�N

cjðkÞ2j=2fð2jt � kÞ þ
XN

k¼�N

djðkÞ2j=2jð2jt � kÞ

Taking an inner product using the scaling function at scale level jþ 1 gives

cjþ1ðkÞ ¼ < f ðtÞ;fðjþ1ÞkðtÞ >¼
XN

m¼�N

cjðmÞ2j=2
Z

fð2jt � mÞfðjþ1ÞkðtÞdt

þ
XN

m¼�N

djðmÞ2j=2
Z

jð2jt � mÞfðjþ1ÞkðtÞdt
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cjþ1ðkÞ ¼
XN

m¼�N

cjðmÞ2j=2
Z XN

n¼�N

ffiffiffi
2

p
h0ðnÞfð2jþ1t � 2m� nÞfðjþ1ÞkðtÞdt

þ
XN

m¼�N

djðmÞ2j=2
Z XN

n¼�N

ffiffiffi
2

p
h1ðnÞfð2jþ1t � 2m� nÞfðjþ1ÞkðtÞdt

(F.17)

Interchange of the summation and integral yields

cjþ1ðkÞ ¼
XN

m¼�N

XN
n¼�N

cjðmÞh0ðnÞ
Z

2ðjþ1Þ=2fð2jþ1t � 2m� nÞfðjþ1ÞkðtÞdt

þ
XN

m¼�N

XN
n¼�N

djðmÞh1ðnÞ
Z

2ðjþ1Þ=2fð2jþ1t � 2m� nÞfðjþ1ÞkðtÞdt

Using the inner product, we get

cjþ1ðkÞ ¼
XN

m¼�N

XN
n¼�N

cjðmÞh0ðnÞ < fðjþ1Þð2mþnÞðtÞ;fðjþ1ÞkðtÞ >

þ
XN

m¼�N

XN
n¼�N

djðmÞh1ðnÞ < fðjþ1Þð2mþnÞðtÞ;fðjþ1ÞkðtÞ >
(F.18)

From the wavelet orthonormal property, we have

< fðjþ1Þð2mþnÞðtÞ;fðjþ1ÞkðtÞ >¼
(
1 n ¼ k � 2m

0 otherwise
(F.19)

Substituting Equation (F.19) into Equation (F.18), we finally obtain

cjþ1ðkÞ ¼
XN

m¼�N

cjðmÞh0ðk � 2mÞ þ
XN

m¼�N

djðmÞh1ðk � 2mÞ (F.20)
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Appendix G: Some Useful Mathematical
Formulas

Form of a complex number:
Rectangular form:

aþ jb; where j ¼
ffiffiffiffiffiffiffi
�1

p
(G.1)

Polar form:

Aejq (G.2)

Euler formula:

e� jx ¼ cos x� j sin x (G.3)

Conversion from the polar form to the rectangular form:

Aejq ¼ A cos qþ jA sin q ¼ aþ jb (G.4)

where a ¼ A cos q, and b ¼ A sin q.
Conversion from the rectangular form to the polar form:

aþ jb ¼ Aejq (G.5)

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
. We usually specify the principal value of the angle such that�180

�
< q� 180

�
.

The angle value can be determined as

q ¼ tan�1

�
b

a

�
if a � 0

(that is, the complex number is in the first or fourth quadrant in the rectangular coordinate system);

q ¼ 180
� þ tan�1

�
b

a

�
if a < 0 and b � 0

(that is, the complex number is in the second quadrant in the rectangular coordinate system); and

q ¼ �180
� þ tan�1

�
b

a

�
if a < 0 and b � 0
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(that is, the complex number is in the third quadrant in the rectangular coordinate system). Note that

q radian ¼ q degree

180
� � p

q degree ¼ q radian

p
� 180

�

Complex numbers:

e�jp=2 ¼ �j (G.6)

e�j2np ¼ 1 (G.7)

e�jð2nþ1Þp ¼ �1 (G.8)

Complex conjugate of aþ jb:

ðaþ jbÞ� ¼ con jðaþ jbÞ ¼ a� jb (G.9)

Complex conjugate of Aejq: �
Aejq

�� ¼ con j
�
Aejq

� ¼ Ae�jq (G.10)

Complex number addition and subtraction:

ða1 þ jb1Þ � ða2 þ jb2Þ ¼ ða1 � a2Þ þ jðb1 � b2Þ (G.11)

Complex number multiplication:
Rectangular form:

ða1 þ jb1Þ � ða2 þ jb2Þ ¼ a1a2 � b1b2 þ jða1b2 þ a2b1Þ (G.12)

�
aþ jb

�
$con j

�
aþ jb

� ¼ �
aþ jb

��
a� jb

� ¼ a2 þ b2 (G.13)

Polar form:

A1e
jq1A2e

jq2 ¼ A1A2e
jðq1þq2Þ (G.14)

Complex number division:
Rectangular form:

a1 þ jb1
a2 þ jb2

¼ ða1 þ jb1Þða2 � jb2Þ
ða2 þ jb2Þða2 � jb2Þ

¼ ða1a2 þ b1b2Þ þ jða2b1 � a1b2Þ
ða2Þ2þðb2Þ2

(G.15)
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Polar form:

A1e
jq1

A2ejq2
¼

�
A1

A2

�
ejðq1�q2Þ (G.16)

Trigonometric identities:

sin x ¼ ejx � e�jx

2j
(G.17)

cos x ¼ ejx þ e�jx

2
(G.18)

sin
�
x� 90

�� ¼ � cos x (G.19)

cos
�
x� 90

�� ¼ H sinx (G.20)

sin x cos x ¼ 1

2
sin 2x (G.21)

sin2 xþ cos2 x ¼ 1 (G.22)

sin2 x ¼ 1

2

�
1� cos 2x

�
(G.23)

cos2 x ¼ 1

2

�
1þ cos 2x

�
(G.24)

sin ðx� yÞ ¼ sin x cos y� cos x siny (G.25)

cos ðx� yÞ ¼ cos x cos yHsin x siny (G.26)

sin x cosy ¼ 1

2
ðsin ðxþ yÞ þ sin ðx� yÞÞ (G.27)

sin x siny ¼ 1

2
ðcos ðx� yÞ � cos ðxþ yÞÞ (G.28)

cos x cos y ¼ 1

2
ðcos ðx� yÞ þ cos ðxþ yÞÞ (G.29)
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Series of exponentials:

XN�1

k¼ 0

ak ¼ 1� aN

1� a
; as1 (G.30)

XN
k¼ 0

ak ¼ 1

1� a
; jaj < 1 (G.31)

XN
k¼ 0

kak ¼ 1

ð1� aÞ2; jaj < 1 (G.32)

XN�1

k¼ 0

e

�
j
2pnk

N

�
¼

(
0 1 � n � N � 1

N n ¼ 0;N
(G.33)

L’Hospital’s rule:

If lim
x/a

f ðxÞ
gðxÞ results in the undetermined form

0

0
or

N

N
, then

lim
x/a

f ðxÞ
gðxÞ ¼ lim

x/a

f 0ðxÞ
g0ðxÞ (G.34)

where f 0ðxÞ ¼ df ðxÞ
dx

and g0ðxÞ ¼ dgðxÞ
dx

.

Solution of the quadratic equation:
For a quadratic equation expressed as

ax2 þ bxþ c ¼ 0 (G.35)

the solution is given by

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
(G.36)

Solution of simultaneous equations:
Simultaneous linear equations are listed below:

a11x1 þ a12x2 þ/þ a1nxn ¼ b1

a21x1 þ a22x2 þ/þ a2nxn ¼ b2

/

an1x1 þ an2x2 þ/þ annxn ¼ bn

(G.37)

The solution is given by Cramer’s rule, that is

x1 ¼ D1

D
; x2 ¼ D2

D
;/; xn ¼ Dn

D
(G.38)
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where D; D1; D2;.;Dn are the n� n determinants. Each is defined below:

D ¼

����������

a11 a12 / a1n

a21 a22 / a2n

« « 1 «

an1 an2 / ann

����������
(G.39)

D1 ¼

����������

b1 a12 / a1n

b2 a22 / a2n

« « 1 «

bn an2 / ann

����������
(G.40)

D2 ¼

����������

a11 b1 / a1n

a21 b2 / a2n

« « 1 «

an1 bn / ann

����������
(G.41)

/

Dn ¼

����������

a11 a12 / b1

a21 a22 / b2

« « 1 «

an1 an2 / bn

����������
(G.42)

D ¼ ð � 1Þ1þ1a11M11 þ ð � 1Þ1þ2a12M12 þ/ð � 1Þ1þna1nM1n (G.43)

where Mij is an ðn� 1Þ � ðn� 1Þ determinant obtained from D by crossing out the ith row and
jth column. D can also be expanded by any row or column. As an example, using the second
column,

D ¼ ð � 1Þ1þ2a12M12 þ ð � 1Þ2þ2a22M12 þ/ð � 1Þnþ2an2Mn2 (G.44)

2� 2 determinant:

D ¼
���� a11 a12

a21 a22

���� ¼ a11a22 � a12a21 (G.45)
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3� 3 determinant:

D ¼

�������
a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
¼ ð � 1Þ1þ1a11

���� a22 a23

a32 a33

����þ ð � 1Þ1þ2a12

���� a21 a23

a31 a33

����þ ð � 1Þ1þ3a13

���� a21 a22

a31 a32

����
¼ a11ða22a33 � a23a32Þ � a12ða21a33 � a23a31Þ þ a13ða21a32 � a22a31Þ

(G.46)

Solution for two simultaneous linear equations:

axþ by ¼ e

cxþ dy ¼ f
(G.47)

The solution is given by

x ¼ D1

D
¼

���� e b

f d

�������� a b

c d

����
¼ ed � bf

ad � bc
(G.48)

y ¼ D2

D
¼

���� a e

c f

�������� a b

c d

����
¼ af � ec

ad � bc
(G.49)
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Answers to Selected Problems

CHAPTER 2
2.1. Hint:

b.

f kHz

X fs ( )

−8 8 161.51.5− 6.5 9.5 14.5 17.59.5− 6.5−

2.5/T

2.2. Hint:
a.

f kHz

X fs ( )

8 162.5− 5.5 10.5 13.5 18.510.5− 5.5−

2 5. / T

2.511.2− 4.8− 3.2− 3.2 4.8 11.212.8 19.2

2.5. Hint:

f kHz

X fs ( )

82.5−10.5− 5.5−

2 5. / T

2.511.5− 4.5− 3.5− 3.5 4.5 165.5 10.5 13.5 18.5 19.511.5 12.5

c. The aliasing frequency ¼ 3.5 kHz
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2.9.

−
+

Vin
Vo

2.25 kΩ

01. uF

0 05. uF

2.25 kΩ

2.10. % aliasing level ¼ 8:39%
2.13. a. % aliasing level ¼ 57.44%

b. % aliasing level ¼ 20.55%
2.17. a. % distortion ¼ 24.32%

b. % distortion ¼ 5.68%
2.18. fc ¼ 4; 686 Hz
2.21. b1b0 ¼ 01
2.22. V0 ¼ 1:25 Volts
2.25. a. L ¼ 24 ¼ 16 levels

b. D ¼ xmax � xmin

L
¼ 5

16
¼ 0:3125

c. xq ¼ 3:125
d. binary code ¼1010
e. eq ¼ �0:075

2.27. a. L ¼ 23 ¼ 8 levels

b. D ¼ xmax � xmin

L
¼ 5

8
¼ 0:625

c. xq ¼ �2:5þ 2� 0:625 ¼ �1:25
d. binary code ¼ 010
e. eq ¼ �0:05

2.29. a. L ¼ 26 ¼ 64 levels

b. D ¼ xmax � xmin

L
¼ 20

64
¼ 0:3125

c. SNRdB ¼ 1:76þ 6:02� 6 ¼ 37:88 dB
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CHAPTER 3
3.1.

-5 0 5
0

2

4

6

n

(a)

-5 0 5 10
-2

-1.5

-1

-0.5

0

n

(b)

-5 0 5 10
-6

-4

-2

0

n

(c)

-5 0 5 10
0

2

4

6

n

(d)

3.2. Hint:
a.

n 0 1 2 3 4 5 6 7

xðnÞ 1.000 0.5000 0.2500 0.1250 0.0625 0.0313 0.0156 0.0078

d.

n 0 1 2 3 4 5 6 7

xðnÞ 0.0000 1.1588 1.6531 1.7065 1.5064 1.1865 0.8463 0.5400
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3.5.

-8 -6 -4 -2 0 2 4 6 8
-5

0

5

10

n

(a)

-8 -6 -4 -2 0 2 4 6 8
-2

0

2

4

6

n

(b)

3.6. a. xðnÞ ¼ 3dðnÞ þ dðn� 1Þ þ 2dðn� 2Þ þ dðn� 3Þ þ dðn� 5Þ
b. xðnÞ ¼ dðn� 1Þ � dðn� 2Þ þ dðn� 4Þ � dðn� 5Þ

3.9. a. xðnÞ ¼ e�0:5nuðnÞ ¼ ð0:6065ÞnuðnÞ
b. xðnÞ ¼ 5 sin ð0:2pnÞuðnÞ
c. xðnÞ ¼ 10 cos ð0:4pnþ p=6ÞuðnÞ
d. xðnÞ ¼ 10e�n sin ð0:15pnÞuðnÞ ¼ 10ð0:3679Þnsin ð0:15pnÞuðnÞ

3.10. a. nonlinear system
b. linear system
c. nonlinear system

3.13. a. time-invariant
3.15. a. causal system

b. noncausal system
c. causal system

3.16. a. hðnÞ ¼ 0:5dðnÞ � 0:5dðn� 2Þ
b. hðnÞ ¼ ð0:75Þn, n � 0
c. hðnÞ ¼ 1:25dðnÞ � 1:25ð�0:8Þn, n � 0

3.19. a. hðnÞ ¼ 5dðn� 10Þ
b. hðnÞ ¼ dðnÞ þ 0:5dðn� 1Þ

3.20. Since hðnÞ ¼ 0:5dðnÞ þ 100dðn� 2Þ � 20dðn� 10Þ and S ¼ 0:5þ 100þ 20 ¼ 120:5 ¼
finite number, the system is stable.

3.23. a. hðnÞ ¼ ð0:75ÞnuðnÞ, S ¼ PN
k¼ 0 ð0:75Þk ¼ 1=ð1� 0:75Þ ¼ 4¼ finite, the system is stable.

b. hðnÞ ¼ ð2ÞnuðnÞ, S ¼ PN
k¼ 0 ð2Þk ¼ 1þ 2þ 22 þ/ ¼ N ¼ infinite, the system is

unstable.
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3.25.
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)
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0
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(a
) h

(-k
)

-10 -5 0 5 10
0

0.5

1
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(b
) h

(-k
+2

)

-10 -5 0 5 10
0

0.5

1

1.5

2

k

(b
) h

(-k
-3

)

3.27. yð0Þ ¼ 4; yð1Þ ¼ 6; yð2Þ ¼ 8; yð3Þ ¼ 6; yð4Þ ¼ 5; yð5Þ ¼ 2; yð6Þ ¼ 1;
yðnÞ ¼ 0 for n � 7

3.29. yð0Þ ¼ 0; yð1Þ ¼ 1; yð2Þ ¼ 2; yð3Þ ¼ 1; yð4Þ ¼ 0
yðnÞ ¼ 0 for n � 4

CHAPTER 4
4.1. Xð0Þ ¼ 1; Xð1Þ ¼ 2� j; Xð2Þ ¼ �1; Xð3Þ ¼ 2þ j
4.5. xð0Þ ¼ 4; xð1Þ ¼ 3; xð2Þ ¼ 2; xð3Þ ¼ 1
4.6. Xð0Þ ¼ 10; Xð1Þ ¼ 3:5� 4:3301j; Xð2Þ ¼ 2:5� 0:8660j; Xð3Þ ¼ 2;

Xð4Þ ¼ 2:5þ 0:8660j; Xð5Þ ¼ 3:5þ 4:3301j
4.9. xð0Þ ¼ 4; xð4Þ ¼ 0

4.10. Df ¼ 2:5 Hz and fmax ¼ 10 kHz
4.13. N ¼ 4096; Df ¼ 0:488 Hz
4.15. a. w ¼ [0.0800 0.2532 0.6424 0.9544 0.9544 0.6424 0.2532 0.0800]

b. w ¼ [0 0.1883 0.6113 0.9505 0.9505 0.6113 0.1883 0]
4.16. a. xw ¼ [0 0.4000 0 �0.8000 0 0]

b. xw ¼ [0 0.3979 0 �0.9121 0 0.0800]
c. xw ¼ [0 0.3455 0 �0.9045 0 0]
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4.19. a. A0 ¼ 0:1667, A1 ¼ 0:3727, A2 ¼ 0:5, A3 ¼ 0:3727
40 ¼ 00; 41 ¼ 154:430; 42 ¼ 00; 43 ¼ �154:430

P0 ¼ 0:0278; P1 ¼ 0:1389; P2 ¼ 0:25; P3 ¼ 0:1389

b. A0 ¼ 0:2925, A1 ¼ 0:3717, A2 ¼ 0:6375, A3 ¼ 0:3717
40 ¼ 00; 41 ¼ 145:130; 42 ¼ 00; 43 ¼ �145:130

P0 ¼ 0:0586; P1 ¼ 0:1382; P2 ¼ 0:4064; P3 ¼ 0:1382

c. A0 ¼ 0:6580, A1 ¼ 0:3302, A2 ¼ 0:9375, A3 ¼ 0:3302
40 ¼ 00; 41 ¼ 108:860; 42 ¼ 00; 43 ¼ �108:860

P0 ¼ 0:4330; P1 ¼ 0:1091; P2 ¼ 0:8789; P3 ¼ 0:1091
4.21. Xð0Þ ¼ 10; Xð1Þ ¼ 2� 2j; Xð2Þ ¼ 2; Xð3Þ ¼ 2þ 2j; 4 complex multiplications
4.22. xð0Þ ¼ 4; xð1Þ ¼ 3; xð2Þ ¼ 2; xð3Þ ¼ 1; 4 complex multiplications
4.25. Xð0Þ ¼ 10; Xð1Þ ¼ 2� 2j; Xð2Þ ¼ 2; Xð3Þ ¼ 2þ 2j; 4 complex multiplications
4.26. xð0Þ ¼ 4; xð1Þ ¼ 3; xð2Þ ¼ 2; xð3Þ ¼ 1; 4 complex multiplications

CHAPTER 5
5.1. a. X

�
z
� ¼ 4z

z� 1
,

b. X
�
z
� ¼ z

zþ 0:7

c. X
�
z
� ¼ 4z

z� e�2
¼ 4z

z� 0:1353
,

d. X
�
z
� ¼ 4z½z� 0:8� cos ð0:1pÞ�

z2 � ½2� 0:8z cos ð0:1pÞ� þ 0:82
¼ 4zðz� 0:7608Þ

z2 � 1:5217zþ 0:64

e. X
�
z
� ¼ 4e�3 sin ð0:1pÞz

z2 � 2e�3z cos ð0:1pÞ þ e�6
¼ 0:06154z

z2 � 0:0947zþ 0:00248

5.2. a. X
�
z
� ¼ z

z� 1
þ z

z� 0:5

b. X
�
z
� ¼ z�4z½z� e�3 cos ð0:1pÞ�

z2 � ½2e�3 cos ð0:1pÞ�zþ e�6
¼ z�3ðz� 0:0474Þ

z2 � 0:0948zþ 0:0025

5.3. c. X
�
z
� ¼ 5z�2

z� e�2

e. X
�
z
� ¼ 4e�3 sin ð0:2pÞ

z2 � 2e�3 cos ð0:2pÞzþ e�6
¼ 0:1171

z2 � 0:0806zþ 0:0025

5.5. a. XðzÞ ¼ 15z�3 � 6z�5

b. xðnÞ ¼ 15dðn� 3Þ � 6dðn� 5Þ
5.9. a. X

�
z
� ¼ �25þ 5z

z� 0:4
þ 20z

zþ 0:1
, xðnÞ ¼ �25dðnÞ þ 5ð0:4ÞnuðnÞ þ 20ð�0:1ÞnuðnÞ

b. X
�
z
� ¼ 1:6667z

z� 0:2
� 1:6667z

zþ 0:4
, xðnÞ ¼ 1:6667ð0:2ÞnuðnÞ � 1:6667ð�0:4ÞnuðnÞ
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c. X
�
z
� ¼ 1:3514z

zþ 0:2
þ Az

z� P
þ A�z
z� P�

where P ¼ 0:5þ0:5j ¼ 0:707:450, A ¼ 1:1625:�125:540, xðnÞ ¼ 1:3514ð�0:2ÞnuðnÞþ
2:325ð0:707Þn cosð450�n�125:540Þ

d. X
�
z
� ¼ 4:4z

z�0:6
þ �0:4z

z�0:1
þ �1:2z

ðz�0:1Þ2;
xðnÞ ¼ 4:4ð0:6ÞnuðnÞ � 0:4ð0:1ÞnuðnÞ � 12nð0:1ÞnuðnÞ

5.10. Y
�
z
� ¼ �4:3333z

z� 0:5
þ 5:333z

z� 0:8
; y

�
n
� ¼ �4:3333ð0:5Þnu�n�þ 5:3333

�
0:8

�n
u
�
n
�

5.13. Y
�
z
� ¼ 9:84z

z� 0:2
þ�29:46z

z� 0:3
þ 20z

z� 0:4

yðnÞ ¼ 9:84ð0:2ÞnuðnÞ � 29:46ð0:3ÞnuðnÞ þ 20ð0:4ÞnuðnÞ

5.14. a. Y
�
z
� ¼ �4z

z� 0:2
þ 5z

z� 0:5
, yðnÞ ¼ �4ð0:2ÞnuðnÞ þ 5ð0:5ÞnuðnÞ

b. Y
�
z
� ¼ 5z

z� 1
þ �5z

z� 0:5
þ z

z� 0:2
,

yðnÞ ¼ 5uðnÞ � 5ð0:5ÞnuðnÞ þ ð0:2ÞnuðnÞ

5.17. a. Y
�
z
� ¼ Az

z� P
þ A�z
z� P�, P ¼ 0:2þ 0:5j ¼ 0:5385:68:200, A ¼ 0:8602:� 54:460

yðnÞ ¼ 1:7204ð0:5382Þn cos ðn� 68:200 � 54:460Þ

b. Y
�
z
� ¼ 1:6854z

z� 1
þ Az

z� P
þ A�z
z� P�, where P ¼ 0:2þ 0:5j ¼ 0:5385:68:200, A ¼

0:4910:� 136:250

yðnÞ ¼ 1:6845uðnÞ þ 0:982ð0:5382Þn cos ðn� 68:200 � 136:250Þ

CHAPTER 6
6.1. a. yð0Þ ¼ 0:5, yð1Þ ¼ 0:25, yð2Þ ¼ 0:125, yð3Þ ¼ 0:0625, yð4Þ ¼ 0:03125

b. yð0Þ ¼ 1, yð1Þ ¼ 0, yð2Þ ¼ 0:25, yð3Þ ¼ 0, yð4Þ ¼ 0:0625
6.3. a. yð0Þ ¼ �2, yð1Þ ¼ 2:3750, yð2Þ ¼ �1:0312, yð3Þ ¼ 0:7266, yð4Þ ¼ �0:2910

b. yð0Þ ¼ 0, yð1Þ ¼ 1, yð2Þ ¼ �0:2500, yð3Þ ¼ 0:3152, yð4Þ ¼ �0:0781
6.4. a. HðzÞ ¼ 0:5þ 0:5z�1

b. yðnÞ ¼ 2dðnÞ þ 2dðn� 1Þ, yðnÞ ¼ �5dðnÞ þ 10uðnÞ
6.5. a. H

�
z
� ¼ 1

1þ 0:5z�1

b. yðnÞ ¼ ð�0:5ÞnuðnÞ, yðnÞ ¼ 0:6667uðnÞ þ 0:3333ð�0:5ÞnuðnÞ
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6.9. HðzÞ ¼ 1� 0:3z�1 þ 0:28z�2; AðzÞ ¼ 1; NðzÞ ¼ 1� 0:3z�1 þ 0:28z�2

6.12. a. yðnÞ ¼ xðnÞ � 0:25xðn� 2Þ � 1:1yðn� 1Þ � 0:18yðn� 2Þ
b. yðnÞ ¼ xðn� 1Þ � 0:1xðn� 2Þ þ 0:3xðn� 3Þ

6.13. b. H
�
z
� ¼ ðzþ 0:4Þðz� 0:4Þ

ðzþ 0:2Þðzþ 0:5Þ
6.15. a. zero: z ¼ 0:5, poles: z ¼ �0:25 (jzj ¼ 0:25), z ¼ �0:5� 0:7416j (jzj ¼ 0:8944), stable

b. zeros: z ¼ �0:5j, poles: z ¼ 0:5 (jzj ¼ 0:5), z ¼ �2� 1:7321j (jzj ¼ 2:6458), unstable
c. zero: z ¼ �0:95, poles: z ¼ 0:2 (jzj ¼ 0:2), z ¼ �0:7071� 0:7071j (jzj ¼ 1),

marginally stable
d. zeros: z ¼ �0:5, z ¼ �0:5, poles: z ¼ 1 (jzj ¼ 1), z ¼ �1, z ¼ �1 (jzj ¼ 1), z ¼ 0:36

(jzj ¼ 0:36), unstable

6.17. HðzÞ ¼ 0:5z�1 þ 0:5z�2; HðejUÞ ¼ 0:5e�jU þ 0:5e�j2U

��HðejUÞ�� ¼ 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosUÞ2 þ ðsinUÞ2

q
; :H

�
ejU

�
¼ tan�1

��sinU� sin 2U

cosUþ cos 2U

	

6.19. H
�
z
� ¼ 1

1þ 0:5z�2
; H

�
ejU

�
¼ 1

1þ 0:5e�j2U��HðejUÞ�� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 0:5 cos 2UÞ2 þ ð0:5 sin 2UÞ2

q ; :H
�
ejU

�
¼ �tan�1

� �0:5 sin 2U

1þ 0:5 cos 2U

	

6.21. a. HðzÞ ¼ 0:5þ 0:5z�1, HðejUÞ ¼ 0:5þ 0:5e�jU

��HðejUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5þ 0:5 cosUÞ2 þ ð0:5 sinUÞ2

q
; :HðejUÞ ¼ tan�1

� �0:5 sinU

0:5þ 0:5 cosU

	

b. HðzÞ ¼ 0:5� 0:5z�1, HðejUÞ ¼ 0:5� 0:5e�jU

��HðejUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� 0:5 cosUÞ2 þ ð0:5 sinUÞ2

q
; :HðejUÞ ¼ tan�1

�
0:5 sinU

0:5� 0:5 cosU

	

c. HðzÞ ¼ 0:5þ 0:5z�2, HðejUÞ ¼ 0:5þ 0:5e�j2U

��HðejUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5þ 0:5 cos 2UÞ2 þ ð0:5 sin 2UÞ2

q
; :HðejUÞ ¼ tan�1

� �0:5 sin 2U

0:5þ 0:5 cos 2U

	

d. HðzÞ ¼ 0:5� 0:5z�2, HðejUÞ ¼ 0:5� 0:5e�j2U

��HðejUÞ�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� 0:5 cos 2UÞ2 þ ð0:5 sin 2UÞ2

q
; :HðejUÞ ¼ tan�1

�
0:5 sin 2U

0:5� 0:5 cos 2U

	

6.23. H
�
z
� ¼ 0:5

1þ 0:7z�1 þ 0:1z�2
;

y
�
n
� ¼ 0:5556u

�
n
�� 0:111

�� 0:2
�n
u
�
n
�þ 0:5556

�� 0:5
�n
u
�
n
�

6.25. a. yðnÞ ¼ xðnÞ � 0:9xðn� 1Þ � 0:1xðn� 2Þ � 0:3yðn� 1Þ þ 0:04yðn� 2Þ
b. wðnÞ ¼ xðnÞ � 0:3wðn� 1Þ þ 0:04wðn� 2Þ

yðnÞ ¼ wðnÞ � 0:9wðn� 1Þ � 0:1wðn� 2Þ
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c. Hint: H
�
z
� ¼ ðz� 1Þðzþ 0:1Þ

ðzþ 0:4Þðz� 0:1Þ
w1ðnÞ ¼ xðnÞ � 0:4w1ðn� 1Þ
y1ðnÞ ¼ w1ðnÞ � w1ðn� 1Þ
w2ðnÞ ¼ y1ðnÞ þ 0:1w2ðn� 1Þ
yðnÞ ¼ w2ðnÞ þ 0:1w2ðn� 1Þ

d. Hint: H
�
z
� ¼ 2:5þ 2:1z

zþ 0:4
� 3:6z

z� 0:1

y1ðnÞ ¼ 2:5xðnÞ
w2ðnÞ ¼ xðnÞ � 0:4w2ðn� 1Þ
y2ðnÞ ¼ 2:1w2ðnÞ
w3ðnÞ ¼ xðnÞ þ 0:1w3ðn� 1Þ
y3ðnÞ ¼ �3:6w3ðnÞ
yðnÞ ¼ y1ðnÞ þ y2ðnÞ þ y3ðnÞ

6.26. a. yðnÞ ¼ xðnÞ � 0:5xðn� 1Þ
b. yðnÞ ¼ xðnÞ � 0:7xðn� 1Þ
c. yðnÞ ¼ xðnÞ � 0:9xðn� 1Þ

The filter in (c) emphasizes high frequencies most.

CHAPTER 7
7.1. a. HðzÞ ¼ 0:2941 þ 0:3750z�1 þ 0:2941z�2

b. HðzÞ ¼ 0:0235þ 0:3750z�1 þ 0:0235z�2

7.3. a. HðzÞ ¼ 0:1514 þ 0:1871z�1 þ 0:2000z�2 þ 0:1871z�3 þ 0:1514z�4

b. HðzÞ ¼ 0:0121þ 0:1010z�1 þ 0:2000z�2 þ 0:1010z�3 þ 0:0121z�4

7.5. a. HðzÞ ¼ �0:0444þ 0:0117z�1 þ 0:0500z�2 þ 0:0117z�3 � 0:0444z�4

b. HðzÞ ¼ �0:0035þ 0:0063z�1 þ 0:0500z�2 þ 0:0063z�3 � 0:0035z�4

7.7. a. Hanning window
b. filter length ¼63
c. cutoff frequency ¼ 1,000 Hz

7.9. a. Hamming window
b. filter length ¼45
c. lower cutoff frequency ¼ 1500 Hz, upper cutoff frequency ¼ 2,300 Hz

7.11. Hint:
a. yðnÞ ¼ 0:25xðnÞ � 0:5xðn� 1Þ þ 0:25xðn� 2Þ
b. yðnÞ ¼ 0:25½xðnÞ þ xðn� 2Þ� � 0:5xðn� 1Þ

7.13. N ¼ 3; Uc ¼ 3p=10; U0 ¼ 0; H0 ¼ 1; U1 ¼ 2p=3; H1 ¼ 0
HðzÞ ¼ 0:3333 þ 0:3333z�1 þ 0:3333z�2

7.15. HðzÞ ¼ �0:1236þ 0:3236z�1 þ 0:6z�2 þ 0:3236z�3 � 0:1236z�4

7.17. HðzÞ ¼ 0:1718� 0:2574z�1 � 0:0636z�2 þ 0:2857z�3 � 0:0636z�4 � 0:2574z�5

þ0:1781z�6
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7.19. Wp ¼ 1, Ws ¼ 12
7.21. Wp ¼ 1, Ws ¼ 122
7.23. Hamming window, filter length ¼ 33, lower cutoff frequency ¼ 3,500 Hz
7.24. Hamming window, filter length ¼ 53,

lower cutoff frequency ¼ 1,250 Hz, upper cutoff frequency ¼ 2,250 Hz
7.25. Lowpass filter: Hamming window, filter length ¼ 91, cutoff frequency ¼ 2,000 Hz

Highpass filter: Hamming window, filter length ¼ 91, cutoff frequency ¼ 2,000 Hz

CHAPTER 8

8.1. H
�
z
� ¼ 0:3333þ 0:3333z�1

1� 0:3333z�1

yðnÞ ¼ 0:3333xðnÞ þ 0:3333xðn� 1Þ þ 0:3333yðn� 1Þ

8.3. a. H
�
z
� ¼ 0:6625 � 0:6625z�1

1� 0:3249z�1

yðnÞ ¼ 0:6225xðnÞ � 0:6225xðn� 1Þ þ 0:3249yðn� 1Þ

8.5. a. H
�
z
� ¼ 0:2113� 0:2113z�2

1� 0:8165z�1 þ 0:5774z�2

yðnÞ ¼ 0:2113xðnÞ � 0:2113xðn� 2Þ þ 08165yðn� 1Þ � 0:5774yðn� 2Þ

8.7. a. H
�
z
� ¼ 0:1867 þ 0:3734z�1 þ 0:1867z�2

1� 0:4629z�1 þ 0:2097z�2

yðnÞ ¼ 0:1867xðnÞ þ 0:3734xðn� 1Þ þ 0:1867xðn� 2Þ
þ 0:4629yðn� 1Þ � 0:2097yðn� 2Þ

8.9. a. H
�
z
� ¼ 0:0730� 0:0730z�2

1þ 0:8541z�2

yðnÞ ¼ 0:0730xðnÞ � 0:0730xðn� 2Þ � 0:8541yðn� 2Þ

8.11. a. H
�
z
� ¼ 0:5677þ 0:5677z�1

1þ 0:1354z�1

yðnÞ ¼ 0:5677xðnÞ þ 0:5677xðn� 1Þ � 0:1354yðn� 1Þ

8.13. a. H
�
z
� ¼ 0:1321� 0:3964z�1 þ 0:3964z�2 � 0:1321z�3

1þ 0:3432z�1 þ 0:6044z�2 þ 0:2041z�3

yðnÞ ¼ 0:1321xðnÞ � 0:3964xðn� 1Þ þ 0:3964xðn� 2Þ � 0:1321xðn� 3Þ
� 0:3432yðn� 1Þ � 0:6044yðn� 2Þ � 0:2041yðn� 3Þ
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8.15. a. H
�
z
� ¼ 0:9609þ 0:7354z�1 þ 0:9609z�2

1þ 0:7354z�1 þ 0:9217z�2

yðnÞ ¼ 0:9609xðnÞ þ 0:7354xðn� 1Þ þ 0:9609xðn� 2Þ
�0:7354yðn� 1Þ � 0:9217yðn� 2Þ

8.17. a. H
�
z
� ¼ 0:0242þ 0:0968z�1 þ 0:1452z�2 þ 0:0968z�3 þ 0:0242z�4

1� 1:5895z�1 þ 1:6690z�2 � 0:9190z�3 þ 0:2497z�4

yðnÞ ¼ 0:0242xðnÞ þ 0:0968xðn� 1Þ þ 0:1452xðn� 2Þ
þ 0:0968xðn� 3Þ þ 0:0242xðn� 4Þ þ 1:5895yðn� 1Þ � 1:6690yðn� 2Þ
þ0:9190yðn� 3Þ � 0:2497yðn� 4Þ

8.19. a. H
�
z
� ¼ 1

1� 0:3679z�1

y
�
n
� ¼ xðnÞ þ 0:3679y

�
n� 1

�
8.21. a. H

�
z
� ¼ 0:1� 0:09781z�1

1� 1:6293z�1 þ 0:6703z�2

yðnÞ ¼ 0:1xðnÞ � 0:0978xðn� 1Þ þ 1:6293yðn� 1Þ � 0:6703yðn� 2Þ

8.23. H
�
z
� ¼ 0:9320� 1:3180z�1 þ 0:9320z�2

1� 1:3032z�1 þ 0:8492z�2

yðnÞ ¼ 0:9320xðnÞ � 1:3180xðn� 1Þ þ 0:9329xðn� 2Þ þ 1:3032yðn� 1Þ � 0:8492yðn� 2Þ

8.25. H
�
z
� ¼ 0:9215þ 0:9215z�1

1þ 0:8429z�1

yðnÞ ¼ 0:9215xðnÞ þ 0:9215xðn� 1Þ � 0:8429yðn� 1Þ

8.27. H
�
z
� ¼ 0:9607� 0:9607z�1

1� 0:9215z�1

yðnÞ ¼ 0:9607xðnÞ � 0:9607xðn� 1Þ þ 0:9215yðn� 1Þ
8.29. a.

z −1

++

0.3430

0.68590.7075−

x n( )

0.3430

0.7313−

z −1

z −1

++
y n( )0.4371

0.87420.1316

0.4371

0.1733−

z −1

y n1( )w n1( ) w n2 ( )

b. For section 1: w1ðnÞ ¼ xðnÞ � 0:7075w1ðn� 1Þ � 0:7313w1ðn� 2Þ
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y1ðnÞ ¼ 0:3430w1ðnÞ þ 0:6859w1ðn� 1Þ þ 0:3430w1ðn� 2Þ

For section 2: w2ðnÞ ¼ y1ðnÞ þ 0:1316w2ðn� 1Þ � 0:1733w2ðn� 2Þ
y2ðnÞ ¼ 0:4371w2ðnÞ þ 0:8742w2ðn� 1Þ þ 0:4371w2ðn� 2Þ

8.30. H
�
z
� ¼ 0:9511z�1

1:0000 � 0:6180z�1 þ z�2
; y

�
n
� ¼ 0:9511x

�
n� 1

�þ 0:618y
�
n� 1

�� y
�
n� 2

�

8.32. a. H852

�
z
� ¼ 0:6203z�1

1� 1:5687z�1 þ z�2
, H1477

�
z
� ¼ 0:9168z�1

1� 0:7986z�1 þ z�2

b. y852ðnÞ ¼ 0:6203xðn� 1Þ þ 1:5678y852ðn� 1Þ � y852ðn� 2Þ
y1477ðnÞ ¼ 0:9168xðn� 1Þ þ 0:7986y1477ðn� 1Þ � y1477ðn� 2Þ
y9ðnÞ ¼ y1477ðnÞ þ y852ðnÞ

8.34. X
�
0
� ¼ 2; jX�0�j2 ¼ 4; A0 ¼ 0:5 ðsingle sideÞ

X
�
1
� ¼ 1� j3; jXð1Þj2¼ 10; A1 ¼ 1:5811 ðsingle sideÞ

8.36. A0 ¼ 2:5, A2 ¼ 0:5
8.39. Chebyshev notch filter 1: order ¼ 2

H
�
z
� ¼ 0:9915� 1:9042z�1 þ 0:9915z�2

1:0000� 1:9042z�1 þ 0:9830z�2

Chebyshev notch filter 2: order ¼ 2

H
�
z
� ¼ 0:9917� 1:3117z�1 þ 0:9917z�2

1:0000� 1:3117z�1 þ 0:9835z�2

8.41. Filter order ¼ 4

H
�
z
� ¼ 0:1103þ 0:4412z�1 þ 0:6618z�2 þ 0:4412z�3 þ 0:1103z�4

1:0000 þ 0:1509z�1 þ 0:8041z�2 � 0:1619z�3 þ 0:1872z�4

8.43. Filter order ¼ 4

H
�
z
� ¼ 0:0300� 0:0599z�2 þ 0:0300z�4

1:0000� 0:6871z�1 þ 1:5741z�2 � 0:5177z�3 þ 0:5741z�4

8.45. H
�
z
� ¼ 0:5878z�1

1� 1:6180z�1 þ z2

yðnÞ ¼ 0:5878xðn� 1Þ þ 1:6180yðn� 1Þ � yðn� 2Þ

8.47. X
�
0
� ¼ 1; jXð0Þj2 ¼ 1; A0 ¼ 0:25 ðsingle sideÞ

X
�
1
� ¼ 1� j2; jXð1Þj2¼ 5; A1 ¼ 1:12 ðsingle sideÞ
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CHAPTER 9
9.1. 0:2560123 ðdecimalÞ ¼ 0: 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 ðQ� 15Þ
9.2. �0:2160123� 215 ¼ �707810 ¼ 1110010001011010

� 0:2160123 ðdecimalÞ ¼ 1: 1 1 0 0 1 0 0 0 1 0 1 1 0 1 0 ðQ� 15Þ

9.5. 0:1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 ¼ 0:6591186

1:0 1 0 1 0 1 1 1 0 1 0 0 0 1 0ðQ� 15Þ ¼ �0:6591186

9.6. 0:0 0 1 0 0 0 1 1 1 1 0 1 1 1 0ðQ� 15Þ ¼ 0:1400756
9.9. 1:1 0 1 0 1 0 1 1 1 0 0 0 0 0 1þ 0:0 1 0 0 0 1 1 1 1 0 1 1 0 1 0

¼ 1:1 1 1 1 0 0 1 1 0 0 1 1 0 1 1

9.13. a. 1101 011100001100
b. 0100 101011001001

9.15. 1101 011100011011ðfloatingÞ ¼ 0:8881835� 2�3 ðdecimalÞ
0100 101111100101

�
floating

� ¼ �0:5131835� 24 ðdecimalÞ
0:8881835 � 2�3 ðdecimalÞ ¼ 0:0069389� 24 ðdecimalÞ

¼ 0100 000000001110ðfloatingÞ

0100 101111100101ðfloatingÞ þ 0100 000000001110ðfloatingÞ
¼ 0100 101111110011ðfloatingÞ ¼ �8:1016ðdecimalÞ

9.18. ð�1Þ1 � 1:025� 2160�127 ¼ �8:8047� 109

9.20. ð�1Þ0 � 1:625� 21;536�1;023 ¼ 4:3575� 10154

9.25. B ¼ 2; S ¼ 2

xs
�
n
� ¼ xðnÞ

2

ysðnÞ ¼ �0:18xsðnÞ þ 0:8xsðn� 1Þ þ 0:18xsðn� 2Þ

yðnÞ ¼ 4ysðnÞ

9.26. S ¼ 1; C ¼ 2

xs
�
n
� ¼ x

�
n
�
; ys

�
n
� ¼ 0:75xs

�
n
�þ 0:15yf

�
n� 1

�
; yf

�
n
� ¼ 2ys

�
n
�
; y

�
n
� ¼ yf

�
n
�

9.29. S ¼ 8; A ¼ 2; B ¼ 4

xsðnÞ ¼ xðnÞ=8; wsðnÞ ¼ 0:5xsðnÞ � 0:675wðn� 1Þ � 0:25wðn� 2Þ;
wðnÞ ¼ 2wsðnÞ

ysðnÞ ¼ 0:18wðnÞ þ 0:355wðn� 1Þ þ 0:18wðn� 2Þ; yðnÞ ¼ 32ysðnÞ
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CHAPTER 10
10.1. w� ¼ 2 and Jmin ¼ 10
10.3. w� ¼ �5 and Jmin ¼ 50
10.5. w�zw3 ¼ 1:984 and Jmin ¼ 10:0026
10.7. w�zw3 ¼ �4:992 and Jmin ¼ 5:0001
10.9. a. yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ

eðnÞ ¼ dðnÞ � yðnÞ
wð0Þ ¼ wð0Þ þ 0:2� eðnÞxðnÞ
wð1Þ ¼ wð1Þ þ 0:2� eðnÞxðn� 1Þ

b. For n ¼ 0 :

yð0Þ ¼ 0

eð0Þ ¼ 3

wð0Þ ¼ 1:8

wð1Þ ¼ 1

For n ¼ 1 :

yð1Þ ¼ 1:2

eð1Þ ¼ �3:2

wð0Þ ¼ 2:44

wð1Þ ¼ �0:92

For n ¼ 2 :

yð2Þ ¼ 5:8

eð2Þ ¼ �4:8

wð0Þ ¼ 0:52

wð1Þ ¼ 0:04

10.13. a. nðnÞ ¼ 0:5$xðn� 5Þ
b. xxðnÞ ¼ 5;000$dðnÞ, yyðnÞ ¼ 0:7071xxðn� 1Þ þ 1:4141yyðn� 1Þ � yyðn� 2Þ
c. dðnÞ ¼ yyðnÞ � nðnÞ
d. For i ¼ 0;/; 24, wðiÞ ¼ 0

y
�
n
� ¼

X24
i¼ 0

wðiÞxðn� iÞ
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eðnÞ ¼ dðnÞ � yðnÞ
For i ¼ 0;/; 24

wðiÞ ¼ wðiÞ þ 2meðnÞxðn� iÞ
10.15. a. wð0Þ ¼ wð1Þ ¼ wð2Þ ¼ 0, m ¼ 0:1

yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ þ wð2Þxðn� 2Þ
eðnÞ ¼ dðnÞ � yðnÞ
wð0Þ ¼ wð0Þ þ 0:2eðnÞxðnÞ
wð1Þ ¼ wð1Þ þ 0:2eðnÞxðn� 1Þ
wð2Þ ¼ wð2Þ þ 0:2eðnÞxðn� 2Þ

b. For n ¼ 0 : yð0Þ ¼ 0, eð0Þ ¼ 0, wð0Þ ¼ 0, wð1Þ ¼ 0, wð2Þ ¼ 0
For n ¼ 1 : yð1Þ ¼ 0, eð1Þ ¼ 2, wð0Þ ¼ 0:4, wð1Þ ¼ 0:4, wð2Þ ¼ 0
For n ¼ 2 : yð2Þ ¼ 0, eð2Þ ¼ �1, wð0Þ ¼ 0:6, wð1Þ ¼ 0:2,wð2Þ ¼ �0:2

10.17. a. wð0Þ ¼ wð1Þ ¼ 0, m ¼ 0:1
xðnÞ ¼ dðn� 3Þ
yðnÞ ¼ wð0ÞxðnÞ þ wð1Þxðn� 1Þ
eðnÞ ¼ dðnÞ � yðnÞ
wð0Þ ¼ wð0Þ þ 0:2eðnÞxðnÞ
wð1Þ ¼ wð1Þ þ 0:2eðnÞxðn� 1Þ

b. For n ¼ 0 : xð0Þ ¼ 0, yð0Þ ¼ 0, eð0Þ ¼ �1, wð0Þ ¼ 0, wð1Þ ¼ 0
For n ¼ 1 : xð1Þ ¼ 0, yð1Þ ¼ 0, eð1Þ ¼ 1, wð0Þ ¼ 0, wð1Þ ¼ 0
For n ¼ 2 : xð2Þ ¼ 0, yð2Þ ¼ 0, eð2Þ ¼ �1, wð0Þ ¼ 0, wð1Þ ¼ 0
For n ¼ 3 : xð3Þ ¼ �1, yð3Þ ¼ 0, eð3Þ ¼ 1, wð0Þ ¼ �0:2, wð1Þ ¼ 0
For n ¼ 4 : xð4Þ ¼ 1, yð4Þ ¼ �0:2, eð4Þ ¼ �0:8, wð0Þ ¼ �0:36, wð1Þ ¼ 0:16

10.18. a. 30 coefficients
10.20. For i ¼ 0;/; 19, wðiÞ ¼ 0

yðnÞ ¼
X19
i¼ 0

wðiÞxðn� iÞ

eðnÞ ¼ dðnÞ � yðnÞ
For i ¼ 0;/; 19

wðiÞ ¼ wðiÞ þ 2meðnÞxðn� iÞ

CHAPTER 11
11.1. a. D ¼ 0:714

b. For x ¼ 1:6 volts, binary code ¼ 110, xq ¼ 1:428 volts, and eq ¼ �0:172 volts
For x ¼ �0:2 volts, binary code ¼ 000, xq ¼ 0 volts, and eq ¼ 0:2 volts
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11.5. For x ¼ 1:6 volts, binary code ¼ 111, xq ¼ 1:132 volts, and eq ¼ �0:468 volts
For x ¼ �0:2 volts, binary code ¼ 010, xq ¼ �0:224 volts, and eq ¼ �0:024 volts

11.9. a. 0 0 0 1 0 1 0 1
b. 1 1 1 0 0 1 1 1

11.10. a. 0 0 0 0 0 0 0 0 0 1 1 1
b. 1 0 1 1 0 0 1 1 0 0 0 0

11.13. 010

001

010

11.14. For binary code ¼ 110, x̂ð0Þ ¼ ~xð0Þ þ dqð0Þ ¼ 0þ 5 ¼ 5
For binary code ¼ 100, x̂ð1Þ ¼ ~xð1Þ þ dqð1Þ ¼ 5þ 0 ¼ 5
For binary code ¼ 110, x̂ð2Þ ¼ ~xð2Þ þ dqð2Þ ¼ 5þ 2 ¼ 7

11.17. a. 1:1
b. 2:1
c. 4:1

11.18. a. 128 KBPS
b. 64 KBPS
c. 32 KBPS

11.21. a. 12 channels
b. 24 channels
c. 48 channels

11.22. XDCTð0Þ ¼ 54; XDCTð1Þ ¼ 0:5412; XDCTð2Þ ¼ �4; XDCTð3Þ ¼ �1:3066
11.25. XDCTð1Þ ¼ 33:9730; XDCTð3Þ ¼ �10:4308; XDCTð5Þ ¼ 1:2001; XDCTð7Þ ¼ �1:6102
11.26. a. Inverse DCT: 10.0845 6.3973 13.6027 �2.0845

b. Recovered inverse DCT: 11.3910 8.9385 15.0615 �3.3910
c. Quantization error: 1.3066 2.5412 1.4588 �1.3066

11.29. a. �9.0711 �0.5858
�13:3137 � 0:0000
�7:8995 0:5858

b. 3, 4, 5, 4

CHAPTER 12
12.3 a.

Anti-aliasing
filter H(z)

x n( ) w n( )

4

y m( )

f Hzs = 8000 f Hzs = 8000 f KHzsM = 2000

↓

b. Hamming window, N ¼ 133, fc ¼ 900 Hz
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12.4. a.

Interpolation
filter H(z)

x n( ) w n( )

3↑

y m( )

f Hzs = 8000 24000sLf Hz= 24000sLf Hz=

b. Hamming window, N ¼ 133, fc ¼ 3;700 Hz

12.7. a.

Interpolation
filter H1(z)

x n( )
Anti-aliasing
filter H2(z)

y m( )

3↓4

↓

b. Combined filter HðzÞ: Hamming window, N ¼ 133, fc ¼ 2;700 KHz

12.8. a.

x n( )
Anti-aliasing
filter H2(z)

y m( )
4↓10↓

Anti-aliasing
filter H1(z)

320 kHzsf = 32 kHz 8 kHz

2egatS1egatS

b. M1 ¼ 10 and M2 ¼ 4
c. Filter specification for H1ðzÞ: Hamming window, N ¼ 43, fc ¼ 15; 700 Hz
d. Filter specification for H2ðzÞ: Hamming window, N ¼ 177, fc ¼ 3; 700 Hz

12.9.

↑2 +ρ0
10 25 05( ) . .z z= + −

ρ1 0 4( ) .z =

x n( ) y m0 ( )

y m1( )
z−1

y m( )

f s 2 ⋅ f s

w n0 ( )

w n1( )

+ρ0
10 25 0 5( ) . .z z= + −

ρ1
10 4 0 6( ) . .z z= + −

x n( ) y m0 ( )

y m1( )z−1

y m( )

f s
f s

2

w m0 ( )

w m1( )

(a)

(b)

↑2

↓2

↓2
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12.10.

(a) 
1

0 ( ) 0.25 0.5z zρ −= +

1( ) 0.4zρ =

x n( ) y n0 ( )

y n1( )

y m( )
f s

2 sf⋅

Switch

(b)
1

0 ( ) 0.25 0.5z zρ −= +

1
1( ) 0.4 0.6z zρ −= +

x n( )

y m0 ( )

y m1( )

y m( )

f s

Switch
+

2
sf

bank 0

bank 1

w m0 ( )

w m1( )

12.15. a. fs ¼ 2 fmax2
2ðn�mÞ ¼ 2� 15� 22�ð16�12Þ ¼ 7680 KHz

12 − bit ADC

Over sampling

f KHzs = 7680

Decimator

Over sampling rate
f fs

'
max= 2

Minimum sampling rate

12.17. a.

+
−

x n( ) Decimation
filter

y n( )
w n( )

H z
z

( ) =
− −

1

1 1

z−1

+

e n( ) Quantization
error

encoded by m bits

b. n ¼ 1þ 1:5� log2

�
128

2� 4

	
� 0:86z6 bits

12.18. a.

+
−

x n( )
y n( )

w n( )
H z

z
( ) =

− −

1

1 1

z−1

+

e n( ) Quantization error

H z
z

( ) =
− −

1

1 1 +
−

Decimator

4↓
Anti-aliasing LPF

encoded by 10 bits
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b. n ¼ mþ 2:5� log2

�
fs

2 fmax

	
� 2:14 ¼ 10þ 2:5� log2

�
160

2� 20

	
� 2:14

¼ 12:86z13 bits

12.21. a. fc=B ¼ 6 is an even number, which is case 1, so we select fs ¼ 10 kHz.

f

0 0452
kHz

30

f kHz

40200

Bandpass signal with
baseband bandwidth

B = 5 kHz

Bandpass signal
sampled at fs = 10 kHz

3520

0301

28 32

2

(a)

b. Since fc=B ¼ 5 is an odd number, we select fs ¼ 10 kHz.

f

0 0452
kHz

30

f kHz

40200

Bandpass signal with
baseband bandwidth

B = 5 kHz

Bandpass signal
sampled at fs = 10 kHz

3520

0301

23 27

3

(b)

c. Now, fc=B ¼ 6:6, which is a noninteger. We extend the bandwidth to B ¼ 5:5 kHz, so
fc=B ¼ 6 and fs ¼ 2B ¼ 11 kHz.

f

0 31 40
kHz

30

f kHz

40200

Bandpass signal with
baseband bandwidth

B = 5.5 kHz

Bandpass signal
sampled at fs = 11 kHz

3520

0301

33

2

(c)
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CHAPTER 13
13.1. a. B ¼ fsM=2 ¼ fs=ð2MÞ; fc ¼ 2ðfs=ð2MÞÞ ¼ 2B; fc=B ¼ 2 ¼ even

4↓

( )w n ( )x m

( )X f

f
/ 2sf

sf / 4sM sf f=

/ 4sf

b. B ¼ fsM=2 ¼ fs=ð2MÞ; fc ¼ fs=ð2MÞ ¼ B; fc=B ¼ 1 ¼ odd

4↓

( )w n ( )x m

f
/ 2sf

sf / 4sM sf f=

/ 4sf

( )X f

13.3. From Equation (13.7), YðzÞ ¼ 1

2
ðWðzÞ þWðe�jpzÞÞ, YðejUÞ ¼ 1

2
ðWðejUÞ þWðejðU�pÞÞÞ,

WðejðU�pÞÞ is the shifted version ofWðejUÞ by fs=2.
(a)

(b)
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13.5. H1

�
z
� ¼ � 1ffiffiffi

2
p þ 1ffiffiffi

2
p z�1; G0

�
z
� ¼ 1ffiffiffi

2
p þ 1ffiffiffi

2
p z�1; G1

�
z
� ¼ 1ffiffiffi

2
p � 1ffiffiffi

2
p z�1

13.7. H1ðzÞ ¼ 0:129þ 0:224z�1 � 0:837z�2 þ 0:483z�3

G0ðzÞ ¼ �0:129þ 0:224z�1 þ 0:837z�2 þ 0:483z�3

G1ðzÞ ¼ 0:483� 0:837z�1 þ 0:224z�2 þ 0:129z�3

13.9.

0H 2↓

( )x n
( )x n

1H 2↓

+

Analysis stage Synthesis stage

2↓

2↓

2↑

2↑

+
0G2↑

2↑ 1G

13.11.

0 2 4 6
-1

0

1

Time (sec.)

f(t
)

0 2 4 6
-1

0

1

Time (sec.)

(a
) f

(4
t)

0 2 4 6
-1

0

1

Time (sec.)

(b
) f

(t-
2)

0 2 4 6
-1

0

1

Time (sec.)

(c
) f

(2
t-3

)

0 2 4 6
-1

0

1

Time (sec.)

(d
) f

(t/
2)

0 2 4 6
-1

0

1

Time (sec.)

(e
) f

(t/
4-

0.
5)
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13.13.

0 2 4 6
–2

0

2

Time (sec.)

f(t
)

0 2 4 6
–2

0

2

Time (sec.)

(a
) f

(4
t)

0 2 4 6
–2

0

2

Time (sec.)

(b
) f

(t-
2)

0 2 4 6
–2

0

2

Time (sec.)

(c
) f

(2
t-3

)

0 2 4 6
–2

0

2

Time (sec.)

(d
) f

(t/
2)

0 2 4 6
–2

0

2

Time (sec.)

(e
) f

(t/
4-

0.
5)

13.15.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

j=
0

t (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

j=
1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

j=
2
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13.17. a. f ðtÞ ¼ 4fð2tÞ � 2fð2t � 1Þ
b. f ðtÞ ¼ fðtÞ þ 3jðtÞ

13.19. a. f ðtÞ ¼ ð2=pÞfð2tÞ � ð2=pÞfð2t � 1Þ
b. f ðtÞ ¼ ð2=pÞjðtÞ

13.21. a.

PN
k¼�N

ffiffiffi
2

p
h0
�
k
�
f
�
4t � k

� ¼ ffiffiffi
2

p
h0
�
0
�
f
�
4t
�þ ffiffiffi

2
p

h0
�
1
�
f
�
4t � 1

�
¼ ffiffiffi

2
p � 0:707fð4tÞ þ ffiffiffi

2
p � 0:707fð4t � 1Þ ¼ fð4tÞ þ fð4t � 1Þ ¼ fð2tÞb.

PN
k¼�N

ffiffiffi
2

p
h1
�
k
�
f
�
4t � k

� ¼ ffiffiffi
2

p
h1
�
0
�
f
�
4t
�þ ffiffiffi

2
p

h1
�
1
�
f
�
4t � 1

�
¼ ffiffiffi

2
p � 0:707f

�
4t
�þ ffiffiffi

2
p �� 0:707

�
f
�
4t � 1

� ¼ f
�
4t
�� f

�
4t � 1

� ¼ j
�
2t
�

13.23. wðkÞ ¼ ½5:5000 0:5000 7:0711 2:1213�
13.25. cðkÞ ¼ ½2:2929 3:7071 2:4142 � 0:4142�
13.27. cðkÞ ¼ ½2:1213 3:5355 2:8284 0�

CHAPTER 14
14.1. a. 76.8 K bytes

b. 921.6 K bytes
c. 1920.768 K bytes

14.3. Y ¼ 142; I ¼ 54; Q ¼ 11
14.5."

53 44

59 50

#

14.7. 2
66664
1 4 6 6 1

6 4 4 6 4

4 4 6 6 6

1 6 7 7 4

3
77775

14.9. 2
66664
102 109 104 51

98 101 101 54

98 103 100 51

50 55 51 25

3
77775
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14.10. 2
66664
0 100 100 0

0 100 100 100

0 100 100 100

0 100 0 0

3
77775

14.11. a.

Vertical Sobel detector:

2
64
�1 0 1

�2 0 2

�1 0 1

3
75 Processed image:

2
6666664

225 125 130 33

249 119 136 6

249 119 136 6

255 125 130 0

255 128 128 30

3
7777775

b.

Laplacian edge detector:

2
64
0 1 0

1 �4 1

0 1 0

3
75 Processed image:

2
6666664

0 106 106 0

106 255 255 106

106 255 255 106

117 223 223 117

0 117 117 0

3
7777775

14.13. Blue is dominant in the area pointed to by the arrow; red is dominant in the background.
14.15.

X
�
u; v

� ¼
"

460 �40

�240 �140

#
and A

�
u; v

� ¼
"
115 10

60 35

#

14.16.

Forward DCT: Fðu; vÞ ¼
"

230 �20

�120 �70

#

14.17.

Inverse DCT: pði; jÞ ¼
"
110 100

100 90

#

14.19. a. (0, �2) (3, 4), (2, �3), (0, 7), (4, �2), (0, 0)

b.
ð0000; 0010; 01Þ; ð0011; 0011; 100Þ; ð0010; 0010; 00Þ;
ð0000; 0011; 111Þ; ð0100; 0010; 01Þ; ð0000; 0000Þ

14.19. a. (0, �2) (3, 4), (2, �3), (0, 7), (4, �2), (0, 0)

b. ð0000; 0010; 01Þ; ð0011; 0011; 100Þ; ð0010; 0010; 00Þ;
ð0000; 0011; 111Þ; ð0100; 0010; 01Þ; ð0000; 0000Þ
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14.20. w ¼ 230:0000� 20:0000
�120:0000� 70:0000

14.21. f ¼ 110:0000 100:0000
100:0000 90:0000

14.23. f ¼ 115:0000 145:0000 25:0000 45:0000

105:0000 135:0000 5:0000 25:0000

30:0000 20:0000 7:5000 27:5000

10:0000 -0:0000 -7:5000 12:5000

14.28. Hint :

Composite� 2 sin ð2pfsctÞ ¼ Y � 2 sin ð2pfsctÞ þ I cos ð2pfsctÞ � 2 sin ð2pfsctÞ
þ Q� 2 sin 2ð2pfsctÞ ¼ Y � 2 sin ð2pfsctÞ þ I sin ð2� 2pfsctÞ

þ Q� Q cos ð2� 2pfsctÞ

Then apply lowpass filtering.

14.35.
80� 80

16� 16
ð162 � 322 � 3Þ ¼ 19:661� 106 operations

APPENDIX B
B.1. A0 ¼ 0:4; A1 ¼ 0:7916; A2 ¼ 0:7667; A3 ¼ 0:7263; A4 ¼ 0:6719

jc0j ¼ 0:4; jc1j ¼ jc�1j ¼ 0:3958;

jc2j ¼ jc�2j ¼ 0:3834; jc3j ¼ jc�3j ¼ 0:3632; jc4j ¼ jc�4j ¼ 0:3359

B.3. xðtÞ ¼ 2þ 3:7420� cos ð2000ptÞ þ 3:0273� cos ð4000ptÞ
þ 2:0182� cos ð6000ptÞ þ 0:9355� cos ð8000ptÞ þ/

f2 ¼ 2000 Hz; A2 ¼ 3:0273

B.5. X
�
f
� ¼ 5

�
sinpf

pf

	2

B.7. a. XðsÞ ¼ 10
b. XðsÞ ¼ �100=s2

c. X
�
s
� ¼ 10

sþ 2

d. X
�
s
� ¼ 2e�5s

s

e. X
�
s
� ¼ 10s

s2 þ 9
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f. X
�
s
� ¼ 14:14þ 7:07s

s2 þ 9

g. X
�
s
� ¼ 3ðsþ 2Þ

ðsþ 2Þ2 þ 9

h. X
�
s
� ¼ 12; 000

s6

B.9. a. X
�
s
� ¼ 7:5

sðsþ 1:5Þ
b. xðtÞ ¼ 5uðtÞ � 5e�1:5tuðtÞ

B.11. a. zero: s ¼ 3, poles: s ¼ �2, s ¼ �2, stable
b. zeros: s ¼ 0, s ¼ �2:236j, poles: s ¼ �3j, s ¼ �1� 1:732j, marginally stable
c. zeros: s ¼ �j, s ¼ �1, poles: s ¼ 0, s ¼ �3, s ¼ �4, s ¼ �8, s ¼ 1, unstable

B.13. a. H
�
ju
� ¼ 1

ju

5
þ 1

b. A
�
u
� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�u
5

�2
r ; b

�
u
� ¼ :� tan

�u
5

�

c. Yðj2Þ ¼ 4:6424:� 21:800 that is, yssðtÞ ¼ 4:6424 sin ð2t � 21:800ÞuðtÞ
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Index

Note: Page Numbers with “f” denote figures; “t” tables

A
Adaptive filters

adaptive echo cancellers, 479–480, 479f

electrocardiography interference cancellation,

476–478, 477f, 478f

least mean square adaptive FIR filters

corrupted signal and noise reference, 455–457, 456f,

456t

desired signal spectrum, 453, 454f

noise canceller, 454, 454f

one-tap FIR filter, 455, 457

linear prediction

line enhancement, 473–475, 473f, 474f, 475f

periodic interference cancellation, 476, 476f

long-distance telephone circuit, 479, 479f

noise cancellation, see Noise cancellation

system modeling, 468, 468f

MATLAB program, 470

spectrum for, 470, 472f

unknown system’s frequency responses, 469, 470f

waveforms for, 470, 471f

TMS320C6713 DSK, see TMS320C6713 DSK

Wiener filter theory

autocorrelation and cross-correlation, 459

LMS algorithm, 461–462

mean square error quadratic function, 457–458,

458f

noise cancellation, 457, 457f

statistical expectation, 457–458, 461–462

steepest descent algorithm, 459, 460f, 461–462
Adaptive differential pulse code modulation (ADPCM)

decoder, 512–514, 513f

discrete function, 514–515, 515t

encoder, 512–514, 513f

FIR filter, 516–517

input and output characteristics, 514, 514t

16-level nonuniform adaptive quantizer, 514

performance measurement, 518

predictor z-transfer function, 516–517

scale factor, 514–515

speech samples, 517–518, 517f
ADC, see Analog-to-digital conversion (ADC)

Address generators

circular buffering, 409, 410f

equivalent FIFO, 410f, 411

FIR filtering, 411
Aliasing level, 28

Amplitude modulation (AM), 603, 603f

Amplitude spectrum

DFT, 87, 88f, 97–101

Fourier series, 89, 89f
Analog-to-digital conversion (ADC)

binary codes, 40, 41f

2-bit flash ADC unit, 36, 36f

implementation, 35–36

oversampling, 587, 587f

benefits of, 586

continuous vs. regular sampled vs. oversampled signal

amplitudes, 588–589, 591f

frequency response, 588–589, 589f

in-band frequency range, 587

MATLAB program, 589

oversampling ratio, definition, 585–586

quantization noise power, 586–588

regular ADC system, 586–587, 586f

time vs. frequency domains, 588–589,

590f

quantization

bipolar quantizer, 38–40, 39f, 40t

definition, 35, 36f

error, 37

notations and rules, 38

process, 37

SNR, 47

unipolar quantizer, 38, 38f, 39t

SDM ADC, see Sigma-delta modulation analog-

to-digital conversion (SDM ADC)
Analog filters

lowpass prototype transformation, 305,

306t

bandpass filter, 305, 306f

bandstop filter, 305, 306f

cutoff frequency, 304–305

highpass filter, 305, 305f

lowpass filter, 304, 304f

magnitude response, 304–305

MATLAB function, 307

steady-state frequency response, 178
Analog m-law companding

characteristics, 502, 502f

compressor, 501, 501f

expander, 501–502, 501f

original speech data, 504, 505f

quantization error, 501
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Analog signal processing

convolution, 798–799

Fourier series

amplitude and phase spectrum, 779

amplitude-phase form, 776

complex exponential form, 776–782, 784t

Fourier transform, 786–791, 789t, 790t

rectangular waveform, 780, 780f

sine-cosine form, 775, 780, 783t

Laplace transform

differential equations, 793–794

and table, 791–793, 791t

transfer function, 794–795

poles, zeros and stability, 795–796

sinusoidal steady-state response, 799–804
Analog system program, 482

Analog video

“back porch”, 748

electrical signal demodulation, 748–750, 749f

frame via row-wise scanning, 747

frequency modulation, 751

interlaced raster scanning, 747, 748f

NTSC TV standard, 750, 751f

PAL system, 752

QAM, 751–752

SECAM system, 752, 752t

vertical synchronization, 749f, 750

video data, retrace and sync layout, 750, 750f

video-modulated waveform, 747, 748f
Analysis filter

channel 0, 622, 623f

channel 1, 622, 623f

channel 2, 622–624, 624f

channel 3, 624, 625f

4-channel filter bank, 621–622, 622f
Anti-aliasing filter

aliasing level percentage, 28

Butterworth magnitude frequency response,

25–26

Sallen-Key lowpass filter, 26–27, 26f

sampled analog signal, 25, 26f
Anti-image filter

DAC unit, 30–31, 30f

sample-and-hold effect

digital equalizer, 32, 33f

and distortion percentage, 31f, 32

lowpass filtering effect, 30–31, 31f

shaping effect, 32, 33f

transfer function, 30–31
Application-specific integrated circuit (ASIC), 412

Auxiliary register arithmetic units (ARAUs),

428–429

B
Bandpass filters

amplitude spectra, 203, 205f

analog lowpass filters, 321, 322f

design specifications, 389

digital Chebyshev lowpass prototype functions, 321, 322f,

331–337

digital fourth-order bandpass Butterworth filter, 203

frequency responses, 203, 203f

lowpass prototype transformation, 305, 306f

MATLAB program, 204

normalized filter, 187, 187f

original and filtered speech plots, 203, 204f

second-order bandpass filter, 352–354, 353f
Bandpass signals, undersampling, 603–608, 603f, 604f,

605f, 606f

Bandstop filters

digital Butterworth lowpass prototype functions,

331–337

digital Chebyshev lowpass prototype functions,

331–337

lowpass prototype transformation, 305, 306f

normalized filter, 188, 188f
Bartlett window, 230, 231f

Bilinear transformation (BLT) design method, 391

analog filters, lowpass prototype transformation,

305, 306t

bandpass filter, 305, 306f

bandstop filter, 305, 306f

cutoff frequency, 304–305

highpass filter, 305, 305f

lowpass filter, 304, 304f

magnitude response, 304–305

MATLAB function, 307

design procedure, 303–304, 303f, 314–318, 316t

frequency warping, 312, 313f

digital frequency, 312

digital integration method, 308, 309f

graphical representation, 313, 314f

Laplace transfer function, 309–310

mapping properties, 310, 310f

s-plane vs. z-plane, frequency mapping, 312, 312f

z-transform, 309–310
Bipolar quantizer, 38–40, 39f, 40t

Blackman window, 230, 231f

BLT design method, see Bilinear transformation (BLT)

design method

Bounded-in and bounded-out (BIBO) stability,

71–72, 71f

Butterworth filters, 338–340, 338t, 339t

see also Digital Butterworth lowpass prototype functions

Butterworth magnitude frequency response, 25–26
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C
Cascade (series) realization method, 192, 195, 196f

Causal system, 66–67

CD recording system, see Compact-disc (CD) recording

system

Chebyshev filters, 388–389

see also Digital Chebyshev lowpass prototype functions

Chebyshev polynomial approximation, 269

Chrominance channels, 688–689

Circular convolution

forward filter coefficients, 670

reversed filter coefficients, 668
Comité Consultatif International Téléphonique et

Télégraphique (CCITT), 754

Compact-disc (CD) recording system

decoder, 8f, 9

encoder, 7–9, 8f
Companding

analog m-law companding, see Analog m-law companding

digital m-law companding, see Digital m-law companding
Component video, 746

Composite video, 746

Compression, see Discrete cosine transform (DCT)

see also image compression

Conjugate quadrature filter (CQF), 630

Continuous wavelet transform (CWT), 638, 641

Convolution, 72–80, 798–799

impulse response, 69

linear, 142–143
Cyclic redundancy check (CRC) code, 526

D
DAC, see Digital-to-analog conversion (DAC)

DCT, see Discrete cosine transform (DCT)

Decimation, 556

Decimation filter, 581, 581f, 582t

commutative model, 582–583, 583f

filter bank coefficients, 582

implementation, 582, 582f, 584

three-tap decimation filter, 581
Decimation-in-frequency method

bit reversal process, 126, 127f

eight-point FFT

12 complex multiplications, 124–126, 125f

first iteration, 123–124, 125f

inverse of, 127–128, 127f

second iteration, 124, 125f

graphical operations, 123–124, 125f

index mapping for, 126, 126t

inverse FFT, definition, 126

twiddle factor, 123–124
Decimation-in-time method

eight-point FFT algorithm, 128–129, 130f

eight-point IFFT, 129–131, 131f

first iteration, 128–129, 130f

frequency bins, 128–129

second iteration, 128–129, 130f
Decomposition, see Two-channel perfect reconstruction

quadrature mirror filter bank

Delta modulation (DM), 511

Denoise, 668, 670f

DFT, see Discrete Fourier transform (DFT)

Difference equation, 67–68, 79

DSP system, input and output, 162, 162f

filter() function, 165

filtic() function, 165

nonzero initial conditions, 165

transfer function

impulse response, 169

step response, 169

system response, 169–172

z-transfer function, 166–167, 166f

zero initial conditions, 165
Differential pulse code modulation (DPCM)

3-bit quantizer, 509, 510t

direct-current coefficients, 736

encoder and decoder, 509, 509f

quantization step size, 512
Digital-to-analog conversion (DAC), 47

anti-image filter and equalizer, 30–31, 30f

process, 40, 41f

quantization error, 40–42

quantization noise, 42

quantized vs. original signal, 44f

R-2R ladder DAC, 36–37, 37f

SNR, 42
Digital audio equalizer, 341f

audio spectrum, 343–344, 343f

audio test signal, 343–344

filter banks design, 342, 342t

magnitude frequency responses, 342, 342f

MATLAB program, 344

specifications for, 341, 341t
Digital Butterworth lowpass prototype functions, 318, 319t

magnitude response function, 318, 320f

prototype filter order, 318–320
Digital Chebyshev lowpass prototype functions, 318, 319t,

320t

analog filter specification conversion, 321, 322t

analog lowpass and bandpass filters, 321, 322f

lowpass prototype order, 321

magnitude response function, 320–321, 321f
Digital convolution, 72–80

Digital crossover design
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Digital crossover design (Continued)

lowpass and highpass filters

impulse responses, 260, 261f

magnitude frequency responses, 260, 260f, 261f

speaker drivers, 258–259, 259f

specifications, 259–260
Digital filtering system

analog filter steady-state frequency response, 178

difference equation, see Difference equation

digital filters, see Digital filters

Euler’s formula, 179

FIR and IIR systems, 186

frequency response properties, 180

inverse z-transform, 179

magnitude frequency response, 178, 181

normalized digital frequency, 178

signal enhancement

biomedical signals, 199

ECG signal, notch filtering, 205–206, 206f, 207f, 208f

speech signals, see Speech signals

sinusoidal inputs, system response, 180, 181f

steady-state frequency responses, 178, 178f, 180

system transient response, 178, 178f

types

freqz() function, 188

normalized bandpass filter, 187, 187f

normalized bandstop filter, 188, 188f

normalized highpass filter, 187, 187f

normalized lowpass filter, 186f, 187

passband, stopband and transition band, 186

z-plane pole-zero plot, 172f

analog-to-digital conversion, 174

bounded-in/bounded-out stability, 175

features, 172

Laplace shift property, 174

Laplace vs. z-transform, 173, 174f

s-plane vs. z-plane mapping, 175, 175f

stability rules, 175, 176f
Digital filters

cascade (series) realization method, 192, 195, 196f

direct-form II realization method, 192–195, 195f

direct-form I realization method, 192–193, 194f

parallel realization method, 192, 196–199, 196f

sinusoidal steady-state response, 813f

inverse z-transform, 814

magnitude and phase response, 814

properties of, 815–816

z-transform output, 813
Digital m-law companding

8-bit compressed PCM code format, 505–506, 506t, 508–

509, 508f

characteristics, 505, 506f

compressor and expander, 504, 505f

decoding table, 506–508, 507t

encoding table, 505–506, 507t
Digital signal processing (DSP), 1, 2f

aliasing distortion, 2

analog input signal, 2

audio signals and spectrums, 3, 5f

digital filtering, 3, 3f, 4f

DS processor, 2

real-world applications, 12, 12t

CD recording system, 7–9, 8f

data compressor, 7, 8f

data expander, 7, 8f

digital image enhancement, 9–12, 12f

interference cancellation, electrocardiography,

5–7, 7f

software audio players, 9

two-band digital crossover, 5, 6f

vibration signature analysis, 9, 10f, 11f

signal frequency (spectrum) analysis, 3, 4f

speech samples and spectrum, 4, 6f
Digital signal (DS) processor

adder output, 429

ASIC, 412

features, 406, 411

FIR filter, direct-form I implementation, 430, 430f

fixed-point format, 411–412

3-bit 2’s complement number, 412–413, 412t, 413t

computational units, 427

C program, 445–446, 446t, 447f, 448f

fractional binary 2’s complement system, 414

program control unit, 427

Q-30 format, 418, 418f

Q-format number, 415, 415f, 418

TMSC320C54x family architecture, 426–427, 426f

floating-point format, 411–412, 419, 419f

advantages, 427

ARAUs, 428–429

C programs, 445, 445f

IEEE format, 423–426, 423f, 425f

overflow, 422

rules for, 420

speech quality applications, 429

TMS320C3x processor, 427–428, 428f

underflow, 423

hardware units

address generators, see Address generators

MAC, 408–409, 409f

shifters, 409

Harvard architecture, 407, 407f

execution cycle, 407, 408f

pipelining operation, 408
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IIR filter

direct-form II implementation, 432, 432f

transfer function, 433

linear buffering, see Linear buffering

manufactures, 411

real-time processing

input and output sample clock, 438, 439f

program segment, 438, 440f

TMS320C6713 DSK setup, 438, 440f

scale factor, 429

second-order section filters, 434

TMS320C67x DSK, 436f, 437

C6713 DSK board, 434–436, 435f

memory and internal buses, 438

peripherals, 438

registers of, 437, 437f

software tool, 438

Texas InstrumentsVeloci� architecture, 437

TMS320C6713 DSK, 438, 439f

Von Neumann architecture, 406, 406f

applications, 408

execution cycles, 407, 408f

opcode and operand, 406
Digital signals

BIBO stability, 71–72, 71f, 80

causal system, 66–67

difference equation format, 67–68, 79

digital convolution, 72–80

digital samples, 58, 58f

digital sequences, 61, 61f

analog signal function, 62, 79

exponential function, 60, 60f, 61t

sampling rate, 61

shifted unit-impulse and unit-step sequences,

59, 59f

sinusoidal function, 60, 60f, 60t

unit-impulse sequence, 58–59, 59f

unit-step sequence, 59, 59f, 62

DS processor, 58

impulse response

digital convolution sum, 69

FIR system, 69

IIR system, 71

unit-impulse response, 68, 68f

linear system, 63–65, 64f

notation of, 57–58, 58f

time-invariant system, 65–66, 65f
Direct-form II realization method, 192–195, 195f

Direct-form I realization method, 192–193,

194f

Discrete cosine transform (DCT), 519–522, 524–525, 525f

coefficients, 731, 732t

scan order, 732, 733t

image compression

2D-DCT, 729–731

JPEG image compression, see JPEG image compression

lossless/lossy compression, 728

principle of, 729

wavelet transform, see Wavelet transform
Discrete Fourier transform (DFT), 625

amplitude spectrum, 87, 88f, 97–101

data window time, 97–101

definition, 88

FFT

applications of, 97, 97f

data sequence, 101–102

decimation-in-frequency method, see Decimation-in-

frequency method

decimation-in-time method, see Decimation-

in-time method

digital sequence sample, 123

interpolated spectrum, 102–103

zero-padding effect, 102–103, 102f

fft() and ifft() MATLAB functions, 93, 93t

formula development, 91, 92f

Fourier series, 132

see also Fourier series

amplitude spectral components, 90

coefficients, 88–89

periodic digital signal, 88, 89f

two-side line amplitude spectrum, 89, 89f

frequency bin, 95

frequency resolution, 96–101

inverse of, 93

phase spectrum, 97–101

power spectrum, 97–101

signal amplitude vs. sampling time instant, 87

spectral estimation, window functions

Hamming window, 109–110, 111f

see also Hamming window function

Hanning window, 109–110, 111f

periodic, continuous and band limited data,

107, 107f

rectangular window, 109–110, 111f

signal samples and spectra, 107–108, 108f

spectral leakage, 108

triangular window, 109–110, 111f

window operation, 108–109, 109f, 110f

twiddle factor, 92–93
Discrete wavelet transform (DWT)

discrete time function, 656–657

dwt() function, 671

dyadic subband coding structure, 657, 658f

IDWT, 656
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Discrete wavelet transform (DWT) (Continued)

idwt() function, 671

lowpass and highpass filter coefficients, 656

signal amplitude, 657

4-tap Daubechies filters, frequency response, 656, 657f

time-frequency plane, 661–664, 662f

time-frequency plot, 661–664, 661f

wavelet coefficients, 656

wavelet expansion, 655
Downsampling, 557f

data sequence, 556

definition, 556

MATLAB program, 559, 609

normalized stop frequency edge, 556–557

Nyquist sampling theorem, 556

spectral plots, 556–557, 558f

TMS320C6713 DSK, 608, 612f

using anti-aliasing filter, spectral plots, 558–559, 560f

without using anti-aliasing filter, spectral plots, 558, 559f

z-transform, 556–557
DPCM, see Differential pulse code modulation (DPCM)

DSP, see Digital signal processing (DSP)

Dual-tone multifrequency (DTMF) tone generator, 442

Goertzel algorithm, 392

advantages, 380

DFT algorithm, 377

DFT coefficient, 378–379

Euler’s identity, 378–379

MATLAB function, 382

modified second-order Goertzel IIR filter,

380–381, 381f

second-order Goertzel IIR filter, 310–311, 377

transfer function, 377

MATLAB program, 377

modified Goertzel algorithm, 384f

see also Modified Goertzel algorithm

ASCII code, 385–386

design principles, 383

frequency bins, 383, 384t

MATLAB simulation, 385–386, 386f

telephone touch keypads, 373–375, 373f, 376f
DWT, see Discrete wavelet transform (DWT)

E
Echo cancellation, 479–480, 479f

Edge detection, 717, 718f

differential convolution kernel, 715–716

grayscale image, 717, 719f

horizontal Sobel edge detector, 716

Laplacian edge detector, 716–717

Laplacian of Gaussian filter, 717, 719f

MATLAB functions, 718–721, 720f

vertical Sobel edge detector, 716
Electrocardiography (ECG)

60-Hz hum eliminator and heart rate detection, 392

cascaded frequency responses, 365, 366f

characteristics of, 362, 363f

design specifications, 364–365

harmonics, 364

heart rate, definition, 367–368

MATLAB program, 368

QRS complex, 362–364

signal enhancement system, 364, 364f

signal processing results, 366, 367f

signal spectrum, 362, 363f

transfer function and difference equation, 365

zero-crossing algorithm, 366–367, 368f

interference cancellation, 476–478, 477f, 478f
Equalizer, see Anti-image filter

Euler’s identity, 378–379

Exponent, floating-point format, 419

F
Fast Fourier transform (FFT), 3–4

applications of, 97, 97f

data sequence, 101–102

decimation-in-frequency method, see Decimation-in-

frequency method

decimation-in-time method, see Decimation-in-time

method

digital sequence sample, 123

interpolated spectrum, 102–103

zero-padding effect, 102–103, 102f
Father wavelet, 642, 644f

fconv() function, 670

fft() and ifft() MATLAB functions, 93, 93t

Finite impulse response (FIR) filter design, 69, 286t, 287

coefficient accuracy effects, 282–285

Fourier transform design, 221t, 222, 290

coefficient symmetry, 220

desired impulse response, 220, 221f

Fourier coefficients, 219

Gibbs oscillatory behavior, 224, 229

ideal lowpass filter, 219, 219f

ideal lowpass frequency response, 219, 219f

linear phase response, 223, 224f, 226–227, 226f, 227f

magnitude and phase frequency responses, 224, 225f

nonlinear phase response, 226, 227f

periodic frequency response, 219

sinusoidal sequence, 225

symmetric coefficients, 224–225

17-tap FIR lowpass filter coefficients, 224, 225t

z-transfer function, 220

frequency sampling, 286, 817–820
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design procedure, 263

desired filter frequency response, 262, 262f

DFT, 262

features, 262

IDFT, 262

magnitude frequency response, 269

input-output relationship, 217

linear phase form, 281, 282f

noise reduction

clean signal and spectrum, 254, 255f

data acquisition process, 253

MATLAB program, 255

noise signal and spectrum, 254, 254f

passband frequency range, 254

speech noise reduction, 256–257, 256f, 257f

stopband frequency range, 254

vibration signals, 257–258, 258f, 259f

optimal design method, 286–287

see also Parks-McClellan algorithm

transfer function, 218

transversal form, 280–281, 280f

two-band digital crossover

impulse responses, lowpass and highpass filters, 260,

261f

magnitude frequency responses, lowpass and highpass

filters, 260, 260f, 261f

speaker drivers, 258–259, 259f

specifications, 259–260

window method, 285–286

see also Window method
Finite precision, 35, 40–42

First-order IIR filter transfer function, 369–371

Fixed-point DS processor, 411–412

3-bit 2’s complement number, 412, 412t

fractional representation, 413, 413t

computational units, 427

direct-form II implementation, C code, 445–446, 446t,

447f, 448f

fractional binary 2’s complement system, 414

program control unit, 427

Q-30 format, 418, 418f

Q-format number, 415, 415f, 418

TMSC320C54x family architecture, 426–427, 426f
Floating-point DS processor, 411–412, 419, 419f

advantages, 427

ARAUs, 428–429

direct-form I implementation, C code, 445, 445f

IEEE format

double precision format, 425, 425f

single precision format, 423–424, 423f

overflow, 422

rules for, 420

speech quality applications, 429

TMS320C3x processor, 427–428, 428f

underflow, 423
Folding frequency, 20, 47

Fourier series, 132

amplitude-phase form, 776

amplitude and phase spectrum, 779

amplitude spectral components, 90

coefficients, 88–89

complex exponential form, 776–782

waveform signals, 784t

Fourier transform, 786–791

properties, 790t

waveform signals, 789t

periodic digital signal, 88, 89f

rectangular waveform, 780, 780f

sine-cosine form, 775, 780

waveform signals, 783t

two-side line amplitude spectrum, 89, 89f
Frequency modulation (FM), 751

Frequency resolution, 96–101

Frequency sampling method, 286

design procedure, 263

desired filter frequency response, 262, 262f

DFT, 262, 817

Euler formula, 817

features, 262

frequency response, 819–820

IDFT, 262

L’Hospital’s rule, 817

magnitude frequency response, 269
Frequency warping effect, 312, 313f

digital frequency, 312

digital integration method, 308, 309f

graphical representation, 313, 314f

Laplace transfer function, 309–310

mapping properties, 310, 310f

s-plane vs. z-plane, frequency mapping, 312, 312f

z-transform, 309–310

G
Gaussian filter kernel, 711–712

Gibbs effect, 224

Goertzel algorithm, 392

advantages, 380

DFT algorithm, 377

DFT coefficient, 378–379

Euler’s identity, 378–379

MATLAB function, 382

modified second-order Goertzel IIR filter, 380–381, 381f

second-order Goertzel IIR filter, 310–311, 377

transfer function, 377
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Grayscale histogram and equalization

equalized grayscale image, human neck, 695, 697f

new pixel value, 693–695

original grayscale image, human neck, 695, 696f

pixel value distribution, 692–693

H
Hamming window function, 230, 231f

ECG data, 118f, 119

seismic data, 116, 118f

speech data, 116, 117f

vibration signal, 119, 119f, 121f, 122f

vibration signature analysis, gearbox, 119–120,

120f
Hanning window, 230, 231f

Harvard architecture, 407, 407f

execution cycle, 407, 408f

pipelining operation, 408
High-definition TV (HDTV) formats, 754, 754t

Highpass filters

coefficients, 656

digital Butterworth lowpass prototype functions,

322–331

digital Chebyshev lowpass prototype functions,

322–331, 322f

impulse responses, 260, 261f

lowpass prototype transformation, 305, 305f

magnitude frequency responses, 260, 260f, 261f
Histogram equalization, 9–12

Horizontal Sobel edge detector, 716

Huffman coding, 528, 737, 737t

I
IDWT, see Inverse discrete wavelet transform (IDWT)

IEEE floating-point format

double precision format, 425, 425f

single precision format, 423–424, 423f
IIR filter design, see Infinite impulse response (IIR) filter

design

Image processing

24-bit color image equalization, 695, 698f

equalized RGB color image, 698, 699f

histogram equalization method, 698, 699f

original RGB color image, 698, 698f

RGB channels, equalization effects, 698–699, 700f

8-bit indexed color image equalization, 700–701, 701f,

702f

compression, DCT

2D-DCT, 729–731

JPEG image compression, see JPEG image compression

lossless/lossy compression, 728

principle of, 729

wavelet transform coding, seeWavelet transform coding

2D-DFT, 725

definition, histogram, 692

edge detection, 717, 718f

differential convolution kernel, 715–716

grayscale image, 717, 719f

horizontal Sobel edge detector, 716

Laplacian edge detector, 716–717

Laplacian of Gaussian filter, 717, 719f

MATLAB functions, 718–721, 720f

vertical Sobel edge detector, 716

grayscale histogram and equalization

equalized grayscale image, human neck, 695, 697f

new pixel value, 693–695

original grayscale image, human neck, 695, 696f

pixel value distribution, 692–693

image level adjustment

display level adjustment, 707

linear level adjustment, 704–706, 705f, 706f

MATLAB functions, 707, 708f

lowpass noise filtering

average convolution kernel, 709

Gaussian filter kernel, 711–712

noisy and enhanced image, 711–712, 711f, 712f,

713f

MATLAB functions, equalization, 702–704, 703f

median filtering

enhanced image, 714, 715f

“pepper and salt” noise, 714, 715f

principle of, 712–714

notation and data formats

8-bit color image, 687, 687f

24-bit color image, 686, 686f

8-bit grayscale image, 684–685, 685f

chrominance channels, 688–689

format conversion, 690–691, 691f

grayscale image conversion, RGB-to-YIQ

transformation, 690, 690f

image pixel notation, 684, 685f

intensity image, 688, 688f

luminance channel, 688–689

spatial resolution, 684

transformation and inverse transformation,

688–689

pseudo-color generation and detection

grayscale to pseudo-color pixel, 722, 722f

MATLAB code, 725

procedure for, 724f

sine functions, RGB transformations, 722, 723f

video sequence creation, 745–746, 746f, 747f

video signals, see Video signals
Impulse function, 374
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Impulse-invariant design method, 345f, 389, 392

filter DC gain, 348

inverse Laplace transform, analog impulse function, 345–

346

rectangular approximation, 346–348

sampling interval effect, 348, 349f

scaled magnitude frequency response, 347f, 348

second-order filter design, 348–351
Impulse response system

digital convolution sum, 69

FIR system, 69

IIR system, 71

unit-impulse response, 68, 68f
Infinite impulse response (IIR) filter design, 71, 389, 390t,

391f

bandpass filter design specifications, 389

BLT design method, 388

see also Bilinear transformation (BLT) design method

C code

direct-form II implementation, 445–446, 446t, 447f,

448f

direct-form I structure, 445, 445f

difference equation, 302–303

digital audio equalizer, 341f

audio spectrum, 343–344, 343f

audio test signal, 343–344

filter banks design, 342, 342t

magnitude frequency responses, 342, 342f

MATLAB program, 344

specifications for, 341, 341t

digital Butterworth lowpass prototype functions, 318, 319t

bandpass and bandstop filter, 331–337

lowpass and highpass filters, 322–331

magnitude response function, 318, 320f

prototype filter order, 318–320

digital Chebyshev lowpass prototype functions, 318, 319t,

320t

analog filter specification conversion, 321, 322t

bandpass filters, 321, 322f, 331–337

bandstop filters, 331–337

highpass filters, 322–331, 322f

lowpass filters, 321–331, 322f

lowpass prototype order, 321

magnitude response function, 320–321, 321f

direct-form I and direct-form II, realization structure, 358–

360

DTMF tone generator

Goertzel algorithm, see Goertzel algorithm

MATLAB program, 377

modified Goertzel algorithm, see Modified Goertzel

algorithm

telephone touch keypads, 373–375, 373f, 376f

first-order IIR filter transfer function, 369–371

fixed-point system, 432, 432f

format of, 302–303

higher order IIR filter design, cascade method, 338–340,

338t, 339t

realization structure, 361–362

60-Hz hum eliminator and heart rate detection,

electrocardiography, 392

cascaded frequency responses, 365, 366f

characteristics of, 362, 363f

design specifications, 364–365

harmonics, 364

heart rate, definition, 367–368

MATLAB program, 368

QRS complex, 362–364

signal enhancement system, 364, 364f

signal processing results, 366, 367f

signal spectrum, 362, 363f

transfer function and difference equation, 365

zero-crossing algorithm, 366–367, 368f

impulse-invariant design method, 345f, 389, 392

filter DC gain, 348

inverse Laplace transform, analog impulse function,

345–346

rectangular approximation, 346–348

sampling interval effect, 348, 349f

scaled magnitude frequency response, 347f, 348

second-order filter design, 348–351

pole-zero placement method, 389, 392

first-order highpass filter, 357–358, 357f

first-order lowpass filter, 355–357, 355f, 356f

magnitude response, 351, 352f

Nyquist limit, 351–352

second-order bandpass filter, 352–354, 353f

second-order bandstop (notch) filter, 354–355, 354f

second-order IIR filter transfer function, 369–371

single-tone generator, 374–375, 374f, 375f

transfer function, 433
Infinite precision, 35, 282

Interlaced raster scan, 747, 748f

Interpolation filter, 579, 579t

commutative model, 580, 580f

filter bank coefficients, 579–580

four-tap interpolation filter, 578, 578f

implementation, 579, 579f, 584
Inverse discrete cosine transform (IDCT), 729

Inverse discrete Fourier transform (IDFT), 262

Inverse discrete wavelet transform (IDWT),

656, 671

Inverse fast Fourier transform (IFFT)

definition, 126

eight-point IFFT, 129–131, 131f
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Inverse z-transform

definition, 144

partial fraction expansion method, 144–145

constant(s) formulas, 145, 146t

MATLAB function residue(), 150–152

J
JPEG image compression

alternating-current coefficients, 738f

bit stream, 738

run-length coding, 736–738

direct-current coefficients

DPCM, 736

Huffman coding, 737, 737t

encoder, 735, 735f

image blocks, 735

lossless entropy coding, 737

quantization, 735–736, 736t

RGB to YIQ transformation, 735

two-dimensional grayscale image, 733, 734f

coding error, 733, 734t

DCT coefficients, 731, 732t

DCT coefficient scan order, 732, 733t

JPEG vector, 732–733

normalized DCT coefficients, 732, 733t

original image, 731, 732f

quality factor, 731, 733t

recovered image subblock, 733, 734t

8�8 subblock, 731, 731t

K
Kaiser window, 230

Kernel

average convolution, 709

differential convolution, 715–716

Gaussian filter, 711–712

L
Laplace shift property, 174

Laplace transform

differential equations, 793–794

and table, 791–793, 791t

transfer function, 794–795
Laplacian edge detector, 716–717

Laplacian of Gaussian filter, 717, 719f

Least mean square (LMS) algorithm, 461–462

adaptive FIR filters

corrupted signal and noise reference, 455–457, 456f,

456t

desired signal spectrum, 453, 454f

noise canceller, 454, 454f

one-tap FIR filter, 455, 457

Linear buffering

FIR filter, 441–442, 441f

IIR filter, 442, 443f

coefficient buffer, 444, 444f

digital oscillation, 442
Linear convolution, 142–143

Linear midtread quantizer, 533

Linear phase response, 223, 224f, 226–227, 226f, 227f

Linear systems, 63, 64f

digital amplifier, 64

system output, 65
Linear time invariant system

difference equation, 67

FIR system, 69

stability criterion, 71

unit-impulse response, 68–69, 68f, 72
Lowpass filters, 304, 304f

analog filters, 321, 322f

coefficients, 656

digital Butterworth lowpass prototype functions,

322–331

digital Chebyshev lowpass prototype functions,

321–331, 322f

impulse responses, 260, 261f

magnitude frequency responses, 260, 260f, 261f

Sallen-Key lowpass filter, 26–27, 26f

17-tap FIR lowpass filter coefficients, 224, 225t
Lowpass noise filtering

average convolution kernel, 709

Gaussian filter kernel, 711–712

noisy and enhanced image, 711–712, 711f, 712f, 713f
Luminance channel, 688–689

M
MAC, see Multiplier and accumulator (MAC)

Maclaurin series expansion, 593–595

Macroblocks, 755, 755f

Mathematical formulas

complex conjugate, 826

complex number form, 825–826

addition and subtraction, 826

division, 826–828

multiplication, 826

L’Hospital’s rule, 828

quadratic equation solution, 828

simultaneous equation solution, 828

simultaneous linear equation solution, 830
Matrix Laboratory (MATLAB) programs

ADPCM coding, 539

decoding, 542

encoding, 539

analog filters, lowpass prototype transformation, 307
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arrays and indexing, 770–771

CD audio player, 572

commands and syntax

array operations, 769

complex numbers, 768

numbers, variables and expressions, 768

sum() function, 767

variable names, 768

DCT waveform coding, 546

digital audio equalizer, 344

digital m-law compressor, 537

digital m-law encoding and decoding, 537

digital m-law expander, 538

downsampling, 559, 609

DTMF tone generator, 377

edge detection, 718–721, 720f

equalization, 702–704, 703f

fft() and ifft() function, 93, 93t

FIR filter design

noise reduction, 255

window method, 237–240, 237t, 288

first-order SDM, 597

Goertzel algorithm, 382

60-Hz hum eliminator and heart rate detection,

electrocardiography, 368

image level adjustment, 707, 708f

m-law companding, 535

m-law encoding and decoding, 534

m-law expanding, 535

midtread quantizer

decoding, 536

encoding, 536

linear, 533

modified Goertzel algorithm, 385–386, 386f

noise cancellation, 466

noninteger factor L/M, 568

one-level wavelet transform and compression, 742

oversampling, 589

plot functions, 771–772, 772f

pseudo-color generation and detection, 725

residue() function, 150–152

script files, 164f, 772–773

signal to quantization noise ratio, 48, 537

sign function, 548

speech signals

bandpass filtering, 204

pre-emphasis of, 201

sumsub.m function, 773–774

system modeling, adaptive filters, 470

two-channel perfect reconstruction quadrature mirror filter

bank, 633

two-level wavelet transform and compression, 744

uniform quantization decoding, 48

uniform quantization encoding, 48

upsampling, 564, 611

wavelet data compression, 667

W-MDCT function, 545

inverse function, 545

waveform coding, 546
MDCT, see Modified discrete cosine transform (MDCT)

Mean square error quadratic function, 457–458, 458f

Median filtering

enhanced image, 714, 715f

“pepper and salt” noise, 714, 715f

principle of, 712–714
Modified discrete cosine transform (MDCT)

1D-DCT, 522

decoding stage, 523

encoding stage, 523

W-MDCT, 522, 522f

waveform coding, 524–525, 525f

wmdeth() and wimdetf() functions, 523–524
Modified Goertzel algorithm, 384f

ASCII code, 385–386

design principles, 383

frequency bins, 383, 384t

MATLAB simulation, 385–386, 386f
Mother wavelet, 642, 644, 644f

Motion estimation, 755–756, 755f

Motion vector, 755

MPEG audio

audio frame formats, 526, 527f

data frame types, 526, 526f

DCT, 519–522, 524–525, 525f

encoder, 527, 528f

Huffman coding, 528

MDCT, see Modified discrete cosine transform

(MDCT)
Multiplier and accumulator (MAC), 407–409, 409f

Multirate digital signal processing, 555–556

CD audio player

interpolation filter design, 571–572, 573f

MATLAB program, 572

sample rate conversion, 571, 571f

signal plots, 572, 574f

multistage decimation, seeMultistage decimation approach

sampling rate, integer factor, see Sampling rate
Multiresolution analysis, 650–651

Multistage decimation approach

sampling rate conversion, 578

two-stage decimator, 574, 575f

filter requirements, 576

stopband frequency edge, anti-aliasing filter, 575–576,

575f
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N
Noise cancellation

MATLAB program, 466

MSE function vs. weights, 465, 465f

one-tap adaptive filter, 462, 463f

specifications, 466

speech waveforms and spectral plots, 466,

466f, 467f

two-tap adaptive filter, 463–465
Noise reduction systems

clean signal and spectrum, 254, 255f

data acquisition process, 253

MATLAB program, 255

noise signal and spectrum, 254, 254f

passband frequency range, 254

speech noise reduction, 256–257, 256f, 257f

stopband frequency range, 254

vibration signals, 257–258, 258f, 259f
Noncausal FIR filter coefficients, 233

Noncausal sequence, 141, 233

Normalized bandpass filter, 187, 187f

Normalized bandstop filter, 188, 188f

Normalized Butterworth function, 805–808

Normalized Chebyshev function, 808–812

Normalized highpass filter, 187, 187f

Normalized lowpass filter, 186f, 187

Notch filter, 354–355, 354f

NTSC TV standard, 750, 751f

Nyquist frequency, 20, 47

Nyquist limit, 351–352, 562–563, 564f

O
Optimal design method, 286–287

see also Parks-McClellan algorithm

Overflow, 422

Output digital signal, 2, 592

P
Parallel realization method, 192, 196–199, 196f

Parks-McClellan algorithm

alternation theorem, 277–278

approximation error, 269

Chebyshev polynomial approximation, 269

Chebyshev real magnitude function, 277

design procedure, 270–279

disadvantages, 279

magnitude frequency response, 269–270, 270f

minimax filters, 269

Remez exchange algorithm, 269
Partial fraction expansion method, 144–145

constant(s) formulas, 145, 146t

MATLAB function residue(), 150–152

Perfect reconstruction, see Two-channel perfect

reconstruction quadrature mirror filter bank

Phase alternative line (PAL) system, 752

Plot functions, 771

Pole-zero placement method, 389, 392

first-order highpass filter, 357–358, 357f

first-order lowpass filter, 355–357, 355f, 356f

magnitude response, 351, 352f

Nyquist limit, 351–352

second-order bandpass filter, 352–354, 353f

second-order bandstop (notch) filter, 354–355, 354f
Pole-zero plot, see Z-plane pole-zero plot

Polyphase filters

direct decimation process, 581, 581f, 582t

commutative model, 582–583, 583f

filter bank coefficients, 582

implementation, 582, 582f, 584

three-tap decimation filter, 581

direct interpolation filter, 579, 579t

commutative model, 580, 580f

filter bank coefficients, 579–580

four-tap interpolation filter, 578, 578f

implementation, 579, 579f, 584

properties, 581
Power spectrum, 97–101

Progressive scan, 754

Q
Quadrature amplitude modulation (QAM), 751–752

Quantization, 735–736, 736t

see also Waveform quantization and compression

bipolar quantizer, 38–40, 39f, 40t

definition, 35, 36f

error, 37

notations and rules, 38

process, 37

SNR, 47

unipolar quantizer, 38, 38f, 39t
Quantization error

analog m-law companding, 501

DAC, 40–42

R
Radix-2 FFT algorithm, 123

decimation-in-frequency method, see Decimation-

in-frequency method

decimation-in-time method

eight-point FFT algorithm, 128–129, 130f

eight-point IFFT, 129–131, 131f

first iteration, 128–129, 130f

frequency bins, 128–129

second iteration, 128–129, 130f
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rconv() function, 668

Realization structure

direct-form I and direct-form II, 358–360

higher order IIR filter design, cascade method, 361–362
Real-time processing

input and output sample clock, 438, 439f

program segment, 438, 440f

TMS320C6713 DSK setup, 438, 440f
Rectangular window, 230

Reference frame, 755, 755f

Remez exchange algorithm, 269

RGB components, 686, 686f

RGB-to-YIQ transformation, 690, 690f

Root mean square (RMS), 42, 499

Rounded off error, 282

Run-length coding, 736–738

S
Sallen-Key lowpass filter, 26–27, 26f

Sampling rate

downsampling, 557f

data sequence, 556

definition, 556

MATLAB program, 559, 609

normalized stop frequency edge, 556–557

Nyquist sampling theorem, 556

spectral plots, 556–557, 558f

TMS320C6713 DSK, 608, 612f

using anti-aliasing filter, spectral plots, 558–559, 560f

without using anti-aliasing filter, spectral plots, 558, 559f

z-transform, 556–557

noninteger factor L/M, 570–571

anti-aliasing filter, 568, 569f

interpolation filter, 567, 568f

MATLAB program, 568

sampling rate conversion, 567, 567f

upsampling

definition, 562

interpolation filter, 563, 565f

MATLAB program, 564, 611

normalized stop frequency edge, 562–563

Nyquist limit, 562–563, 564f

process of, 562, 563f

sampling frequency, 562–563

TMS320C6713 DSK, 611, 612f
Scaling functions, 649–650, 650f

multiresolution analysis, 650–651
SECAM system, see Séquentiel Couleur á; Mémoire

(SECAM) system

Second-order bandpass filter, 352–354, 353f

Second-order bandstop (notch) filter, 354–355, 354f

Second-order Butterworth lowpass filter, 25–26

Second-order IIR filter transfer function, 369–371

Séquentiel Couleur á Mémoire (SECAM) system, 752, 752t

Sequential search method, 755–756

Shannon sampling theorem, 20

Shaped-in-band noise power, 593–595

Shifters, 409

Sigma-delta modulation analog-to-digital conversion (SDM

ADC)

ADC resolution, 595–596

CD player, 601–602, 601f, 602f

continuous vs. regular sampled vs. oversampled signal

amplitudes, 597, 599f

discrete-time analog filter, 592, 593f

DSP model, second-order SDM, 595, 596f

extrapolation method, 592

feedback control system, 592–593

first-order SDM

DSP model, 592, 593f

MATLAB program, 597

principles, 592, 592f

frequency responses, 597, 597f

MAX1402, functional diagram, 600, 600f

noise shaping filter, 592–593, 594f

shaped-in-band noise power, 593–595

time vs. frequency domains, 597, 598f
Signal denoising, 668, 670f

Signal-to-noise power ratio, 499

Signal reconstruction

aliasing frequency component, 23–25

anti-aliasing filtering, 35

aliasing level percentage, 28

Butterworth magnitude frequency response,

25–26

Sallen-Key lowpass filter, 26–27, 26f

sampled analog signal, 25, 26f

anti-image filter and equalizer, see Anti-image filter and

equalizer

signal notations, 21–22, 22f

signal spectrum recovery, 22–23, 22f, 23f
Signal sampling

ADC

see also Analog-to-digital conversion (ADC)

sample-and-hold analog voltage, 15, 16f

analog (continuous) signal and digital samples vs. time

instants, 15, 16f

anti-image filter, 18

DAC, see Digital-to-analog conversion (DAC)

DSP, 15, 16f

lowpass reconstruction filter, 20

MATLAB function

signal to quantization noise ratio calculation, 48

uniform quantization decoding, 48
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Signal sampling (Continued)

uniform quantization encoding, 48

Nyquist frequency/folding frequency, 20, 47

sampling process, 18, 18f, 47

sampling rate, 16–17

sampling theorem condition, 17–18, 17f, 20, 47

Shannon sampling theorem, 20

signal reconstruction, see Signal reconstruction

spectral analysis, 18–19, 19f
Single-tone generator, 374–375, 374f, 375f

Smith-Barnwell PR-CQF filters, 630, 630t

Spectral leakage, 108

Speech coding

four-band compression, 637, 637f, 638f

seismic data, 637, 639f

two-band compression, 636–637, 636f
Speech noise reduction, 256–257, 256f, 257f

Speech signals

bandpass filtering

amplitude spectra, 203, 205f

digital fourth-order bandpass Butterworth filter,

203

frequency responses, 203, 203f

MATLAB program, 204

original and filtered speech plots, 203, 204f

pre-emphasis of

amplitude spectral plots, 201, 202f

magnitude and phase responses, 200, 200f

MATLAB program, 201

speech waveforms, 200, 201f

transfer function, 200
Stair functions, 771

Steepest descent algorithm, 459, 460f,

461–462

Stem functions, 771

Step response, 169

Subband coding

analysis and synthesis stages

channel 0, 622, 623f

channel 1, 622, 623f

channel 2, 622–624, 624f

channel 3, 624, 625f

4-channel filter bank analyzer and synthesizer,

621–622, 622f

decomposition, see Two-channel perfect reconstruction

quadrature mirror filter bank

delta function, 624

discrete Fourier transform, 625

filter bank system, 621

impulse train, 625, 626f

signal flow, 624, 625f

speech coding, see Speech coding

two-band filter bank system, signal compression,

635–636, 636f

z-transform, 626
Subplot functions, 771

S-video, 746

Synthesis filter

channel 0, 622, 623f

channel 1, 622, 623f

channel 2, 622–624, 624f

channel 3, 624, 625f

4-channel filter bank, 621–622, 622f

T
17-Tap FIR lowpass filter coefficients, 224, 225t

Target frame, 755, 755f

Time-invariant system, 65–66, 65f

TMS320C6713 DSK

analog system program, 482

downsampling, 608, 612f

system modeling

LMS adaptive filter, 480–482, 480f, 482f

program segment, 481

tonal noise cancellation, 483, 483f, 484f

DSK1 program, 483

DSK2 program, 484

upsampling, 611, 612f
Transition band, 186

Translated function, 642, 643f

Transversal FIR filter, 280–281, 280f

Twiddle factor, 92–93, 123–124

Two-band digital crossover design

lowpass and highpass filters

impulse responses, 260, 261f

magnitude frequency responses, 260, 260f, 261f

speaker drivers, 258–259, 259f

specifications, 259–260
Two-channel perfect reconstruction quadrature mirror filter

bank, 626, 627f

analysis and synthesis filters, 627

autocorrelation function, 628

four-band implementation

binary tree structure, 634f, 635

dyadic tree structure, 635, 635f

frequency response, 629, 629f

lowpass filter equations, 630

MATLAB program, 633

N-tap FIR filters, 628

Smith-Barnwell PR-CQF filters, 630, 630t

two-band analysis and synthesis, 632, 633f
Two-dimensional discrete cosine transform (2D-DCT),

729–731

Two-dimensional discrete Fourier transform (2D-DFT), 725
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U
Unipolar quantizer, 38, 38f, 39t

Unit circle, 175

Unit-impulse sequence, 58–59, 59f

Unit-step sequence, 59, 59f, 62

Underflow, 423

Unstable system, 175

Upsampling

definition, 562

interpolation filter, 563, 565f

MATLAB program, 564, 611

normalized stop frequency edge, 562–563

Nyquist limit, 562–563, 564f

process of, 562, 563f

sampling frequency, 562–563

TMS320C6713 DSK, 611, 612f

V
Vertical retrace, 747, 750

Vertical Sobel edge detector, 716

Vibration signature analysis, 9, 10f, 11f

Video signals

analog video

“back porch”, 748

electrical signal demodulation, 748–750, 749f

frame via row-wise scanning, 747

frequency modulation, 751

interlaced raster scanning, 747, 748f

NTSC TV standard, 750, 751f

PAL system, 752

QAM, 751–752

SECAM system, 752, 752t

vertical synchronization, 749f, 750

video data, retrace and sync layout, 750, 750f

video-modulated waveform, 747, 748f

component video, 746

composite video, 746

digital video

CCIR-601, chroma subsampling, 753, 753f

HDTV formats, 754, 754t

specifications, 754, 754t

motion estimation, 755–756, 755f

S-video, 746
Von Neumann architecture, 406, 406f

applications, 408

execution cycles, 407, 408f

opcode and operand, 406

W
Waveform coding, 7

Waveform quantization and compression

analog m-law companding

characteristics, 502, 502f

compressor, 501, 501f

expander, 501–502, 501f

original speech data, 504, 505f

quantization error, 501

digital m-law companding

8-bit compressed PCM code format, 505–506, 506t,

508–509, 508f

characteristics, 505, 506f

compressor and expander, 504, 505f

decoding table, 506–508, 507t

encoding table, 505–506, 507t

DM, 511

DPCM

3-bit quantizer, 509, 510t

encoder and decoder, 509, 509f

quantization step size, 512

G.721 modulation, see Adaptive differential pulse code

modulation (ADPCM)

linear midtread quantization

characteristics of, 498–499, 498f

quantization, definition, 497–498

quantization error, 500

quantized values, 498–499, 498t

signal-to-noise power ratio, 499

speech data plot, 500, 500f

MATLAB programs, see MATLAB programs

MPEG audio

audio frame formats, 526, 527f

data frame types, 526, 526f

DCT, 519–522, 524–525, 525f

encoder, 527, 528f

Huffman coding, 528

MDCT, see Modified discrete cosine transform (MDCT)

TMS320C6713 DSK

digital m-law encoding and decoding, 530

encoding and decoding, linear quantization,

528–529
Wavelet analysis

analysis equations, 822–823

properties, 821–822

scaled function, 641, 642f, 643f

synthesis equations, 823–824

translated function, 642, 643f
Wavelet transform

amplitudes, 639–641, 641f

analysis and synthesis stage, 664

combined signal and spectrum, 639–641, 640f

CWT, 638, 641

Daubechies-4 filter coefficients, 653, 654t

DWT, 638

see also Discrete wavelet transform (DWT)
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Wavelet transform (Continued)

coefficient layout, 664, 665f

hard threshold, 668, 669f

signal denoising, 668, 670f

Haar father and mother wavelets, 642, 644, 644f,

652–653

individual signal components, 639, 640f

mother wavelet, definition, 641

one-level wavelet transform and compression, 741,

742f

MATLAB program, 742

scaled wavelet function, 641, 642f, 643f

scaling functions, 649–650, 650f

multiresolution analysis, 650–651

signal coding, 650, 651f

sinusoidal delaying function, 648, 648f

4-tap Daubechies father wavelet, 654, 654f

4-tap Daubechies mother wavelet, 655, 655f

translated wavelet function, 642, 643f

two-dimensional DWT, 738–741, 739f

two-level wavelet transform and compression,

741–742, 743f

MATLAB program, 744

types, 638

wavelet coefficients, 646–647

wavelet data compression

16-bit ECG data, 668, 669f

16-bit speech data, 667, 667f

MATLAB program, 667
Wiener filter theory

autocorrelation and cross-correlation, 459

LMS algorithm, 461–462

mean square error quadratic function, 457–458, 458f

noise cancellation, 457, 457f

statistical expectation, 457–458, 461–462

steepest descent algorithm, 459, 460f, 461–462
Windowed modified discrete cosine transform (W-MDCT),

522–523, 522f, 545

inverse function, 545

waveform coding, 524–525, 525f, 546
Window method

Blackman window, 230, 231f

cutoff frequency, 242

design procedure, 233

Gibbs oscillations, 230

Hamming window, 230, 231f

Hanning window, 230, 231f

Kaiser window, 230

length estimation, 241, 241t

magnitude frequency response, 240

MATLAB function, 237–240, 237t, 288

passband ripple, 241–242, 241f

rectangular window, 230

stopband attenuation, 241–242, 241f

triangular (Bartlett) window, 230, 231f

Y
YCbCr color space, 753

YIQ, 690, 690f

YUV color model, 752

Z
Zero-crossing algorithm, 366–367, 368f

Zigzag scan, 737

Z-plane pole-zero plot, 172f

analog-to-digital conversion, 174

bounded-in/bounded-out stability, 175

features, 172

Laplace shift property, 174

Laplace vs. z-transform, 173, 174f

s-plane vs. z-plane mapping, 175, 175f

stability rules, 175, 176f
Z-transform

definition, 137–138

difference equations, 152–156

exponential sequence, 138

inverse z-transform

definition, 144

partial fraction expansion method, see Partial fraction

expansion method

lookup table, 156

one-sided/unilateral transform, 137–138

properties of, 144t

causal sequence, 141–143

linear convolution, 142–143

linearity, 140–141

time-shifted sequence, 141

region of convergence, 138

sequences for, 138–140, 139t
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